
Algorithms for Scheduling Deadline-Sensitive Malleable Tasks

Xiaohu Wu* and Patrick Loiseau*

Abstract— Due to the ubiquity of batch data processing in
cloud computing, the fundamental problem of scheduling mal-
leable batch tasks and its extensions have received significant
attention recently. In this paper, we consider an important
model in which a set of n tasks is to be scheduled on C identical
machines and each task is specified by a value, a workload,
a deadline and a parallelism bound. Within the parallelism
bound, the number of machines allocated to a task can vary
over time without affecting its workload. For this model, we
obtain two core results: a quantitative characterization of a
sufficient and necessary condition such that a set of malleable
batch tasks with deadlines can be scheduled on C machines,
and a polynomial-time algorithm to produce such a feasible
schedule. These core results provide a conceptual tool and
an optimal scheduling algorithm that enable proposing new
analyses and designs of algorithms and improving existing
algorithms for extensive scheduling objectives.

I. INTRODUCTION

Cloud computing has become the norm for a wide range
of applications and, in the cloud, batch processing has
become the most significant computing paradigm. With the
ubiquity of batch data processing in cloud computing, many
applications such as web search index update, monte carlo
simulations or big-data analytics require the execution on
computing clusters of batch jobs, i.e., non-real-time jobs
with some flexibility on the execution period. On the one
hand, while the public cloud providers typically rent virtual
machines (i.e., computing power) by the hour, what really
matters for tenants is completion of their jobs within a set
of associated constraints (e.g., parallelism constraint, quality
of service, deadline), regardless of the time of execution and
computing power used. This gap between providers offer and
tenants goal has received significant attention aiming to allow
tenants to describe more precisely the characteristics of their
jobs [1], [2] and to design appropriate mechanisms to make
every tenant truthfully report the characteristics of their tasks
(e.g., value) to the cloud. In the meantime, such technical
progress also raises new algorithmic challenges on how to
optimally schedule a type of malleable batch jobs arising in
cloud computing to maximize the social welfare (i.e., the
total value of tasks completed by their deadlines) [3], [4],
[5], [6], [7], [8].

On the other hand, batch processing paradigms such as
MapReduce and SCOPE on Dryad are being increasingly
adopted in business environments and even certain real-time
processing applications at Facebook and Microsoft use the
batch-processing paradigm to achieve a faster response [9],

*Xiaohu Wu and Patrick Loiseau are with the Department of Net-
working and Security, EURECOM, Sophia Antipolis, France Email:
firstname.lastname@eurecom.fr

[10], [11]. Both on private clouds and on public clouds,
organizations usually run business-critical tasks that are
required to meet strict service-level agreements (SLAs) on
latency, such as finishing before a certain deadline. Missing a
deadline often has a significant consequences for the business
(e.g., delays in updating web site content), and can further
lead to financial penalties to third parties. Such context
also brings new algorithmic challenges on how to optimally
schedule malleable batch tasks under other metrics [9], [12],
e.g., machine minimization; in the machine minimization
objective, the algorithm will find the minimal amount of
machines to complete a set of tasks by their respective dead-
lines. In fact, for better efficiency, companies such as IBM
now integrate into their batch processing platform scheduling
algorithms for various time metrics that are smarter than the
popular dominant resource fairness strategy [13].

Hence, a timely and important algorithmic challenge posed
here is to further our understanding of the problem of
scheduling malleable batch tasks arising in cloud computing.
In this paper, we reconsider the fundamental model of [3],
[4] in which a set of n malleable batch tasks has to be
scheduled on C identical machines. All the jobs are available
from the start and each of them is specified by a workload,
a parallelism bound, a deadline and a value. Here, the
number of machines assigned to a task can change during the
execution and the parallelism bound decides the maximum
amount of machines that can process a task simultaneously;
however, the workload that is needed to complete a task will
not change with the number of machines. In the scheduling
theory, the model can be viewed as an extension of the
classic model of scheduling preemptive tasks on multiple
machines. Beyond the analysis of this basic and important
model, efforts have been devoted to its online version [5],
[6], [7] and its extension [8], [9], [12] in which each task
contains several subtasks with precedence constraints.

For the fundamental model in [3], [4] under the objective
of maximizing social welfare (i.e., the sum of values of
tasks completed before their deadline), Jain et al. have
proposed an (1 − C

2C−k )(1 − ε)-approximation algorithm
via deterministic rounding of linear program in [3] and a
greedy algorithm GreedyRTL via dual fitting technique that
achieves an approximation ratio of C−k

C · s−1s in [4]. Here,
k is the maximal parallelism bound of tasks, and s (≥ 1)
is the slackness which intuitively characterizes the resource
allocation flexibility (e.g., s = 1 means that the maximal
amount of machines have to be allocated to the task at
every time slot until its deadline to ensure full completion).
In practice, the tasks tend to be recurring, e.g., they are
scheduled periodically on an hourly basis [9]. Hence, we



can assume that the maximal deadline of tasks is finitely
bounded by a constant M . In addition, the parallelism bound
k is usually a system parameter and can also be viewed as
a constant [14]. In this sense, the GreedyRTL algorithm has
a polynomial time complexity of O(n2).

