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Abstract—Attack techniques based on code reuse continue to
enable real-world exploits bypassing all current mitigations. Code
randomization defenses greatly improve resilience against code
reuse. Unfortunately, sophisticated modern attacks such as JIT-
ROP can circumvent randomization by discovering the actual
code layout on the target and relocating the attack payload on
the fly. Hence, effective code randomization additionally requires
that the code layout cannot be leaked to adversaries.

Previous approaches to leakage-resilient diversity have either
relied on hardware features that are not available in all proces-
sors, particularly resource-limited processors commonly found
in mobile devices, or they have had high memory overheads.
We introduce a code randomization technique that avoids these
limitations and scales down to mobile and embedded devices:
Leakage-Resilient Layout Randomization (LR2).

Whereas previous solutions have relied on virtualization, x86
segmentation, or virtual memory support, LR2 merely requires
the underlying processor to enforce a W⊕X policy—a feature that
is virtually ubiquitous in modern processors, including mobile
and embedded variants. Our evaluation shows that LR2 provides
the same security as existing virtualization-based solutions while
avoiding design decisions that would prevent deployment on less
capable yet equally vulnerable systems. Although we enforce
execute-only permissions in software, LR2 is as efficient as the
best-in-class virtualization-based solution.

I. MOTIVATION

The recent “Stagefright” vulnerability exposed an estimated
950 million Android systems to remote exploitation [21].
Similarly, the “One Class to Rule them All” [40] zero-day vul-
nerability affected 55% of all Android devices. These are just
the most recent incidents in a long series of vulnerabilities that
enable attackers to mount code-reuse attacks [37, 43] against
mobile devices. Moreover, because these devices run scripting
capable web browsers, they are also exposed to sophisticated
code-reuse attacks that can bypass ASLR and even fine-
grained code randomization by exploiting information-leakage
vulnerabilities [11, 20, 48, 50]. Just-in-time attacks (JIT-
ROP) [50] are particularly challenging because they misuse
run-time scripting to analyze the target memory layout after

randomization and relocate a return-oriented programming
(ROP) payload accordingly.

There are several alternatives to code randomization aimed
to defend against code-reuse attacks, including control-flow
integrity (CFI) [1] and code-pointer integrity (CPI) [28]. How-
ever, these defenses come with their own set of challenges
and tend to have high worst-case performance overheads. We
focus on code randomization techniques since they are known
to be efficient [18, 25] and scalable to complex, real-world
applications such as web browsers, language runtimes, and
operating system kernels without the need to perform elaborate
static program analysis during compilation.

Recent code randomization defenses offer varying degrees
of resilience to JIT-ROP attacks [4, 6, 14, 15, 20, 22, 31, 35].
However, all of these approaches target x86 systems and
are, for one reason or another, unfit for use on mobile and
embedded devices, a segment which is currently dominated by
ARM processors. This motivates our search for randomization
frameworks that offer the same security properties as the state-
of-the-art solutions for x86 systems while removing the lim-
itations, such as dependence on expensive hardware features,
that make them unsuitable for mobile and embedded devices.

The capabilities of mobile and embedded processors vary
widely. For instance, many micro-processors do not have a
full memory management unit (MMU) with virtual memory
support. Instead they use a memory protection unit (MPU)
which saves space and facilitates real-time operation1. Pro-
cessors without an MMU can therefore not support defenses
that require virtual memory support [4, 14, 15, 22]. High-end
ARM processors contain MMUs and therefore offer full virtual
memory support. However, current ARM processors do not
support2 execute-only memory (XoM) [2] which is a funda-
mental requirement for randomization-based defenses offering
comprehensive resilience to memory disclosure [14, 15].

Therefore, our goal is to design a leakage-resilient layout
randomization approach, dubbed LR2, that enforces XoM
purely in software making our technique applicable to MMU-
less hardware as well. Inspired by software-fault isolation
techniques (SFI) [45, 47, 53], we enforce XoM by masking
load addresses to prevent the program from reading from any
code addresses. However, software-enforced XoM is funda-
mentally different from SFI: First, XoM protects trusted code

1MPUs can still enforce W⊕X policies for a given address range.
2Firmware executed from non-volatile storage can be marked as execute-

only. Code executing out of RAM cannot be marked execute-only on current
processors.
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that is executing as intended whereas SFI constrains untrusted
code that may use return-oriented programming techniques
to execute instruction sequences in an unforeseen manner to
break isolation of the security sandbox. We take advantage of
these completely different threat models to enforce XoM in
software using far fewer load-masking instructions than any
SFI implementation would require; Section IV-B provides a
detailed comparison. A second key difference between SFI
approaches and LR2 is that we hide code pointers because they
can otherwise lead to indirect leakage of the randomized code
layout. Code pointers reveal where functions begin and return
addresses reveal the location of call-preceded gadgets [19, 24].
We protect pointers to functions and methods (forward point-
ers) by replacing them with pointers to trampolines (direct
jumps) stored in XoM [14]. We protect return addresses
(backward pointers) using an optimized pointer encryption
scheme that hides per-function encryption keys on XoM pages.

Thanks to software-enforced XoM, LR2 only requires that
the underlying hardware provides code integrity by enforcing
a writable XOR executable (W⊕X) policy. This requirement is
met by all recent ARM processors whether they have a basic
MPU or a full MMU. Support for W⊕X policies is similarly
commonplace in recent MIPS processors.

In summary, our paper contributes:

• LR2, the first leakage-resilient layout randomization
defense that offers the full benefits of execute-only
memory (XoM) without any of the limitations making
previous solutions bypassable or unsuitable for mobile
devices. LR2 prevents direct disclosure by ensuring
that adversaries cannot use load instructions to access
code pages and prevents indirect disclosure by hiding
return addresses and other pointers to code.

• An efficient return address hiding technique that lever-
ages a combination of XoM, code randomization,
XOR encryption, and the fact that ARM and MIPS
processors store return addresses in a link register
rather than directly to the stack.

• A fully-fledged prototype implementation of our tech-
niques capable of protecting Linux applications run-
ning atop ARM processors.

• A detailed and careful evaluation showing that LR2

defeats a real-world JIT-ROP attack against the
Chromium web browser. Our SPEC CPU2006 mea-
surements shows an average overhead of 6.6% which
matches the the 6.4% overhead for a comparable
virtualization-based x86 solution [14].

II. BACKGROUND

After W⊕X policies became commonplace, code reuse
replaced code injection as the key exploitation technique. At
first, attackers reused whole functions in dynamically linked li-
braries [37] but later switched to return-oriented programming
(ROP) [43] that reuses short instruction sequences ending in
returns (gadgets). Most recently, Schuster et al. [46] introduced
counterfeit object-oriented programming (COOP), a technique
that reuses C++ virtual methods to bypass many control-flow
integrity (CFI) [1] and code randomization defenses [29].
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Figure 1: Memory regions and pointers between them. Gen-
eralized JIT-ROP harvests pointers from the heap, stack, or
other data pages to code pages (step 1). The original JIT-
ROP attack [50] recursively reads and disassembles code pages
(steps 2-3). Indirect JIT-ROP attacks [11, 20] omits these steps.

ASLR, address space layout permutation (ASLP) [27], and
other types of code randomization greatly increase resilience to
code reuse by hiding the address space layout from adversaries.
However, the results of randomization can be disclosed using
information-leakage vulnerabilities [7, 20, 48, 49, 50, 52].
The just-in-time code-reuse (JIT-ROP) techniques [20, 50]
are particularly powerful as they use malicious JavaScript to
overflow a buffer, access arbitrary memory, and analyze the
randomized layout of the victim browser process. Figure 1
illustrates ways that adversaries disclose and analyze memory
contents by constructing a read primitive out of a corrupted
array object. In step one, pointers to code are harvested from
the heap, stacks, virtual method tables (vtables), and any
other data that can be located by the adversary. Heaps, for
instance, contain function pointers and C++ objects that point
to vtables. These in turn point to C++ virtual methods. Stacks
predominantly contain pointers to call-preceded locations in-
side functions. In step two, the adversary uses these pointers to
locate and read code pages directly and, in step three, follows
references to other code pages recursively until all necessary
gadgets have been located. Early defenses against JIT-ROP
made references between code pages opaque [3] or emulated
execute-only memory [4, 22]. However, the indirect JIT-ROP
attack [20] shows that the initial pointer harvesting step is
sufficient to launch JIT-ROP attacks against code randomized
at the level of functions [27] or code pages [3]. Building on
these lessons, the Readactor [14] approach prevents all three
memory leakage steps in Figure 1 by combining XoM with a
pointer indirection mechanism known as code-pointer hiding
(CPH). With CPH, all code pointers in readable memory are
replaced with trampoline pointers that point into an array
of direct jumps (trampolines) to functions and return sites.
Trampolines cannot be used to indirectly disclose the code
layout because trampolines are randomized and stored in XoM.

