

« Cooperative Connected Vehicles (C²V): where IoT meets C-ITS

Prof. Jérôme Härri
Visit to Prof. Fidler, TU Hannover
February 3rd 2016

Graduate school and research center in communication systems

school of Institut Mines Telecom

Academia

Industry and institutions

Focus on: Automotive Domain Activities

V2X Communications & Networking

- Dependable Vehicular Communication
 - 1-hop broadcast & congestion control
- Contribution to the ETSI ITS, in particular DCC
 - C2C CC WG COM co-chair and subWG DCC chair
- 5G extensions to automotive domain
 - LTE D2D for safety communication
 - Low latency LTE

Vehicular SDN & NFV

- IPv6 Vehicular Mobility Management
- Mobility-aware Content storage and retrieval
- Vehicular Fog-based processing

Vehicular loX

- M2M-compliant IoT architecture for 'connected cars'
- Data-as-a-service architecture for vehicular & crowd sensing

Vehicular Communication Security

- Software designed security (security by design)
- Embedded security

Focus on: Tools and Methodologies

Simulation Platforms

- > iTETRIS Platform
 - http://www.ict-itetris.eu/
- ns-3 with V2X extensions
 - https://www.nsnam.org/
- > SUMO
 - http://sumo.dlr.de

Emulation / Prototyping

- > 5G OpenAirInterface
 - http://openairinterface.eurecom.fr/
- V2X Prototyping

EURECOM – Teaching & Research

'Grande École' for Communication Systems

Academia

Member of the Elite Cluster SCS

Symantec.

Architect and co-founder of Com4Innov

Research:

- Mobile & Network Communication Massive MIMO, connected vehicles, IoT, WiFi, 5G, M2M, SDN
- Data & Security Big Data, Cloud computing, cryptography
- Multimedia Web Semantics, Open Data, Speech/video recognition

Teaching:

- Engineering Track Telecom ParisTech
- International Master Track Mobile Communication, Data & Security, Multimedia
- Post-Master Track http://www.eurecom.fr/en/teaching/post-master-degree
 - Cooperative Communications for ITS
 - Security of Computer Systems

C-ITS Applications – Day 1 Architecture, Technologies & Applications

ETSI Technical Committee on ITS

Source: C2C-CC

Applications

- Active Road Safety
 - Cooperative awareness
 - Hazard warning
- Cooperative Traffic Efficiency
 - Adaptive speed management
 - Cooperative navigation

Technology

- > ITS-G5
 - IEEE 802.11 for vehicular environment
 - a.k.a: 802.11p, DSRC

C-ITS Applications – DAY 2 Objective: Highly Autonomous Driving

Not such a new idea

...yet a very ambitious idea

A very marketized idea...

Source: google

Source: toyota

C-ITS Applications – DAY 2 Objective: Vulnerable Road Users

C-ITS not only between Vehicles

C-ITS connects to wearable devices

C-ITS is part of the Internet-of-things

From 'Cooperative' to 'Connected'

- A Change in the Eco-System
 - **Cooperative vehicle**
 - driven by car industry

- **Connected vehicle (things)**
 - driven by Internet & wireless industry

C²V Case Study: H2020 HIGHTS Project

HIGHTS: High Precision Positioning for Cooperative ITS

Start: 1st May 2015

Topic:

- Cooperative Positioning providing sub-meter (<0.5m) precision
- Positioning service for autonomous driving and vulnerable road users

Situation:

- Ego localization with laser/radars/cameras show a high potential for self positioning, but...
 - not efficient in bad conditions (weather, traffic, curves, etc..), expensive, not interoperable
- Objective: innovative use of C²V to
 - Cooperate to enhance positioning
 - Connect to an IoT to exchange navigation and landmarks
 - Unify landmark semantics for cross-platform interoperability

Observation: pedestrian crossing Coordinate: lane 3, 50m, GPS Decision: Danger

Partners:

Penetration rate

- Device Market Penetration:
 - G5: Enabled cars
 - 5G: Smartphones/things
- → 50% in 15 years
- → 50% in 2 years

- Network:
 - G5: Road Side Units will be deployed in the next years
 - 5G: Network already available and in expansion

Ubiquity

Frequency bands

G5 for Safety Automotive

IRT shows signs of correlations (simulations)

Correlated IRT has a bad impact on C-ITS at constant PRR

Correlated Hidden Terminal

Correlated Mobility

Fish-Eye Awareness on IRT

- Decorrelate hidden noderelated collision
- Factor 30 improvement at 1Hz

Reference: B. Kloiber, J. Härri, T. Strang, C. Rico Garcìa, Random transmit power control for DSRC and its application to cooperative safety, IEEE Trans. of Dependable and Secured Communication, Volume PP, N°99, 2015