Both algorithmic design techniques in [3], [4] are based on
the theory of linear programming; they formulate the original
problem as an integer program (IP) and relax the IP to a
relaxed linear program (LP). In [3], the technique needs to
solve the LP for a fractional optimal solution and manage to
round the fractional solution of the LP to an integer solution
of the IP that corresponds to an approximate solution to the
original problem. In [4], the dual fitting technique needs to
find the dual of the LP, and to construct a feasible solution
X to the dual in a greedy way. The solution to the dual
corresponds to a feasible solution Y to the original problem,
and, due to the weak duality, the value of the dual under
the solution X (in the form of the social welfare under the
solution Y multiplied by a parameter α ≥ 1) will be an upper
bound of the optimal value of the IP, i.e., the social welfare of
an optimal solution to the original problem. Therefore, the
approximation ratio of the algorithm involved in the dual
becomes clearly 1/α. Here, this ratio is a lower bound of
the ratio of the social welfare obtained by an algorithm to
the optimal social welfare.

Due to the theoretical constraints of these techniques based
on LP in [3], [4], it is difficult to make more progress in
designing better or other types of algorithms for scheduling
malleable tasks with deadlines. Indeed, the design of the
algorithm in [3] has to rely on the formulation of the original
problem as a relaxed LP. However, for the greedy algorithm
in [4], without using LP, we may have different angles than
dual fitting technique to analyze it and finely understand a
basic question: what resource allocation features related to
tasks can further benefit the performance of an algorithm
that schedules this type of tasks? This question is related
to the scheduling objective and the technique (e.g., greedy,
dynamic programming) used to design an algorithm. Further,
we will prove that answering the secondary question “how
could we achieve an optimal schedule so that C machines are
optimally utilized by a set of malleable tasks with deadlines
in terms of resource utilization?” plays a core role in (i)
understanding the above basic question, (ii) enabling the
application of dynamic programming technique to the prob-
lem in [3], [4], and (iii) designing algorithms for other time
metrics such as machine minimization. Intuitively, for any
scheduling objective, an algorithm would be non-optimal if
the machines are not optimally utilized, and its performance
could be improved by optimally utilizing the machines to
allow more tasks to be completed.

The importance and possible applications of an answer
to the above core question may also be illustrated in the
special case of scheduling on a single machine which shares
some common features with the general case. In this case,
the famous EDF (Earliest Deadline First) rule can lead to
an optimal schedule [15]. The EDF algorithm was initially
designed as an exact algorithm for scheduling batch tasks to

minimize the maximum job lateness (i.e., job’s completion
time minus due date). So far, it has been extensively applied
(i) to design exact algorithms for the extended model with
release times and for scheduling with deadlines (and release
times) to minimize the total weight of late jobs [15], [16],
and (ii) as a significant principle in schedulability analysis
for real-time systems [17].

Our contributions. In this paper, we propose a new con-
ceptual framework to address the problem of scheduling
malleable batch tasks with deadlines. As discussed in the
above GreedyRTL algorithm, we assume that the maximal
deadline to complete a task and the maximal parallelism
bound of tasks can be finitely bounded by constants. The
results of this paper are summarized as follows.
Core result. The core result of this paper is the first optimal
scheduling algorithm so that C machines are optimally
utilized by a set of malleable batch tasks S with deadlines
in terms of resource utilization. We first identify the basic
constraints of malleable tasks and the optimal state in which
C machines can be said to be optimally utilized by a set
of tasks. Then, we propose a scheduling algorithm LDF(S)
that achieves such an optimal state. The LDF(S) algorithm
has a polynomial time complexity of O(n2) and is different
from the EDF algorithm that gives an optimal schedule in
the single-machine case.
Applications. The above core results have applications in
several new or existing algorithmic design and analysis
problems for scheduling malleable tasks under extensive
objectives. In particular, we provide:
(i) an improved greedy algorithm GreedyRLM with an

approximation ratio s−1
s for the social welfare maxi-

mization problem with a polynomial time complexity
of O(n2);

(ii) the first exact dynamic programming (DP) algorithm for
the social welfare maximization problem with a pseudo-
polynomial time complexity of O(max{n2, nCLML});

(iii) the first exact algorithm for the machine minimization
problem with a polynomial time complexity of O(n2).

Here, L, D, k and M are the number of deadlines, the max-
imal workload, the maximal parallelism bound, and the the
bound of the maximal deadline of tasks. In addition, we also
prove that s−1

s is the best approximation ratio that a general
greedy algorithm can achieve. Although GreedyRLM only
improves GreedyRTL in [4] marginally in the case where
C � k, theoretically it is the best possible. In addition, the
exact algorithm for social welfare maximization can work
efficiently only when L is small since its time complexity
is exponential in L. However, this may be reasonable in a
machine scheduling context. In scenarios like the ones in
[8], [9], the tasks are often scheduled periodically, e.g., on
an hourly or daily basis, and many tasks have a relatively
soft deadline (e.g., finishing after four hours instead of three
will not trigger a financial penalty). Then, the scheduler can
negotiate with the tasks and select an appropriate set of
deadlines {τ1, τ2, · · · , τL}, thereafter rounding the deadline
of a task down to the closest τi (i ∈ [L]+). By reducing



L, this could permit to use the DP algorithm rather than
GreedyRLM in the case where the slackness s is close to 1.
With s close to 1, the approximation ratio of GreedyRLM
approaches 0 and possibly little social welfare is obtained
by adopting GreedyRLM while the DP algorithm can still
obtain the maximal social welfare.