While the Readactor approach offers leakage resilience, it
targets high-end x86 systems that can support XoM natively
which precludes deployment on mobile devices. Moreover,
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their code-pointer hiding component requires additional com-
putational and storage resources. Our LR2 solution, described
in Section IV, provides the same security but significantly
reduces the associated resource and hardware requirements.

III. ADVERSARY MODEL

We use the following adversary model:

• The adversary cannot compromise the protected pro-
gram at compile or load-time. Therefore the adversary
has no a priori knowledge of the code layout.

• The underlying hardware enforces a W⊕X policy
which prevents code injection. Note that even low-
end devices that have an MPU (rather than an MMU)
are able to meet this requirement.

• At run time, the attacker can read and write data mem-
ory such as the stack, heap and global variables. This
models the presence of memory corruption errors that
allow control-flow hijacking and information leakage.

• Attacks against the underlying hardware or operating
system fall outside the scope of this paper. This
includes any attack that uses timing, cache, virtual
machine, or fault side channels to disclose the code
layout.

Our adversary model is consistent with prior research on
leakage-resilient layout randomization [4, 6, 14, 15, 20, 22].

IV. LR2

Like similar defenses, LR2 consists of a series of code
transformations. We prototype these transformations as com-
piler passes operating on source code. Compile-time transfor-
mation is not fundamental to our solution. The same approach
could be applied by rewriting the program on disk or as it is
being loaded into memory.

We perform the following transformations:

• Load masking to enforce XoM in software (Sec-
tion IV-A). XoM prevents direct disclosure of the
code layout and forms the basis for the following
transformations. We describe conventional and novel
optimizations for efficient instrumentation in Sec-
tion IV-B.

• Forward-pointer hiding (Section IV-C). We replace
forward pointers to functions and virtual methods with
pointers into an array of trampolines, i.e., direct jumps
to the original pointer address, stored in XoM to
prevent indirect disclosure similar to Crane et al. [14].

• Return-address hiding (Section IV-D). While we
could have hidden return addresses in the same way as
we hide forward code pointers, this approach is sub-
optimal. First, the return address trampolines (a call
and a jump) take up more space than trampolines for
forward code pointers (a single jump). Second, this
naive approach would require a trampoline between
each caller and callee which further increases the
memory overhead.

• Fine-grained code randomization (Section IV-E).
The preceding techniques prevent disclosure of the

unobservable

0xBFFFFFFF

0x7FFFFFFF

0x00000000

Heap

Stacks

Globals

Trampolines

Code

Adversary

0x00000000

Heap

Stacks

Data

Code

0xBFFFFFFF

Legacy App LR  App2

observable

observable

Guard Region

Figure 2: Left: In legacy applications, all pages are observable
by attackers. The stack, heap and global areas contain point-
ers that disclose the location of code pages. Right: In LR2

applications, attackers are prevented from observing the upper
half of the address space which contains all code. Moreover,
attacker observable memory only contains trampoline pointers
(dotted arrows) that do not disclose code locations. Finally,
return addresses on the stack are encrypted (not shown).

code layout, so we must evaluate our system in
conjunction with fine-grained diversity techniques.

We describe each of these components in detail in the
following subsections, along with our prototype LLVM-based
toolchain, including dynamic loading and full protection of
system libraries.

A. Software-Enforced XoM

On ARM and other RISC instruction sets, all reads from
memory use a load instruction (ldr on ARM). To enforce
XoM purely in software (to avoid reliance on MMU features),
we prevent all memory loads from reading program code. We
enforce this property by 1) splitting the program code and data
memory into separate memory regions and 2) by ensuring that
no load instruction can ever access the code region. We mask
every attacker-controlled address that may be used by a load
instruction to prevent it from addressing a code page.

We split the virtual memory address space into two halves
to simplify load address masking; data resides in the lower
half of the address space and code in the upper half (see the
right side of Figure 2). Note that we include a guard region
which consists of 2 memory pages marked as non-accessible.
The guard region allows us to optimize loads that add a small
constant offset to a base address. With this split, our run-time
instrumentation simply checks the most significant bit (MSB)
of the address to determine whether it points to data or code.
All valid data addresses (and thus all safe memory loads) must
have a zero MSB.
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Since we enforce a memory-access policy rather than
program integrity in the face of memory corruption, we can
optimize our checks to fail safely if the program attempts to
read a code address. The ARM instruction set has two options
we can use to enforce efficient address checks: the bit clear
instruction (bic) or a test instruction (tst) followed by a
predicated load. Either clearing or checking the MSB of the
address before a load ensures that the load will never read from
the code section. The program may still behave incorrectly if
the attacker overwrites an address, but the attacker cannot read
any execute-only memory.

The following code uses bic masking instrumentation
which clears the MSB of the address before accessing memory.
This instrumentation is applicable to all load instructions.

b i c r0 , r0 , #0 x80000000
l d r r1 , [ r0 ]

Listing 1: bic masking example

The tst masking shown below instead avoids a data
dependency between the masking instruction and the load by
predicating the load based on a test of the MSB of the address.
If an attacker has corrupted the address to point into the code
section, the load will not be executed at all since the test will
fail. The tst masking has the added benefit that we can handle
failure gracefully by inserting instrumentation which jumps to
an address violation handler in case of failure. However, tst
is not applicable to loads which are already predicated on an
existing condition. In addition, we found that the bic masking
is up to twice as efficient as tst masking on our test hardware,
even with the data dependency. One possible reason for this is
that the predicated instruction will be speculatively executed
according to the branch predictor, causing a pipeline discard
in the case of a misprediction. At the same time, bic masking
benefits greatly from out-of-order execution if the load result
is not immediately required.

t s t r0 , #0 x80000000
l d r e q r1 , [ r0 ]

Listing 2: tst masking example

B. Optimized Load Masking

Masking addresses before every load instruction is both
redundant and inefficient as many loads are provably safe. To
optimize our instrumentation, we omit checks for loads that we
can guarantee will never read an unconstrained code address.
We start with similar optimizations to previous work, including
optimizations adapted specifically for ARM, and then discuss
a novel optimization opportunity that is not applicable to any
SFI technique.

a) SFI-Inspired Optimizations: We perform several op-
timizations mentioned by Wahbe et al. [53] in their seminal
work on SFI. We allow base register plus small constant
addressing by masking only the base register, avoiding the need
for an additional address computation add instruction. We also
allow constant offset stack accesses without needing checks by
ensuring that the stack pointer always points to a valid address
in the data section. All stack pointer modifications with a non-
constant operand are checked to enforce this property.

Additionally, we do not constrain program counter relative
loads with constant offsets. ARM does not allow for 32-bit
immediate instructions operands, and therefore large constants
are stored in a constant pool allocated after each function.
These constant pools are necessarily readable data in the code
section, but access to the constant pool is highly constrained.
All constant pool loads use a constant offset from the current
program counter and therefore cannot be used by attackers to
access the surrounding code.

b) XoM-Specific Optimizations: Although software
XoM is inspired by SFI, the two techniques solve fundamen-
tally different problems. SFI isolates potentially malicious code
whereas software XoM constrains benign code operating on
potentially malicious inputs. In other words, SFI must operate
on the assumption that the adversary is already executing
untrusted code in arbitrary order whereas software XoM trusts
the code it instruments and therefore assumes that the control-
flow has not yet been hijacked.