Source: Volvo

Fish-Eye Awareness on position error

- Factor 10 at 1m
- Factor 70 at 5m

- An alternate view 5G for Safety Automotive
 - Multi-cell / operator resource Allocation

 $\mathrm{RB}_1 \quad \cdots \quad \mathrm{RB}_{l_{RB}} \quad \mathrm{RB}_{l_{RB}+1} \quad \cdots \quad \mathrm{RB}_{2l_{RB}} \quad \cdots \quad \mathrm{RB}_{(L-1)l_{RB}+1} \quad \cdots \quad \mathrm{RB}_{Ll_{RB}}$

slot I

- Fully distributed resource scheduling
 - Locally, vehicles group RBs into

- Challenge:
 - Select slots with minimum collision probability
 - Sounds familiar !!

PRR

Performance metric:

- TX-centric probability of successful packet reception (PRR) (packet delivery rate)
- RX-centric Inter-reception Time (IRT) between two successive CAM

Reference: Laurent Gallo, Jérôme Härri, "Dedicated Short Range LTE for V2X Direct Broadcast Communications", IEEE Transaction on Vehicular Technology (to be submitted), 2016

C²V: Cooperative Localization

Non-cooperative Localization:

- Use of GPS and known fixed anchors
- Use on-board devices (laser scanners, radars..)

Cooperative Localization:

- Use Cooperating vehicles as landmark
- Neighbor selection for optimal multilateration

Challenges of Cooperative Communications

dispersion of car 2's position

Asynchronous sampling

- p 17

- Not all neighbors are born equal
 - Various GPS quality
- Correlation (space and time) in samples

dispersion of car 1's position

'Ego" car

dispersion of ego" car's position

after fusion (CP)

dispersion of "ego" car's position before fusion (non-CP)

> dispersion of car 3's position

C²V: Cooperative Localization

Bayes Link Selection Criterion

- Link Selection General goals
 - 1. ↓ (reduce) computational complexity
 - 2. ↓ (reduce) communication loads
- ➤ Non-Bayesian CRLB criterion
 - 1. Radio link quality
 - 2. Geometry of reference vehicles
- Bayesian CRLB criterion
 - 1. Radio link quality
 - 2. Geometry of reference vehicles
 - Uncertainty of neighbors' estimated positions

C²V: Cooperative Localization

Cooperative Localization

- Benefits:
 - Helps in degraded GPS conditions
- Drawback:
 - Complex fusion; careful neighbor selection

Challenges:

Heterogeneous Neighbor Quality

Correlated Localization

References

- M. Hoang, B. Denis, J. Härri, D. Slock, Select Thy Neighbors: Low Complexity Link Selection for High Precision Cooperative Vehicular Localization, IEEE Vehicular Networking Conference
- M. Hoang, B. Denis, J. Härri, D. Slock, Breaking the Gridlock of Spatial Correlation in GPS-aided IEEE 802.11p-based Cooperative Positioning, under revision, IEEE Transaction on Vehicular Technology

C²V: Connected Services

C²V data as a 'Service' to data consumers

- C²V Data needs to be discovered
- C²V Data needs to be processed
- C²V Data is shared by C-ITS services

Initial architecture specification

- IoT/M2M for cooperative localization/landmarks
- Adapted to Highly Autonomous Driving (HAD) and Vulnerable Road Users (VRU)

IoT/M2M architecture for C²V Services

Observation: car stopped broke down Coordinate: GPS Decision: lane closed Danger

Observation: pedestrian crossing Coordinate: lane 3, 50m, GPS Decision: Danger

Reference

Datta, Soumya Kanti; Bonnet, Christian; Härri, Jérôme Fog computing architecture to enable consumer centric Internet of Things services, IEEE ISCE 2015, 19th IEEE International Symposium on Consumer Electronics, June 24-26 2015, Madrid, Spain

C²V – Connected Services

Cooperative Connected Vehicles (C2V): where IoT meets C-ITS

C²V – bridging two eco-systems

- Automotive & Wireless Industry
- Different operations:
 - C-ITS horizontal
 - IoT vertical

IoT in C-ITS – Cars as Connected Objects

- Ubiquitous IoT/M2M architecture
- Local resource discovery through C-ITS communication
- Unified Services

IoT / M2M architecture in C-ITS domain

- Transparent to C²V technology (5G or G5)
- Extensible to different IoT domains
 - Smart Driving
 - Smart City / Traffic
 - Electro-Mobility
 - ...

Jerome.Haerri@eurecom.fr