Finally, the exact algorithm for social welfare maximiza-
tion can be viewed as an extension of the pseudo-polynomial
time exact algorithm in the single machine case [16] that
is also designed via the general dynamic programming
procedure. However, before our work, how to enable this
extension was an open problem as pointed out in [3], [4]. We
will show that this is mainly due to the conceptual lack of the
optimal state of machines being utilized by malleable tasks
with deadlines and the lack of an algorithm that achieves the
optimal schedule. In contrast, the optimal resource utilization
state in the single machine case can be defined much more
easily and be achieved by the existing EDF algorithm. The
core result of this paper fills the above gap and enables
the design of the DP algorithm. The way of applying the
core result to design a greedy algorithm is even less obvious
since in the single machine case there is no corresponding
algorithm to hint its role in the design of a greedy algorithm.
So, new insights (into the above basic question) are needed
to enable this new application and will be obtained through
a complex algorithmic analysis.

The remainder of this paper is organized as follows. In
Section II, we introduce the model of machines and tasks
and the scheduling objectives considered in this paper. In
Section III, we identify what the optimal resource utiliza-
tion state is and propose such a scheduling algorithm that
achieves the optimal state. In Section IV, we show three
applications of the results in Section III in different algorith-
mic design techniques and scheduling objectives. Finally, we
conclude in Section V. Due to space limitation, the proofs
of all results are omitted and can be found in our technical
report [18].

II. MODEL

There are C identical machines and a set of tasks T =
{T1, T2, · · · , Tn}. The task Ti is specified by several char-
acteristics: (1) value vi, (2) demand (or workload) Di, (3)
deadline di, and (4) parallelism bound ki. Time is discrete
and we assume that the time horizon is divided into d time
slots: {1, 2, · · · , d}, where d = maxTi∈T di and the length
of each slot may be a fixed number of minutes. A task Ti can
only utilize the machines located in time slot interval [1, di].
The parallelism bound ki imposes that, at any time slot t, Ti
can be executed on at most ki machines simultaneously. The
allocation of machines to a task Ti is a function yi : [1, di]→
{0, 1, 2, · · · , ki}, where yi(t) is the number of machines
allocated to task Ti at a time slot t ∈ [1, di]. So, the model
here also implied that Di, di ∈ Z+ for all Ti ∈ T . The value
vi of a task Ti can be obtained only if it is fully allocated by
the deadline, i.e.,

∑
t≤di

yi(t) ≥ Di, and partial execution of
a task yields no value. Let k = maxTi∈T ki be the maximum
parallelism bound. For the system of C machines, denote by

W (t) =
∑n

i=1 yi(t) the workload of the system at time slot t;
and by W (t) = C−W (t) its complementary, i.e., the amount
of available machines at time t. We call time t to be fully
utilized (resp. saturated) if W (t) = 0 (resp. W (t) < k), and
to be not fully utilized (resp. unsaturated) otherwise, i.e., if
W (t) > 0 (resp. W (t) ≥ k). In addition, the tasks tend to be
recurring in practice, e.g., they are scheduled periodically on
an hourly basis [9]. Hence, we can assume that the maximal
deadline of tasks is finitely bounded by a constant M . The
parallelism bound k is usually a system parameter and is also
assumed to be a constant [14].

Given the model above, the following scheduling objec-
tives will be addressed separately in this paper:
• social welfare maximization: choose an appropriate sub-

set S ⊆ T and produce a feasible schedule of S so as
to maximize the social welfare

∑
Ti∈S vi (i.e., the total

value of the tasks completed by their deadlines).
• machine minimization: minimize the number of ma-

chines C so that there exists a feasible schedule of T
on C machines.

Here, a feasible schedule means: (i) every scheduled task
is fully allocated by its deadline and the constraint from the
parallelism bound is not violated, and (ii) at every time slot t
the number of used machines is no more than C, i.e., W (t) ≤
C.
Additional notation. We now introduce more concepts that
will facilitate the subsequent algorithm analysis. We will
denote by [l] and [l]+ the sets {0, 1, · · · , l} and {1, 2, · · · , l}.
Let leni = dDi/kie denote the minimal length of execution
time of Ti. Given a set of tasks T , the deadlines di of all
tasks Ti ∈ T constitute a finite set {τ1, τ2, · · · , τL}, where
L ≤ n, τ1, · · · , τL ∈ Z+, and 0 = τ0 < τ1 < · · · < τL = d.
Let Di = {Ti,1, Ti,2, · · · , Ti,ni

} denote the set of tasks with
deadline τi (i ∈ [L]+). Let Di,j denote the set of tasks
with deadline τi and the minimal length of execution time in
(τi − τi−j+1, τi − τi−j ]. Denote by si = di

leni
the slackness

of Ti, measuring the time flexibility of machine allocation
(e.g., si = 1 may mean that Ti should be allocated the
maximal amount of machines ki at every t ∈ [1, di]) and
let s = minTj∈T sj be the slackness of the least flexible
task (s ≥ 1). Denote by v′i = vi

Di
the marginal value, i.e.,

the value obtained by the system through executing per unit
of demand of the task Ti. Finally, we assume that the demand
of each task is an integer. For a set of tasks S, we use its
capital S to denote the total demand of the tasks in S. Let
D = maxTi∈T {Di} be the demand of the largest task.