Since we trust the executing code, we can make opti-
mizations to our software XoM implementation that are not
applicable when performing traditional SFI load masking.
Specifically, we do not need to mask load addresses directly
before the load instruction. Instead, we insert the masking
operation directly after the instructions that compute the load
address. In many cases, a single masking operation suffices to
protect multiple loads from the same base address. Registers
holding the masked address may be spilled to the stack by the
register allocator. Since the stack contents are assumed to be
under attacker control (Conti et al. [11] recently demonstrated
such an attack), we re-mask any addresses that are loaded from
the stack. In contrast, SFI requires that address checks remain
in the same instruction bundle as their use, so that a malicious
program may not jump between the check and its use. In our
experiments, the ability to hoist masking operations allows us
to insert 43% fewer masking operations relative to SFI policies
that must mask each potentially unsafe load in untrusted code.
Figure 3 shows an example in which we are able to remove a
masking operations in a loop which substantially reduces the
number of bic instructions executed from 2n + 1 to n + 1
where n is the number of loop iterations.

C. Forward-Pointer Hiding

As explained in Section II, adversaries can scan the stack,
heap, and static data areas for code pointers that indirectly
disclose the code layout. We therefore seek ways to identify
functions and return sites without revealing their location. The
first major category of code pointers are function pointers, used
by the program for indirect function calls. Closely related are
basic block addresses used in situations such as switch case
tables. We handle all forward code pointers in the same manner
but use a special, optimized scheme for return addresses as
explained in the following section.

We protect against an attacker using forward code pointers
to disclose code layout by indirecting all code pointers through
a randomized trampoline table, as proposed by Crane et al.
[14]. For each code location referenced by a readable code
pointer, we create a trampoline consisting of a direct jump to
the target address. We then rewrite all references to the original
address to refer instead to the trampoline. Thus, the trampoline
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1 ; calculate address
2 add r0 , r0 , r8
3 ; store address on stack
4 s t r r0 , [ sp +#12]
5
6 loop :
7 b i c r0 , r0 , #0 x80000000
8 ; load address
9 l d r r1 , [ r0 ]

10 b i c r0 , r0 , #0 x80000000
11 ; load + constant offset
12 l d r r2 , [ r0 +#4]
13 add r0 , r0 , #8
14 ; check loop condition
15 cmp r0 , r3
16 bne loop
17
18 loopend :
19 ; restore address from
20 ; stack, now unsafe
21 l d r r0 , [ sp +#12]
22 b i c r0 , r0 , #0 x80000000
23 ; load address
24 l d r r2 , [ r0 ]

Software-Fault Isolation

1 ; calculate address
2 add r0 , r0 , r8
3 ; store address on stack
4 s t r r0 , [ sp +#12]
5
6 loop :
7 b i c r0 , r0 , #0 x80000000
8 ; load address
9 l d r r1 , [ r0 ]

10
11 ; load + constant offset
12 l d r r2 , [ r0 +#4]
13 add r0 , r0 , #8
14 ; check loop condition
15 cmp r0 , r3
16 bne loop
17
18 loopend :
19 ; restore address from
20 ; stack, now unsafe
21 l d r r0 , [ sp +#12]
22 b i c r0 , r0 , #0 x80000000
23 ; load address
24 l d r r2 , [ r0 ]

Software XoM

Figure 3: Differences between load-masking for software-fault isolation (left) and software-enforcement of XoM (right). Because
SFI must consider existing code malicious, it must mask load addresses directly before every use. In contrast, software XoM
is protecting trusted code executing legitimate control-flow paths, and can therefore use a single masking operation to protect
multiple uses.

address, rather than the function address, is stored in readable
memory. We randomize trampoline ordering to remove any
correlation between the address of the trampoline (potentially
available to the attacker) and the actual code address of the
target. Hence, even if an attacker leaks the address of a
trampoline, it does not reveal anything about the code layout.

D. Return-Address Hiding

In principle, we could hide return addresses using the same
trampoline mechanism that we use to protect forward pointers.
However, the return address trampolines used by Crane et
al. [14] require two instructions rather than the single direct
jump we use for forward pointers. At every call site, the
caller jumps to a trampoline containing 1) the original call
instruction, and 2) a direct jump back to the caller. This way,
the return address that is pushed on the stack points into a
trampoline rather than a function. However, due to the direct
jump following the call, every call site must use a unique return
address trampoline.

Return addresses are extremely common. Thus, the extra
trampoline indirections add non-trivial performance overhead.
Additionally, code size is critical on mobile devices. For these
reasons, we take an alternative approach. Due to the way ARM
and other RISC instruction sets perform calls and returns, we
can provide significantly stronger protection than the return
address trampolines of Crane et al. without expensive trampo-
lines for each call site. We build upon the foundation of XoM
to safely secure an unreadable, per-function key to encrypt
every return address stored on the stack.

While x86 call instructions push the return address directly
onto the stack, the branch and link instruction (bl) on ARM
and other RISC processors instead places the return address

in a link register. This gives us an opportunity to encrypt the
return address when it is spilled onto the stack3. We XOR
all return addresses (stored in the link register) before they
are pushed on the stack similarly to the PointGuard approach
by Cowan et al. [13]. PointGuard, however, uses a much
weaker threat model. It assumed that the adversary cannot
read arbitrary memory. In our stronger attacker model (see
Section III), we must prevent the adversary from disclosing or
deriving the stored XOR keys. We therefore use a per-function
key embedded as a constant in the code which, thanks to
XoM, is inaccessible to adversaries at run time. In our current
implementation, these keys are embedded at compile time. As
this might be vulnerable to offline analysis, we are currently
working on extending LR2 to randomize the keys at load time.

Listing 3 shows an example of our return-address hiding
technique. Line 2 loads the per-function key for the current
function, and on line 3 it is XORed into the current return
address before this address is spilled to the stack in line 4.
Lines 8-11 replace the normal pop {pc} instruction used to
pop the saved return address directly into the program counter.
On lines 8-10, the encrypted return address is popped off the
stack and decrypted, and on line 11 the program branches to
the decrypted return address.

Considering the advantages of protecting return addresses
using XOR encryption, the question arises whether forward
pointers can be protected with the same technique. An impor-
tant difference between forward pointers and return addresses
is that the former may cross module boundaries. For instance,
an application protected by LR2 may pass a pointer to an
unprotected library or the OS kernel to receive callbacks. The

3Leaf functions do not need to spill the return address onto the stack.
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1 f u n c t i o n :
2 l d r r12 , .FUNCTION_KEY
3 e o r l r , l r , r12
4 push { l r }
5
6 [ f u n c t i o n c o n t e n t s h e r e ]
7
8 pop { l r }
9 l d r r3 , .FUNCTION_KEY

10 e o r l r , l r , r 3
11 bx l r
12
13 .FUNCTION_KEY : ; constant pool entry, embedded
14 . l o n g ; in non-readable memory
15 0 xeb6379b3

Listing 3: Return-address hiding example. Note that con-
stant pool entries are embedded in non-readable memory,
as described in Section IV-B.

trampoline mechanism used for forward pointers ensures trans-
parent interoperability with unprotected code while XOR en-
cryption does not without further instrumentation, since legacy
code would not know that forward pointers are encrypted.
In practice, function calls and returns occur more frequently
than forward pointer dispatches, so optimizing return address
protection is far more important.

1) Exception Handling: Itanium ABI exception handling
uses stack unwinding and matches call sites to exception index
tables. Since our return-address hiding scheme encrypts call
site addresses on the stack, stack unwinding will fail and break
exception handling. All indirect disclosure protections which
hide return addresses from an attacker will be similarly in-
compatible with stack unwinding, which depends on correctly
mapping return addresses to stack frame layout information.

We modified LLVM’s stack unwinding library implementa-
tion libunwind to handle encrypted return addresses. Since
the first return address is stored in the link register, the stack
unwinder can determine the first call site. From the call site,
the stack unwinder is able to determine the function and read
the XOR key that was used to encrypt the next return address
using a whitelisted memory load. By recursively applying this
approach, the unwinder can decrypt all return addresses until
it finds a matching exception handler. This approach requires
that we trust that the unwinding library does not contain a
memory disclosure bug.

E. Fine-Grained Code Randomization

LR2 does not depend on any particular type of code
randomization and can be combined with most of the di-
versifying transformations in the literature [29]. We choose
to evaluate our approach using a combination of function
permutation [27] and register-allocation randomization [14, 39]
as both transformations add very little run-time overhead.
As Backes and Nürnberger [3] point out, randomizing the
layout at the level of code pages may help allow sharing of
code pages on resource-constrained devices. Note that had we
only permuted the function layout, adversaries may be able to
harvest trampoline pointers and use them to construct an attack
without knowing the code layout. Because these pointers only
target function entries and return sites (instructions following a

call) this constrains the available gadgets much like a coarse-
grained CFI policy would. Therefore, we must assume that
gadget-stitching attacks [19, 24] are possible. However, stitch-
ing gadgets together is only possible with precise knowledge
of how each gadget uses registers; register randomization
therefore helps to mitigate such hypothetical attacks.

F. Decoupling of Code and Data Sections

References between segments in the same ELF object
usually use constant offsets as these segments are loaded
contiguously. To prevent an attacker from inferring the code
segment base address in LR2, we replace static relocations
that are resolved during link time with dynamic relocations.
This allows us to load the segments independently from
each other, because the offsets are adjusted at load time.
By entirely decoupling the code from the data section we
prevent the attacker from inferring any code addresses from
data addresses. As a convenient side-effect of this approach,
code randomization is possible without the need for position-
independent code (PIC). PIC is necessary to make applications
compatible with ASLR by computing addresses relative to the
current program counter (PC). Since we replace all PC-relative
offsets with absolute addresses to decouple the code and data
addresses, we observed slightly increased performance relative
to conventional, ASLR-compatible position-independent exe-
cutables at the cost of slower program loading.

G. Implementation in LLVM

We implemented our proof-of-concept transformations for
LR2 in the LLVM compiler framework. Our approach is not
specific to LLVM, however, and is portable to any compiler
or static rewriting framework. However, access to compile-
time analysis and the compiler intermediate representation (IR)
made our implementation easier. In particular, the mask hoist-
ing optimization described previously is easier at compile time,
but not impossible given correct disassembly and rewriting.

Since blindly masking every load instruction is expected to
incur a high performance overhead due to the high frequency
of load instructions, we take a number of steps to reduce
the number of necessary mask instructions. LLVM annotates
memory instructions such as loads and stores with information
about the type of value that is loaded. We can use this
information to ensure that load masking is not applied to
loads from a constant address. Such loads are used to access
jump table entries, global offset table (GOT) offsets, and other
constants such as those in the constant pool. These loads
account for less than 2% of all load operations in SPEC
CPU2006, so this optimization has a small impact.

LLVM-based SFI implementations (e.g., Sehr et al. [47])
operate purely on the machine instructions late in the back-
end, roughly corresponding to rewriting the assembly output
of the compiler. This makes the insertion of fault isolation
instrumentation easier, but misses opportunities for additional
optimization that is specific to our load-masking techniques.
In order to hoist the masking of potentially unsafe addresses to
their definition and avoid redundant re-masking, we leverage
static analysis information about the program available earlier
in the compiler pipeline. Specifically, we begin by marking
unsafe address values while the program values are still in
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static single assignment (SSA) form [16]. This allows us
to easily find the definition of address values used by load
instructions, and mask these values. Since stack spilling takes
place after this point in the compilation, we must be careful to
remask any source addresses restored from the stack, since the
attacker may have modified these values while on the stack. In
particular, we add markers to values that we mask while the
program representation is still in SSA form. During register
allocation, we check if marked values are spilled to memory.
In the case of spills, we insert a masking instruction when
restoring this value from the untrusted stack.

As in Native Client (NaCl) [47], it is necessary to prevent
the compiler from generating load instructions using both a
base and offset register (known as register-register addressing),
to be sure that masking will properly restrict the resulting
addresses. We modify the LLVM instruction lowering pass,
where generic LLVM IR is converted to machine-specific
IR, to prevent register-register addressed instructions. Instead,
we insert a separate add instruction to compute the effective
address. We make an exception if the load is known to be safe
(e.g., a jump table load).

Finally, we insert return address protection instrumentation,
stack pointer checks, and trampolines for forward code pointers
during compilation as described in the previous sections.

H. Full LR2 Toolchain

1) Code-Data Separation: By masking all load addresses
we effectively partition the memory into a readable and unread-
able section. Our fully-fledged prototype system uses a slightly
modified Linux kernel and dynamic loader to separate the
process memory space into readable and unreadable sections
(see Figure 2 for an overview of this separation). The kernel
and dynamic loader normally load entire ELF objects contigu-
ously. Data segments are usually loaded consecutively above
the corresponding module’s code. In LR2, however, readable
segments are placed exclusively in the lower 2GiB region of
the process address space, while unreadable (code) segments
must be placed in the higher 2GiB region. Consequently, this
requires ELF objects to be split. We applied small patches to
the Linux kernel (121 LoC) and musl dynamic loader (196
LoC) to load each ELF segment into the proper area.

Furthermore, we modified the usual kernel memory map-
ping mechanism to comply with our memory layout restric-
tions. By passing an internal flag to mmap, an application can
specify which memory region the requested memory must be
allocated in. This allows the loader to ensure that a program’s
data segment is mapped low enough in memory that the
corresponding executable segment lies between 0x80000000
and 0xC0000000 which is where reserved kernel memory
begins. Finally, our patch ensures that memory areas allocated
by the kernel (e.g., stacks and heaps) are in the readable region.

We also needed to slightly modify the linker to prepare
an executable for use with LR2 memory layout. Specifically,
we patched the gold linker to not mark executable sections as
readable4 and to assign these sections to high addresses. This
type of patch is needed for all XoM solutions, since current

4Note that the memory permission execute normally implies readable due
to the lack of hardware support

linkers mark executable segments with read-execute, rather
than execute-only permissions. Additionally, we added linker
support for 32-bit offsets in Procedure Linkage Table (PLT)
entries, which comes at the cost of one additional instruction
per PLT entry. This is necessary because the PLT (unreadable
memory) refers to the Global Offset Table (GOT) (readable
memory), and therefore might be too far away for the 28-bit
address offset previously used.

2) Libraries: For memory disclosure resilience, all code in
an application needs to be compiled with LR2, including all
libraries. Since the popular C standard library glibc does
not compile with LLVM/Clang, we tested our implementation
with the lightweight replacement musl instead. It includes a
dynamic loader, which we patched to support our code layout
with the same approach as applied to the kernel. We use
LLVM’s own libc++ as the C++ standard library, since the
usual GNU libstdc++ depends on glibc and GCC.

V. PERFORMANCE EVALUATION

We evaluate the performance of LR2 using the CPU-
intensive SPEC CPU2006 benchmark suite, which represents
a worst-case, CPU-bound performance test. We measure the
overall performance as well as the impact of each technique
in our mitigation independently to help distinguish the various
sources of overhead. In addition we measured the code size
increase of our transformations, since code size is an important
factor in mobile deployment. Overall, we found that with all
protections enabled, LR2 incurs a geometric mean performance
overhead of 6.6% and an average code size increase of 5.6%.
We summarize the performance results in Figure 4. Note that
these measurements include results for the hmmer and soplex
benchmarks, which are known to be very sensitive to alignment
issues (±12% and ±6%, respectively) [34].

We want to measure the impact of LR2 applied to whole
programs (including libraries), so we compile and protect a C
and C++ runtime library with our modifications for use with
the SPEC suite. Since the de-facto standard libraries on Linux,
glibc and libstdc++, don’t compile with LLVM/Clang,
we use musl and LLVM’s own libc++ instead. We extended
the musl loader to support our separated code and data layout.

The perlbench and namd benchmarks required small
workarounds since they contain glibc/libstdc++ specific
code. h264ref on ARM fails for unknown reasons when
comparing the computation result, both for the unmodified and
the LR2 run; since it completes the computation we include the
running time nonetheless. Finally, the stack unwinding library
used by LLVM’s libc++ fails with omnetpp, so we exclude
it from all benchmark measurements. We report all measure-
ments as the geometric mean over all other SPEC CPU2006
benchmarks. All measurements are from a Chromebook model
CB5-311-T6R7 with an Nvidia Tegra Logan K1 System-on-
Chip (SoC), running Ubuntu 14.04 with Chromium OS’s Linux
3.10.18 kernel.