III. OPTIMAL SCHEDULE

In this section, we identify the optimal utilization state
of C machines on which a set of tasks T is scheduled; in
the meantime, we propose a scheduling algorithm that can
achieve such an optimal state.

A. Optimal Resource Utilization State

For the tasks in our model, the deadline di decides the
time interval in which a task can utilize the machines, and
the parallelism bound ki restricts that Ti can utilize at most



Algorithm 1: LDF(S)
Output: A feasible allocation of machines to a set of

tasks S
1 for m← L to 1 do
2 while Sm 6= ∅ do
3 Get Ti from Sm
4 Allocate-B(i)
5 Sm ← Sm − {Ti}

Algorithm 2: Allocate-B(i)

1 Fully-Utilize(i)
2 Fully-Allocate(i)
3 AllocateRLM(i, 1)

ki machines at every time slot in [1, di]. Let S ⊆ T , and
denote Si = S ∩ Di and Si,j = S ∩ Di,j (i ∈ [L]+,
j ∈ [i]+). Let λm(S) =

∑L
l=L−m+1 {

∑l−L+m
j=1 Sl,j +∑l

j=l−L+m+1

∑
Ti∈Sl,j ki(τl − τL−m)} for all m ∈ [L]+.

Here, a task Ti ∈ Sl,j (j ∈ {1, · · · , l − L + m}) can
utilize and only need Di resources in [τL−m + 1, d] and
a task Ti ∈ Sl,j (j ∈ {l − L + m + 1, · · · , l}) can
utilize at most ki(τl − τL−m) resources in [τL−m + 1, d]
with the constraints of the deadline and parallelism bound.
Hence, without the capacity constraint, λm(S) represents the
maximal workload of S that can be executed in the time slot
interval [τL−m + 1, d].

Lemma 3.1: Let λCm(S) = λCm−1(S) + min{λm(S) −
λCm−1(S), C(τL−m+1−τL−m)}, where λC0 (S) = 0 and m ∈
[L]+. λCm(S) is the maximal (optimal) workload of S that
could could be executed in time slot interval [τL−m + 1, d]
on C machines (m ∈ [L]+).

According to Lemma 3.1, for all m ∈ [L]+, if a set of
malleable tasks with deadlines S utilizes λCm(S) resources
in every [τL−m + 1, d] on C machines, an optimal state
is achieved in which C machines are optimally utilized by
this set of tasks. Let µC

m(S) = S − λCL−m(S) denote the
remaining workload that needs to be executed after S has
optimally utilized C machines in the time interval [τm+1, d].

Lemma 3.2: A necessary condition for the existence of
a feasible schedule for a set of malleable batch tasks with
deadlines S is the following:

µC
m(S) ≤ Cτm, for all m ∈ [L].

We refer to the necessary condition in Lemma 3.2 as bound-
ary condition.

B. Scheduling Algorithm

In this section, we introduce the proposed optimal schedul-
ing algorithm LDF(S) (latest deadline first), presented as
Algorithm 1.

LDF(S). In this algorithm, we consider the tasks in the non-
increasing order of the deadlines. For every task Ti being
considered, the resource allocation algorithm Allocate-B(i) is
called, presented as Algorithm 2, to allocate Di resource to

Algorithm 3: Fully-Utilize(i)

1 for t← di to 1 do
2 yi(t)← min{ki, Di −

∑di

t=t+1
yi(t),W (t)}

a task Ti without violating the constraints from deadline and
parallelism bound. Upon every completion of Allocate-B(·),
it achieves a special optimal resource utilization state such
that the currently fully allocated tasks S ′ ⊆ SL ∪ · · · ∪ Sm
will have been allocated λCl (S ′) resource on C machines in
[τL−l + 1, d], l ∈ [L]+. Such state also ensures that when
the next task Tj is considered, Allocate-B(j) is able to fully
allocate Dj resource to it iff S ′∪{Tj} satisfies the boundary
condition. If so, LDF(S) will give a feasible schedule for a
set of tasks S only if S satisfies the boundary condition.

To realize the function of Allocate-B(i) above, the coop-
eration among three algorithms are needed: Fully-Utilize(i),
Fully-Allocate(i), and AllocateRLM(i, η1) that are respec-
tively presented as Algorithm 3, Algorithm 5, and Algo-
rithm 6. Now, we introduce their executing process.
Fully-Utilize(i). Fully-Utilize(i) aims to ensure a task Ti
to fully utilize the current available machines at the time
slots closest to its deadline with the constraint of parallelism
bound. During its execution, the allocation to Ti at every
time slot t is done from the deadline towards earlier time
slots, and Ti is allocated min{ki, Di−

∑di

t=t+1
yi(t),W (t)}

machines at t. min{ki, Di −
∑di

t=t+1
yi(t),W (t)} is the

maximal amount of machines it can or need to utilize at
t.