A. Forward-Pointer Hiding

We measured impact of forward-pointer hiding, which in-
troduces an additional direct jump instruction for each indirect
call. We found that this transformation resulted in an overhead
of less than 0.3% on average over all benchmarks, with a
maximum overhead of 3%.
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Figure 4: LR2 overhead on SPEC CPU2006. We use the performance of unprotected position independent binaries as the baseline.

B. Return-Address Hiding

Return-address hiding requires one extra load and XOR at
the entry of each function that spills the link register. At each
function return it replaces the return instruction with one load,
one XOR and one branch. We found that this instrumentation
added an overhead of less than 1% on average, with a
maximum overhead of 3% over the baseline time. Combining
forward-pointer hiding and return-address hiding, we measured
an average overhead of 1.4%. We show the combined results
in Figure 4, labeled Pointer Hiding. This overhead compares
favorably to Readactor’s [14] 4.1% overhead for full code
pointer hiding, since our return-address hiding scheme does
not require expensive return trampolines for each call site.

For both forward-pointer and return-address hiding, we
noticed that a few benchmarks ran slightly faster with the
instrumentation than without. We attribute this variance to
measurement error and slight code layout differences resulting
in different instruction cache behavior.

C. Register-Register Addressing Scheme Restrictions

An important feature of the ARM instruction set is register
offset addressing for array or buffer loads. As described in
Section IV, we have to disable this feature in LR2, since
it interferes with XoM address masking. We measured the
overhead that this restriction incurs by itself and found that
restricting register addressing schemes incurs 2.3% overhead
on average and a 9% worst-case overhead on the gobmk
benchmark. Benchmarks like hmmer, bzip2 and sjeng are
affected because a large portion of the execution time is spent
in one hot loop with accesses to many different arrays with
varying indices.

D. Software XoM

The last component to analyze individually is our XoM
instrumentation—masking unsafe loads. We found that, after
applying the optimizations outlined in Section IV-B, software-
enforced XoM results in an overhead of 6.6% on average
(labeled Software XoM in Figure 4), with a maximum overhead

of 16.4% for one benchmark, gobmk. We attribute this primar-
ily to to data dependencies introduced between the masking
and load instructions, as well as hot loop situations such as
mentioned above.

E. Code and Data Decoupling

Normally the code and data segments of a program have
a fixed offset in memory, allowing PC-relative addressing
of data. However, this also allows an attacker to locate the
beginning of the code segment from any global data address.
As we describe in Section IV-F, we decouple the location of
the data segment from the code segment, allowing the loader
to independently randomize the position of each. To do this,
we replace the conventional PC-relative address computation
with dynamic relocations assigned by the program loader. This
change led to a geometric mean speedup of 4% (labeled Code
and Data Section Decoupling in Figure 4).

F. Full LR2

The aggregate cost of enabling all techniques in LR2 is
6.6% on average (see Full LR2 in Figure 4). This includes
the cost of pointer hiding, software-enforced XoM, register-
register addressing restrictions, fine-grained diversity, and the
impact of decoupling code and data. This means that our
pure software approach to leakage resilient diversity for ARM
has about the same overhead as hardware-accelerated leakage
resilient diversity for x86 systems (6.6% vs. 6.4% [14]).
Because the removal of PC-relative address computations yield
a speedup, the cost of individual transformations sometimes
exceed the aggregate cost of LR2. An earlier version of our pro-
totype that did not remove PC-relative address computations
to decouple code and data sections had an average overhead
of 8.4%.

G. Memory Overheads

Finally, in addition to running time, we also measured
code section size of the protected SPEC CPU2006 binaries.
Forward-pointer hiding had very little overall impact on code
size, leading to an increase of 0.9%. Return-address hiding
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Figure 5: Comparing software XoM to SFI (NaCl) to quantify
effect of load-mask optimization.

adds at least four instructions to most functions, which resulted
in a 5.2% code size increase. The additional load address
masking for software-enforced XoM increases the code size
by another 10.2%. However, removing the PC-relative address
computations decreases the code size by about 14% on aver-
age. Comparing the size of full LR2 binaries to legacy position
independent code shows an average increase of just 5.6%.

H. Impact of XoM-Specific Optimizations

Recall that the differences in threat models between soft-
ware XoM and SFI (Section IV-B0b) allow us to protect mul-
tiple uses of a load address using a single masking instruction.
To measure the impact of this optimization, we compare the
running time of the SPEC CPU2006 benchmarks that run
correctly when protected with NaCl to the cost of enforcing
XoM. For this experiment, we used the latest version5 of the
NaCl branch (pnacl-llvm) that is maintained as part of the
Chromium project. The results are shown in Figure 5. When
enforcing XoM using load masking, the average overhead
is 6.6% (for the set of benchmarks compatible with NaCl)
whereas software-fault isolation, which also masks writes and
indirect branches, costs 19.1% overhead. We stress that we are
comparing two different techniques with different purposes and
threat models. However, these numbers confirm our hypothesis
that our XoM-specific load-masking instrumentation reduces
overheads. A bigger impact can be seen when comparing code
sizes: XoM led to a 5.8% increase, while NaCl caused an
increase of 100%. This is a valuable improvement in mobile
environments where memory is a scarce resource.

VI. SECURITY ANALYSIS

Our primary goal in LR2 is to prevent disclosure of the
code layout, which enables sophisticated attacks [50] against
code randomization schemes [29]. By securing the code from
disclosure we can then rely on the security properties of
undisclosed, randomized code.

In order to launch a code-reuse attack the attacker must
know the code layout. By applying fine-grained randomization,

5As of August 10, 2015

e.g., function or page reordering, we prevent all static code-
reuse attacks, since these attacks are not adjusted to each
target’s randomized code layout. For our proof-of-concept
we chose to build on function permutation as it is effec-
tive, efficient, and easy to implement. However, as all code
randomization techniques, function permutation by itself is
vulnerable to an attacker who discloses the code layout at run
time [11, 20, 50]. Hence, we focus our security analysis of LR2

on resilience against direct and indirect information-disclosure
attacks targeting randomized program code.

A. Direct Memory Disclosure

Direct memory disclosure is when the attacker reads the
memory storing randomized code. JIT-ROP [50] is a prominent
example of this type of attack. JIT-ROP recursively discloses
and disassembles code pages at run time until enough gadgets
are disclosed to assemble and launch a ROP attack.

We prevent all direct disclosure attacks by masking mem-
ory loads in the protected application, i.e., we prevent loads
from reading the program code directly. Masking the load
address restricts any attempt to read the code section to
the lower half of the memory space which contains only
data. Naively masking every load operation is inefficient; we
therefore apply the optimizations described in Section IV-B
to reduce the number of masking instructions. Allowing some
unmasked load operations may appear to increase the risk of
an unsafe load instruction. However, we are careful to ensure
that all unsafe loads are restricted, as we show in the following.

1) PC-Relative Loads: All PC-relative loads with a con-
stant offset are guaranteed to be safe, since an attacker cannot
influence the address used during the load operation and only
legitimate data values are loaded in this manner. Therefore, we
need not mask these load instructions.

2) Constant Offsets: We allow loads from known safe base
addresses (i.e., already masked values) plus or minus a small
constant offset (less than 4KiB). Thus, if we ensure that the
base address must point into the data section, adding a guard
page between the data and code sections prevents the computed
address from reaching into the code section. We place an
unmapped 8KiB (2 pages) guard region between the data
and code sections to safeguard all possible constant offsets.
In addition, the addresses above 0xC0000000 are reserved
for kernel usage and will trigger a fault when accessed, so
programs are already safe from address underruns attempting
to read from the highest pages in memory by subtracting a
constant from a small base address.