Lemma 3.3: Upon completion of Fully-Utilize(i), if
W (t) > 0, Fully-Utilize(i) will allocate min{ki, Di −∑di

t=t+1
yi(t)} machines to Ti; further, if Di −

∑di

t=t
yi(t)

> 0, we have yi(t) = ki.
When a task Ti has been allocated by Fully-Utilize(i),

we cannot guarantee that it is fully allocated Di resources.
Hence, more algorithms are needed: Fully-Allocate(i) and
AllocateRLM(i, η1).
Routine(∆, η1, η2). We first introduce an algorithm
Routine(∆, η1, η2) that will be called in these two algo-
rithms, also presented as Algorithm 4. Routine(·) focuses
on the resource allocation at a single time slot t, and aims
to increase the number of available machines W (t) at t
to ∆ by transferring the allocation of other tasks to an
earlier time slot. Here, parameters η1 and η2 decide the
exit condition of the loop in Routine(·). In Allocate-B(i),
η1 = 1. When Routine(·) is called in Fully-Allocate(i) (resp.
AllocateRLM(i, η1)), η2 = 0 (resp. η2 = 1).

In particular, there is a loop in Routine(·) and at the
beginning of every loop iteration, let t′ be the time slot
earlier than but closest to t such that W (t′) > 0, and
Routine(·) checks the current condition to decide whether to
exit the loop and itself or to take the subsequent operation.
In particular, when η1 = 1 and η2 = 0, it exits the loop
whenever either of the following conditions is satisfied: (i)
the number of current available machines W (t) is ∆, and (ii)



Algorithm 4: Routine(∆, η1, η2)

1 while W (t) < ∆ do
2 t′ ← the time slot earlier than and closest to t so

that W (t′) > 0
3 if η1 = 1 then
4 if there exists no such t′ then
5 break

6 else
7 if t′ ≤ tthm , or there exists no such t′ then
8 break

9 if η2 = 1 ∧
∑t′−1

t=1 yi(t
′) ≤W (t) then

10 break

11 let i′ be a job such that yi′(t) > yi′(t
′)

12 yi′(t)← yi′(t)− 1, yi′(t′)← yi′(t
′) + 1

there exists no such t′; when η1 = 1 and η2 = 1, the loop
stops whenever either of the above two conditions is satisfied
or there exists such t′ but

∑t′−1
t=1 yi(t) ≤ W (t). Regardless

of Fully-Allocate(i) or AllocateRLM(i, 1), if none of the
corresponding exit conditions above is satisfied, there exists
a task Ti′ such that yi′(t) > yi′(t

′). The existence of such Ti′
will be explained when we introduce Fully-Allocate(i) and
AllocateRLM(i, η1). Then, it decreases the allocation yi′(t)
of Ti′ at t by 1 and increases its allocation yi′(t

′) at t′ by
1. This operation does not change the total allocation to Ti′ ,
and violate the parallelism bound ki′ of Ti′ since the current
yi′(t

′) is no more than the initial yi′(t). Upon completion of
the above operation, the next loop iteration begins.

Fully-Allocate(i). Fully-Allocate(i) ensures that Ti is fully
allocated. Upon completion of Fully-Utilize(i), let Ω = Di−∑di

t=1
yi(t) denote the partial demand of Ti that remains to

be allocated more resources for full completion of Ti. Then,
there is a loop in Fully-Allocate(i) in which time slots t are
considered one by one from the deadline towards earlier time
slots. For every t, it checks whether or not Ω > 0 and Ti
can be allocated more machines at this time slot, namely,
ki − yi(t) > 0. Then, let ∆ = min{ki − yi(t),Ω} and if
∆ > 0 it attempts to make the number of available machines
at t become ∆ by calling Routine(∆, 1, 0). Subsequently, the
algorithm updates Ω to be Ω−W (t), and allocates the current
available machines W (t) at t to Ti. Here, upon completion
of its loop iteration of Fully-Allocate(i) at t, W (t) = 0 if
Fully-Allocate(i) has increased the allocation of Ti at t; in
this case we will also see that W (t) = 0 just before the
execution of this loop iteration at t. Then, Fully-Allocate(i)
begins its next loop iteration at t− 1.

Lemma 3.4: Fully-Allocate(i) will never decrease the al-
location yi(t) of Ti at every time slot t done by Fully-
Utilize(i); If W (t) > 0 upon its completion, we also have
that W (t) > 0 just before the execution of every loop
iteration of Fully-Allocate(i).

According to Lemmas 3.3 and 3.4, we make the following

Algorithm 5: Fully-Allocate(i)

1 t← di, Ω← Di −
∑

t≤di
yi(t)

2 while Ω > 0 do
3 ∆← min{ki − yi(t),Ω}
4 Routine(∆, 1, 0)
5 Ω← Ω−W (t), yi(t)← yi(t) +W (t)
6 t← t− 1

Algorithm 6: AllocateRLM(i, η1)

1 t← di
2 while

∑t−1
t=1 yi(t) > 0 do

3 ∆← min{ki − yi(t),
∑t−1

t=1 yi(t)}
4 Routine(∆, η1, 1)
5 θ ←W (t), yi(t)← yi(t) +W (t)

6 let t′′ be such a time slot that
∑t′′−1

t=1 yi(t) < θ and∑t′′

t=1 yi(t) ≥ θ
7 θ ← θ −

∑t′′−1
t=1 yi(t), yi(t′′)← yi(t

′′)− θ
8 for t← 1 to t′′ − 1 do
9 yi(t)← 0

10 t← t− 1

observation. At the beginning of every loop iteration of
Fully-Allocate(i), if ∆ > 0, we have that W (t) = 0 since
the current allocation of Ti at t is still the one done by
Fully-Utilize(i) and Ω > 0; otherwise, it should have been
allocated some more machines at t. If there exists a t′

such that W (t′) > 0 in the loop of Routine(·), since the
allocation of Ti at t′ now is still the one done by Fully-
Utilize(i) and Ω > 0, we can know that yi(t′) = ki. Then,
we have that W (t) − yi(t) > W (t′) − yi(t

′) and there
exists a task Ti′ such that yi′(t′) < yi′(t); otherwise, we
will not have that inequality. In the subsequent execution
of the loop of Routine(·), W (t) becomes greater than 0 but
W (t) < ∆ ≤ ki − yi(t). We still have W (t) − yi(t) =
C −W (t)− yi(t) > W (t′)− ki = W (t′)− yi(t′) and such
Ti′ can still be found.

AllocateRLM(i, η1). Without changing the total allocation
of Ti in [1, di], AllocateRLM(i, η1) takes the responsibility to
make the time slots closest to di fully utilized by Ti and the
other fully allocated tasks with the constraint of parallelism
bound, namely, the Right time slots being Loaded Most.

To that end, there is also a loop in AllocateRLM(i, η1)
that considers every time slot t from the deadline of Ti
towards earlier time slots. For the current t being considered,
if the total allocation

∑t−1
t=1 yi(t) of Ti in [1, t−1] is greater

than 0, AllocateRLM(·) begins its loop iteration at t. Let
∆ = min{ki − yi(t),

∑t−1
t=1 yi(t)} and ∆ is the maximal

extra machines that Ti can utilize at t. If ∆ > 0, we enter
Routine(∆, η1, η2). Here, ∆ > 0 also means yi(t) < ki.
When Routine(·) stops, we have that the number of available
machines W (t) at t is no more than ∆. Let ut be the last time



slot t′ considered in the loop of Routine(·) for t such that the
total allocation at t

′
has been increased. In a different case

than the current state here, AllocateRLM(·) does nothing and
take no effect on the allocation of Ti at t; then set ut = ut+1

if t < di and ut = di if t = di. Then, AllocateRLM(i, η1)
decreases the current allocation of Ti at the earliest time slots
in [1, ut − 1] to 0 (and by W (t)), and accordingly increases
the allocation of Ti at t by W (t). Here, upon completion
of the loop iteration of AllocateRLM(·) at t, W (t) = 0 if
AllocateRLM(·) has taken an effect on the allocation of Ti at
t; in this case W (t) also equals to 0 just before the execution
of this loop iteration at t. Here, when AllocateRLM(·) is
called in Allocate-B(i), η1 = η2 = 1. The reason for the
existence of Ti′ is similar to but more complex than the case
of Fully-Allocate(i), and is explained.
Difference of Routine(·) and GreedyRTL. The operations
in Routine(·) are the same as the ones in the inner loop of
AllocateRTL(i) in GreedyRTL [4] and the differences are
the exit conditions of the loop. In AllocateRTL(i), one exit
condition is that there is no unsaturated time slot t′ earlier
than t. In this case, although GreedyRTL can guarantee
the optimal resource utilization in a particular time interval
[18] according the state we identified in Section III-A, there
inevitably exist unsaturated time slots that are not optimally
utilized. In fact, by our analysis in [18], GreedyRTL achieves
a resource utilization of min{ s−1s , C−k+1

C } due to its allo-
cation condition, which is not optimal.

Proposition 3.1: The boundary condition is sufficient for
LDF(S) to produce a feasible schedule for a set of malleable
tasks with deadlines S. The time complexity of LDF(S) is
O(n2).

By Proposition 3.1 and Lemma 3.2, we have the following
theorem:

Theorem 3.1: A feasible schedule for a set of tasks S can
be constructed on C machines if and only if the boundary
condition holds.

In other words, if LDF(S) cannot produce a feasible
schedule for a set of tasks S, then this set cannot be
successfully scheduled by any algorithm.

IV. APPLICATIONS

In this section, we show the applications of the results
in Section III to two algorithmic design techniques for the
social welfare maximization problem in [3], [4], giving the
best possible greedy algorithm and the first exact dynamic
programming algorithm. We also show its direct applications
to the machine minimization problem.