We also allow limited modification of masked addresses
without re-masking the result. If an address has already been
masked so that it is guaranteed to point into the data section,
adding or subtracting a small constant will result in either
an address that is still safe, or one that falls into the guard
region. In either case, the modified address still cannot fall
into the code section, and thus we do not need to re-mask
it. We perform this optimization for all constant stack pointer
adjustments.

3) Spilled Registers: When a program needs to store more
values than will fit into the available registers, it stores (spills)
a value temporarily onto the stack to free a machine register.
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As recently demonstrated, stack spills of sensitive register
contents can allow adversaries to completely bypass code-
reuse mitigations [11]. In our case, an attacker could attempt
to bypass LR2 by manipulating a previously masked register
while it is spilled to writable memory. Therefore, we do not
trust any address that is restored from writable memory and
always re-mask it before the value is used to address memory.

B. Indirect Memory Disclosure

Mitigating direct memory disclosure alone does not fully
prevent an attacker from leaking the code layout. An attacker
can indirectly gain information about the code layout by
leaking readable code pointers from the data section [11, 20].
The necessary number of leaked code pointers for a successful
code-reuse attack depends on the granularity of the applied
randomization. For instance, in the presence of page-based
randomization, one code pointer allows the attacker to infer
4 KiB of code due to page alignment, whereas the attacker
has to leak more code pointers in the presence function-level
randomization to infer the same amount of code. To counter
indirect memory disclosure we create trampolines for forward
code pointers and encrypt return addresses.

1) Forward-Pointer Protection: An attacker cannot use
function pointers to infer the code layout because they point
to trampolines which reside in code segment. Hence, the
destination address of a trampoline cannot be disclosed. The
order of the trampolines is randomized to prevent any corre-
lation between the trampolines and their target functions. This
constraints the attacker to whole-function reuse attacks. To mit-
igate such attacks, we suggest using the XoM-based technique
presented by Crane et al. [15] to randomize tables of function
pointers. This extension should be completely compatible with
the software-only XoM provided by LR2 without modification
and would protect against the most prevalent types of whole-
function reuse: return-into-PLT and vtable-reuse attacks.

2) Return-Address Protection: Return addresses are a par-
ticularly valuable target for attackers because they are plentiful,
easy to access, and useful for code-reuse attacks, even with
some mitigations in place. For example, when attacking an
application protected by function permutation, an attacker can
leak return addresses to infer the address of the functions and
in turn the addresses of gadgets within those functions [11].
We prevent this by encrypting each return address with a per-
function 32-bit random number generated by a secure random
number generator. However, our adversary model allows the
attacker to leak all encrypted return addresses spilled to
the stack. Whiles she cannot infer code addresses from the
encrypted return addresses we conservatively assume that she
can relate each return address to its corresponding call site.

We must also address reuse of unmodified, disclosed return
addresses. In a previous indirect disclosure protection scheme,
Readactor [14], return addresses were vulnerable to reuse
as-is. Although Readactor prevented attackers from gaining
information about the real location of code surrounding a call
site, an attacker could potentially reuse call-preceded gadgets.
An attacker could disclose the trampoline return address cor-
responding to a given call site and jump into that trampoline,
which in turn jumps directly after the real call site. This
allows attackers to reuse any disclosed return addresses. To

mitigate this threat, the Readactor authors proposed additional
randomizations (register and callee stack slot permutation) to
attempt to disrupt data flow between call-proceeded gadgets
and mitigate this threat.

In LR2 arbitrary reuse of return addresses is impossible. By
encrypting every return address with a per-callee encryption
key, our system prevents the attacker from invoking a call-site
gadget from anywhere but the corresponding callee’s return
instruction. In other words, encrypted return addresses can only
be used to return from the function that originally encrypted
the address. Thus, the attacker is confined to the correct,
static control-flow graph of the program. This restriction is
similar to static CFI policies. However, we further strengthen
LR2 by applying register-allocation randomization. During our
analysis of state-of-the-art ROP attacks we determined that the
success of these attack is highly dependent on the data flows
between specific registers. Register randomization will disrupt
the attacker’s intended data flow between registers and hence,
have unforeseen consequences on the control flow which will
eventually result in a crash of the application.

While our XOR encryption scheme uses a per-function
key, this key is shared across all invocations of a function.
That is, each time a return address is spilled from a function
F it is encrypted with the same key KF . In most cases
this is not a problem, since function permutation prevents
an attacker from correlating return addresses encrypted with
the same key. However, if a function F1 contains two dif-
ferent calls to another function F2, the return addresses, R1

and R2 respectively, are encrypted with the same key KF2
.

The attacker has a priori knowledge about these addresses,
since with function permutation they are still placed a known
(constant) offset apart. We believe this knowledge could be
exploited to leak some bits of the key KF2 . To prevent this
known-plaintext attack we propose two options: (1) we can
either apply more fine-grained code randomization, e.g., basic-
block permutation to remove the correlation between return
addresses or (2) fall back to using the trampoline approach to
protect return addresses as presented by [14] when a function
contains more than one call to the same (other) function.
These techniques remove the a priori knowledge about the
encrypted return addresses. In fact, return-address encryption
even strengthens the second approach because it prevents
trampoline-reuse attacks for return addresses.

C. Proof-of-Concept Example Exploit

We evaluate the effectiveness of LR2 against real-world
attacks by re-introducing a known security vulnerability
(CVE-2014-1705) into the latest version of Chromium
(v46.0.2485.0) and conducted our experiments on same setup
we used in our performance evaluation. The vulnerability
allows to overwrite the length field of a buffer object. Once
this is done we can exploit this manipulated buffer object via
JavaScript to read and write arbitrary memory.

We constructed a JIT-ROP style attack that first leaks
the vtable pointer of an object Otarget to disclose its vtable
function pointers. Using one of these function pointers we can
infer the base address of the code section of Chromium. Next,
we use our information disclosure vulnerability to search the
executable code at run time for predefined gadgets that allow
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us to launch a ROP attack to mark data memory that contains
our shellcode as executable. Finally, we overwrite the vtable
pointer of Otarget with a pointer to an injected vtable and call
a virtual function of Otarget which redirects control flow to the
beginning of our shellcode to achieve arbitrary code execution.

There are currently some efforts by the Chromium com-
munity to achieve compatibility with the musl C library. By
the time of writing this paper Chromium remains incompatible
which prevents us from applying the full LR2 toolchain. How-
ever, we applied our load-masking component while compiling
Chromium and analyze the effect this load-masking would
have on the memory disclosure we exploit.

Our analysis indicates that Chromium would immediately
crash when the attempted code read was restricted into an
unmapped memory area within the data section. Figure 6
shows how the function that this exploit uses to leak memory
is instrumented. After instrumentation, all load instructions
in the function cannot read arbitrary memory and must only
read from addresses that point into the data segment. Thus,
our proof-of-concept exploit would fail to disclose the code
segment at all and would instead crash the browser with a
segmentation violation.

VII. DISCUSSION AND EXTENSIONS

A. Auto-Vectorization

When loops have no data dependencies across iterations,
consecutive loop iterations may be vectorized automatically
by the compiler, using an optimization technique called auto-
vectorization. This technique computes multiple loop iterations
in parallel using vector instructions that perform the same
operation on a contiguous set of values.

While investigating the source of the higher overhead
for the hmmer benchmark, we found that one function—
P7Viterbi—accounts for over 90% of the benchmark’s
execution time. The main loop of this function is amenable
to vectorization as it exhibits a high degree of data par-
allelism [42]. Modern ARM processors support the NEON
instruction set extension which operate on four scalar values
at a time. Unfortunately, support for automatic vectorization in
LLVM was only added in October 2012 and is still maturing.
Using the older and more capable vectorization passes in GCC,
ICC from Intel, and XLC from IBM may allow more loops to
be vectorized [32].

In the context of LR2, vectorization would not only reduce
the running time by exploiting the data parallelism inherent
to many computations; it would also reduce the number of
required load masking operations by a factor of more than four.
First of all, vectorized loads read four consecutive scalars into
vector registers using a single (masked) address. Second, the
NEON instructions operate on dedicated, 128-bit wide registers
which means that fewer addresses would be spilled to the stack
and re-masked when reloaded.