A. Greedy Algorithm

Generic algorithm and its bound. Greedy algorithms are
often the first algorithms one considers for many optimiza-
tion problems. In terms of the maximization problem, the
general form of a greedy algorithm is as follows [19], [20]: it
tries to build a solution by iteratively executing the following
steps until no item remains to be considered in a set of
items: (1) selection standard: in a greedy way, choose and
consider an item that is locally optimal according to a simple

Algorithm 7: GreedyRLM
Input : n jobs with typei = {vi, di, Di, kj}
Output: A feasible allocation of resources to jobs

1 initialize: yi(t)← 0 for all Ti ∈ T and 1 ≤ t ≤ T ,
m = 0, tthm = 0;

2 sort jobs in the non-increasing order of the marginal
values: v′1 ≥ v′2 ≥ · · · ≥ v′n;

3 i← 1;
4 while i ≤ n do
5 if

∑
t≤di

min{W (t), ki} ≥ Di then
6 Allocate-A(i); // in the (m+ 1)-th phase

7 else
8 if Ti−1 has ever been accepted then
9 m← m+ 1; // in the m-th phase, the

allocation to Am was completed; the

first rejected task is Tjm = Ti

10 while
∑

t≤di+1
min{W (t), ki+1} < Di+1 do

11 i← i+ 1;

/* the last rejected task is Tim+1−1 = Ti

and Rm = {Tjm , · · · , Tim+1−1} */

12 if cm ≥ c′m then
13 tthm ← cm;

14 else
15 set tthm to time slot just before the first time

slot t with W (t) > 0 after cm or to c′m if
there is no time slot t with W (t) > 0 in
[cm, c

′
m];

16 i← i+ 1;

Algorithm 8: Allocate-A(i)

1 Fully-Utilize(i)
2 AllocateRLM(i, 0)

criterion at the current stage; (2) feasibility condition: for
the item being considered, accept it if it satisfies a certain
condition such that this item constitutes a feasible solution
together with the tasks that have been accepted so far under
the constraints of this problem, and reject it otherwise. Here,
an item that has been considered and rejected will never be
considered again. The selection criterion is related to the
objective function and constraints, and is usually the ratio of
’advantage’ to ’cost’, measuring the efficiency of an item.
In the problem of this paper, the constraint comes from the
capacity to hold the chosen tasks and the objective is to
maximize the social welfare; therefore, the selection criterion
here is the ratio of the value of a task to its demand.

Given the general form of greedy algorithm, we define
a class GREEDY of algorithms that operate as follows: (i)
considers tasks in the non-increasing order of the marginal
value; and (ii) let A denote the set of the tasks that have
been accepted so far, and, for a task Ti being considered,



it is accepted and fully allocated iff there exists a feasible
schedule for A ∪ {Ti}. In the following, we refer to the
generic algorithm in GREEDY as Greedy.

Proposition 4.1: The best performance guarantee that a
greedy algorithm in GREEDY can achieve is s−1

s .

Notation. To describe the resource allocation process of a
greedy algorithm, we define the sets of consecutive accepted
(i.e., fully allocated) and rejected tasks A1,R1,A2, · · · .
Specifically, let Am = {Tim , Tim+1, · · · , Tjm−1} be the m-
th set of all the adjacent tasks that are fully allocated after
the task Tjm−1 , where Tjm is the first rejected task following
the set Am. Correspondingly, Rm = {Tjm , · · · , Tim+1−1} is
the m-th set of all the adjacent rejected tasks following the
set Am, where m ∈ [K]+ for some integer K and i1 = 1.
Integer K represents the last step: in the K-th step, AL 6= ∅
and RK can be empty or non-empty. We also define cm =
maxTi∈R1∪···∪Rm {di} and c′m = maxTi∈A1∪···∪Am {di}.
In the following, we refer to this generic greedy algorithm
as Greedy. While the tasks in Am∪Rm are being considered,
we refer to Greedy as being in the m-th phase. Before the
execution of Greedy, we refer to it as being in the 0-th phase.

In the m-th phase, upon completion of the resource
allocation to a task Ti ∈ Am ∪ Rm, we define D[t1,t2]

m,i =∑t2
t=t1

yi(t) to describe the current total allocation to Ti
over [t1, t2]. After the completion of Greedy, we also define
D

[t1,t2]
K+1,i =

∑t2
t=t1

yi(t) to describe the final total allocation
to Ti over [t1, t2]. We further define T

[t1,t2]
K+1,i as an imagi-

nary task with characteristics {v[t1,t2]K+1,i, D
[t1,t2]
K+1,i, d

[t1,t2]
K+1,i, ki},

where v[t1,t2]K+1,i = viD
[t1,t2]
K+1,i/Di, d

[t1,t2]
K+1,i = min{t2, di}.

Algorithmic analysis: features and theorem. We now
define two features of the resource allocation structure related
to the accepted tasks of Greedy. In fact, if the resource
allocation structure of Greedy satisfies such features, its
performance guarantee can be deduced immediately.

Upon completion of the m-th phase of Greedy, we define
the threshold parameter tthm as follows. If cm ≥ c′m, then set
tthm = cm. If cm < c′m, then set tthm to a certain time slot
in [cm, c

′
m]. We emphasize here that di ≤ tthm for all Ti ∈

∪mj=1Rj hence the allocation to the tasks of ∪mi=1Ri in [tthm +
1, T ] is ineffective and yields no value due to the constraint
from the deadline. For ease of exposition, we let tth0 = 0 and
tthK+1 = T . With this notation, we define the following two
features that we will want the resource allocation to satisfy
for all m ∈ [K]+:

Feature 4.1: The resource utilization achieved by the
set of tasks ∪mj=1Aj in [1, tthm ] is at least r, i.e.,∑

Ti∈∪m
j=1Aj

D
[1,tthm ]
K+1,i/ (C · tthm) ≥ r.