B. Assembly code

LLVM does not process inline assembly on an instruction
level and therefore transformation passes can only work with
inline assembly blocks as a whole. Therefore our current
prototype does not handle inline assembly; this is not a

fundamental limitation of our approach however. To make sure
that every load is properly masked in the presence of assembly
code, we could extend the LLVM code emitter or an assembly-
rewriting framework such as MAO [26] with load-masking and
code pointer hiding passes. Since the code is not in SSA form
at this stage we can not apply our optimizations.

C. Dynamically Generated Code

JIT-ROP attacks are ideally mounted against browsers
containing scripting engines. To ensure complete leakage-
resilience, we must ensure that XoM and code-pointer hiding
is also applied to just-in-time compiled code. Crane et al. [14]
patched the V8 JavaScript engine used in the Chrome browser
to make it compatible with XoM. To use this patch for LR2,
we would have to add functionality to ensure that every load
emitted by the JIT compiler is properly masked. This would
simply involve engineering effort to patch the JIT compiler.

A special property of JIT-compiled code is that it is treated
as both code and data by the JIT compiler; when the compiler
needs to rewrite or garbage collect the code, it is treated
as read-write data, and while running it must be executable.
When XoM is enforced natively by the hardware, the page
permissions of JIT compiled code can be changed by updating
the page tables used by the memory management unit. With
software-enforced XoM, we can make JIT compiled code
readable by copying it (in part or whole) into the memory
range that is accessible to masked loads. However, that would
require a special memcpy function containing unmasked loads.
Therefore, we believe that a better solution would be to adopt
the split-process technique presented by Song et al. [51].
The key idea of this work is to move the activities of the
JIT compiler into a separate, trusted process. Specifically, the
code generation, optimization, and garbage collection steps are
moved to a separate process in which the JIT code cache
always has read-write permissions. In the main process, the
JIT code cache is always mapped with execute-only (or read-
execute if XoM is unavailable) permissions. The two processes
access the JIT code cache through shared memory. The main
process invokes JIT compilation functionality in the trusted
process through remote procedure calls.

D. Whole-Function reuse attacks

Since LR2 raises the bar significantly for ROP attacks
against mobile architectures, attackers may turn to whole-
function reuse techniques such as the classic return-into-libc
(RILC) technique [37] or the recent counterfeit object-oriented
programming (COOP) attack [46]. Our core techniques—
execute-only memory and code-pointer hiding—can be ex-
tended to mitigate RILC and COOP attacks, as proposed by
Crane et al. [15]. To thwart COOP, we would split C++ vtables
into a data part (rvtable) and a code part (xvtable) stored on
execute-only pages. The xvtable contains trampolines, each
of which replaces a pointer to a virtual method. Randomly
permuting the layout of the xvtable breaks COOP attacks
because they require knowledge of the vtable layout. We can
break RILC attacks by similarly randomizing the procedure
linkage table (PLT) or analogous data structures in Windows.
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1 l d r r0 , [ r1 , #0]
2
3 mov r12 , #28
4 l d r r3 , [ r0 , #7]
5 l d r r1 , [ r0 , #11]
6 b f i r0 , r12 , #0 , #20
7
8 add r1 , r3
9 l d r r0 , [ r0 , #0]

10
11
12 l d r r1 , [ r1 , r2 , l s l #2]
13 [ . . . ]

Before Instrumentation

1 l d r r0 , [ r1 , #0]
2 b i c r0 , r0 , #0 x80000000
3 mov r12 , #28
4 l d r r3 , [ r0 , #7]
5 l d r r1 , [ r0 , #11]
6 b f i r0 , r12 , #0 , #20
7 b i c r0 , r0 , #0 x80000000
8 add r1 , r3
9 l d r r0 , [ r0 , #0]

10 add r1 , r1 , r2 , l s l #2
11 b i c r1 , r1 , #0 x80000000
12 l d r r1 , [ r1 ]
13 [ . . . ]

After Instrumentation
Figure 6: Simplified disassembly of the function v8::internal::ElementsAccessorBase::Get that is used to read
arbitrary memory. The load instruction in line 12 reads the memory from the base address provided in register r1 plus the offset
in register r2. After the instrumentation this load is restricted by masking the MSB (line 11) which prevents reads into the code
segment.

E. Compatibility

Due to the nature of its load masking and return-address
hiding scheme, LR2 is fully compatible with unprotected third
party libraries. However, if an unprotected library contains
an exploitable memory-disclosure vulnerability it compromises
the security of the entire process.

In some cases application developers use the mmap()
function to map memory to a specific address. In LR2 we
do not allow mapping to arbitrary addresses because the
application will fail when trying to read memory mapped
into the XoM region. Hence, we only allow mapping memory
into the data region. This is still consistent with the correct
semantics of mmap() because the kernel considers requested
addresses merely as a hint rather than a requirement

F. AArch64

Our implementation currently targets 32-bit ARMv7 pro-
cessors. ARM recently released ARMv8, which implements
the new AArch64 instruction set for 64-bit processing. LR2

can be ported directly to AArch64. Though AArch64 does not
provide a bit clear instruction with immediate operands, we
can achieve the same effect with a bitwise AND instruction.

VIII. RELATED WORK

Table I: Characterization of leakage-resilient defenses. The
third column indicates whether the defense prevents read
accesses to code pages. The fourth column indicates whether
pointers can be used to leak the code layout.

Applicable to mobile systems? XoM Ptr. Hiding

Oxymoron [3] No. Bypassed [20] (partial)
XnR [4] No. Requires virtual memory. X
Isomeron [20] No. High memory requirements N/A (partial)
Opaque CFI [35] No. High memory requirements N/A
HideM [22] No. Requires virtual memory. X
Readactor [14] No. Requires HW X-only memory. X X
Readactor++ [15] No. Requires HW X-only memory. X X
ASLRGuard No. Requires 64-bit address space. X
TASR No. Requires strict C compliance. N/A

LR2 Yes. Requires W⊕X support. X X

Numerous papers have been published on software di-
versity in the last two decades. We refer to Larsen et al.
[29] for an overview and limit the present discussion to
recent work on leakage-resistant diversity. Table I shows recent
approaches and the reasons why they are not ideal for mobile
and embedded devices.

a) Leakage-Resilient Diversity: Backes and Nürnberger
[3] were first to demonstrate a defense against JIT-ROP attacks.
Their Oxymoron approach uses the vestiges of x86 segmen-
tation features to hide code references between code pages
which in turn prevents the recursive disassembly step in the
original JIT-ROP attacks. Davi et al. [20] later showed that JIT-
ROP attacks are still possible without recursive disassembly
because the adversary can scan data pages to discover plenty
of code pointers that leak the location of code pages. The
eXecute-no-Read (XnR) approach by Backes et al. [4] provides
increased resilience against memory disclosure vulnerabilities
by emulating execute-only memory (XoM) on x86 processors.
While the concept of XoM goes back to MULTICS [12], it is
hard to support on x86 and other platforms that implicitly as-
signs read permissions to executable pages. The XnR approach
is to mark code pages “not present” so any access invokes
a page-fault handler in the operating system. If an access
originates from the instruction fetcher, the page is temporarily
marked present (and thus executable and readable), otherwise
execution terminates. This prevents all read accesses outside
a sliding window of recently executed pages. Gionta et al.
[22] demonstrated that XoM can also implemented using a
technique known as “TLB Desynchronization” on certain x86
processors. Whereas virtual addresses usually translate to the
same physical address regardless of the type of access access,
the HideM approach translates reads and instruction fetches to
distinct physical pages. This means that HideM, in contrast to
XnR, can support code that embeds data in arbitrary locations.
However, Conti et al. [11] demonstrated that neither XnR nor
HideM prevents indirect memory disclosure attacks where the
adversary “harvests” code pointers stored in the stack, heap,
or global data areas of the process.

Readactor by Crane et al. [14] provides comprehensive
XoM on x86 processors by separating code and data during
compilation. At run time, a lightweight hypervisor activates
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Figure 7: Relationship between the in-memory program repre-
sentation and techniques that defend against memory leakage.

the extended page tables in modern x86 processors that allows
read/write/execute permissions to be controlled independently.
Readactor also seeks to prevent indirect memory disclosure
attacks though code-pointer hiding, an indirection mechanism
known as call and jump trampolines. A recent extension
(Readactor++ [15]) adds resilience against whole-function
reuse attacks such as counterfeit-object oriented programming
(COOP) [46] and return-into-libc (RILC) [37].

The memory leakage resilience of LR2 is similar to that of
Readactor. Unlike the approaches by Crane et al. [14, 15], we
do not require a CPU with hardware support for virtualization
and a hypervisor; in fact, our approach does not rely on
virtual memory at all and therefore applies to MMU-less chips
commonly used in build embedded and real-time systems.

Another way to defend against information disclosure is
“live re-randomization”, where the program is periodically re-
randomized to invalidate any current code pointers, thereby
preventing the attacker from exploiting any knowledge they
gain of the program. Giuffrida et al. [23] describe the first
implementation of this idea. However, even with very short
randomization periods, the attacker may still have enough time
for an attack [4, 20]. Bigelow et al. [6] propose an improved
approach, TASR, which only re-randomize programs when
they perform input or output. Both approaches require that
all code pointers are updated post-randomization, and rely on
a modified C compiler to provide their locations. However,
finding all code pointers in a C program is not always possible
in the general case. Bigelow et al. describe a set of heuristics
and assumptions they rely on to find the pointers, but real-
world C code does not strictly comply with C’s standard rules
and often violates common sense assumptions about pointer
use and safety [10].

Figure 7 maps key regions of the in-memory program
representation to related work in leakage-resilient diversity.
While many defenses focus on enforcing XoM or preventing
indirect leakage through code pointers, only Readactor and
LR2 provide both to stop all variants of JIT-ROP. As described
in Section VII-D, the vtable and procedure linkage table (PLT)
randomization techniques are fully compatible with software-
XoM and would increase resilience against COOP and RILC
attacks.

b) Protecting Code Pointers: Cowan et al. [13] were
first to protect code pointers. Their PointGuard technique
XORs all pointers with a per-program key; PointGuard uses
a weak threat model and therefore does not provide leakage
resilience. G-Free [38] encrypts return addresses using a per-
function key. Unlike our solution, the XOR key is not hidden
from adversaries which makes their solution vulnerable in our
threat model. Isomeron by Davi et al. [20] clones the code
and switches between clones at each call site by randomly
flipping a coin. If the coin came up heads, an offset is added
to the return address before it is used. Because the result of
the coin-flip is stored in a hidden memory area, adversaries
cannot predict how the return addresses in a ROP payload will
be modified by Isomeron. Since all code is cloned, Isomeron
does not scale down to resource-limited systems.

ASLRGuard [31] also prevents code pointers from disclos-
ing the code layout. ASLRGuard uses a nonce and index into
a code pointer table, which is hidden using the vestiges of x86
segmentation; this is yet another example of an x86-specific
defense. More importantly, ASLRGuard implicitly needs a 64-
bit virtual memory space for ASLR itself to be secure from
brute-force attacks. Shacham et al. [49] demonstrated that
ASLR in a 32-bit address space is insecure due to low entropy.
Most RISC devices have a 32-bit address space at most, and
some even lack an MMU to provide virtual memory at all.
Thus, ASLR and ASLRGuard are not ideal for these resource-
limited devices.

Cryptographic CFI (CCFI) [33] encrypts code pointers.
Specifically, CCFI uses the AES instructions of recent x86
processors to protect pointers and uses the storage location as
a nonce during encryption to reduce the ability of the adversary
to reuse encrypted pointers in replay attacks. However, CCFI is
yet another defense tied to x86 hardware and has a much higher
overhead than LR2 (45% vs 6.6%) on the SPEC CPU2006
benchmarks.

XOR encryption has also been used to prevent non-control
data attacks [5, 9]. These protections are orthogonal to ours.

c) Mobile-Oriented Defenses: The literature contains
several other mobile-oriented code-reuse defenses. Bojinov
et al. [8] describe the initial implementation of ASLR for
Android devices. Recent releases of the Android platform
adds support for high-entropy ASLR but remains vulnerable
to information disclosure. XIFER [17] is a load-time software
diversifier for Android and Linux that randomizes the code
right before it starts executing. While effective against tradi-
tional ROP attacks, XIFER is not leakage resilient. Lee et al.
[30] identified weaknesses with the Zygote process creation
model in Android that weakens the effectiveness of ASLR and
evaluated improvements.

MoCFI [18] and CFR [41] are mobile-oriented CFI so-
lutions based on binary rewriting and compilation of iOS
apps respectively. Both implementations use static analysis
augmented by either heuristics (in the case of MoCFI) or
programmer intervention (for CFR) to generate a control-flow
graph (CFG) used to restrict program control flow. This adds a
high degree of uncertainty to the CFG’s accuracy. A CFG that
is too coarse-grained, i.e., places too few restrictions on the
control flow, is easily exploitable by attackers, so the security
of these defenses depends on the quality (granularity) of the

13



generated CFGs.

d) Software-Fault Isolation: SFI isolates untrusted code
so it cannot access memory outside the sandbox or escape
confinement. SFI policies are typically enforced by inserting
inline reference monitors [45, 53].

Since reads are far more frequent than writes, some SFI
implementations only sandbox writes and indirect branches.
Google’s NaCl implementation for ARM [47] eschewed load-
isolation initially but support was later added [36] to prevent
untrusted plug-ins from stealing sensitive information such as
credit card and bank account numbers. Like LR2, NaCl for
ARM uses a customized compiler and masks out the high
bits of addresses. Unlike LR2, NaCl also constrains writes
and indirect branches. ARMor [54] is another SFI approach
for ARM. It uses link time binary rewriting to instrument
untrusted code. This makes ARMor less efficient than compile-
time solutions and the authors report overheads ranging from
5-240%.

Several hardware-based fault isolation approaches appeared
recently. Zhou et al. [55] present ARMlock which uses the
memory domain support in ARM processors to create sand-
boxes that constrain the reads and writes, and branches of code
running inside them with no loss of efficiency. While ARMlock
prevents code from reading the contents of other sandboxes,
it cannot support our use-case of preventing read accesses
to code inside the sandbox. Santos et al. [44] use the ARM
TrustZone feature to build a trusted language runtime (TLR);
while this greatly reduces the TCB of an open source .NET
implementations the performance cost is high. Unlike LR2,
these approaches rely on features that limit their applicability
to certain hardware platforms.

One may consider the load-masks we insert as a type
of SFI inline reference monitor. However, as explained in
Section IV-B, we place masking instructions differently from
SFI techniques due to the different threat model; using the
same instrumentation for SFI would not be secure. Further,
LR2 does not need to constrain writes or indirect branches as
the adversary must disclose the code layout before mounting
a code-reuse attack.

Software that is vulnerable to memory corruption remains
exposed to sophisticated code-reuse exploits. The problem of
code reuse is not specific to x86 systems but threatens RISC-
based mobile and embedded systems too. Code randomization
can greatly improve resilience to code reuse as long as the
code layout is not disclosed ex post facto. The combination
of execute-only memory and code-pointer hiding provides
comprehensive resilience against leakage of code layout infor-
mation. Unfortunately, the implementation of these techniques
has so far relied on x86-specific features or has increased
resource requirements beyond reasonable limits for mobile and
embedded devices.

Unlike previous solutions, our leakage-resilient layout ran-
domization approach—LR2—only requires that the host sys-
tem enforces a W⊕X policy. Our software enforcement of
execute-only memory is inspired by prior work on software-
fault isolation. However, since our threat model is fundamen-
tally different from SFI (we protect trusted code whereas SFI
isolates untrusted code), we are able to insert fewer load-

masking operations than comparable SFI implementations.
This significantly reduces overheads.

We reuse existing techniques to protect forward pointers
but present a new optimized XOR pointer encryption scheme
relying on XoM and function permutation to protect return
addresses. Since LR2 does not require any special hardware
support, it can protect applications running on a broad range of
non-x86 devices, including MMU-less micro-controllers. Even
though LR2 prevents memory disclosure purely in software,
its performance is similar to defenses offering comparable
security.
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