Viewing T
[1,tthm+1]

K+1,i as a real task with the same allocation
done by Greedy as that of Ti in [1, tthm+1], we define the
second feature as:

Feature 4.2: [tthm + 1, tthm+1] is optimally utilized by

{T [1,tthm+1]

K+1,i |Ti ∈ ∪mj=1Aj}.
Theorem 4.1: If Greedy achieves a resource allocation

structure that satisfies Feature 4.1 and Feature 4.2, it gives

an r-approximation to the optimal social welfare.
For ease of the subsequent exposition, we add a dummy

time slot 0 but the task Ti ∈ T can not get any resource
there, that is, yi(0) = 0 forever. We also let A0 = R0 =
AK+1 = RK+1 = ∅.
Best possible greedy algorithm. We now introduce the
executing process of the greedy algorithm GreedyRLM pre-
sented as Algorithm 7:
(1) considers the tasks in the non-increasing order of the

marginal value.
(2) in the m-th phase, for a task Ti being

considered, if it satisfies the allocation condition∑
t≤di

min{W (t), ki} ≥ Di, call Allocate-A(i) to
make Ti fully allocated. Here, Routine(∆, 0, 1)
exits only if in a loop iteration one of the following
conditions is satisfied: (1) the number of current
available machines W (t) is ∆, (2) there exists no such
t′, and (3) there exists such t′ but either

∑t′−1
t=1 yi(t)

≤ W (t) or t′ ≤ tthm . The existence of Ti′ is also
explained in our technical report [18].

(3) if the allocation condition is not satisfied, set the thresh-
old parameter tthm of the m-th phase in the way defined
by lines 8-15 of Algorithm 7.

Proposition 4.2: GreedyRLM gives an s−1
s -

approximation to the optimal social welfare with a
time complexity of O(n2).

B. Dynamic Programming Algorithm
In this section, we show the application of the dynamic

programming technique to the social welfare maximization
problem.

For any solution, there must exist a feasible schedule for
the tasks selected to be fully allocated by this solution. So,
the set of tasks in an optimal solution satisfies the boundary
condition by Lemma 3.2. Then, to find the optimal solution,
we only need address the following problem: if we are given
C machines, how can we choose a subset S of tasks in
D1 ∪ · · · ∪DL such that (i) this subset satisfies the boundary
condition, and (ii) no other subset of selected tasks achieve
a better social welfare? This problem can be solved via
dynamic programming (DP). To propose a DP algorithm,
we need to identify a dominant condition for the model of
this paper [21]. Let F ⊆ T and we define a L-dimensional
vector

H(F) = (λC1 (F)− λC0 (F), · · · , λCL (F)− λCL−1(F)),

where λCm(F) − λCm−1(F), m ∈ [L]+, denotes the optimal
resource that F can utilize on C machines in the segmented
timescale [τL−m+1, τL−m+1] after F has utilized λCm−1(F)
resource in [τL−m+1 + 1, τL]. Let v(F) denote the total
value of the tasks in F and then we introduce the notion
of one pair (F , v(F)) dominating another (F ′, v(F ′)) if
H(F) = H(F ′) and v(F) ≥ v(F ′), that is, the solution to
our problem indicated by (F , v(F)) uses the same amount of
resources as (F ′, v(F ′)), but obtains at least as much value.

We now give the general DP procedure DP(T ) [21]. Here,
we iteratively construct the lists A(j) for all j ∈ [n]+. Each



A(j) is a list of pairs (F , v(F)), in which F is a subset
of {T1, T2, · · · , Tj} satisfying the boundary condition and
v(F) is the total value of the tasks in F . Each list only
maintains all the dominant pairs. Specifically, we start with
A(1) = {(∅, 0), ({T1}, v1)}. For each j = 2, · · · , n, we first
set A(j) ← A(j − 1), and for each (F , v(F)) ∈ A(j − 1),
we add (F ∪{Tj}, v(F ∪{Tj})) to the list A(j) if F ∪{Tj}
satisfies the boundary condition. We finally remove from
A(j) all the dominated pairs. DP(T ) will select a subset
S of T from all pairs (F , v(F)) ∈ A(n) so that v(F) is
maximal.

Proposition 4.3: Given the subset S output by DP(T ),
LDF(S) gives an optimal solution to the welfare maximiza-
tion problem with a time complexity O(max{ndLCL, n2}).

Discussion. As in the knapsack problem [21], to construct the
algorithm DP(T ), the pairs of the possible state of resource
utilization and the corresponding best social welfare have to
be maintained and a L-dimensional vector has to be defined
to indicate the resource utilization state. This seems to imply
that we cannot make the time complexity of a DP algorithm
polynomial in L.

C. Machine Minimization

In this section, we consider the machine minimization
problem. For a set of tasks T , the minimal number of
machines needed to produce a feasible schedule of T is
exactly the minimal value of C such that the boundary
condition is satisfied. Then, through binary search to obtain
the minimal C such that the boundary condition is satisfied,
we have the following proposition by Proposition 3.1 and
Lemma 3.2:

Proposition 4.4: There exists an exact algorithm for the
machine minimization problem with a time complexity of
O(n2).

V. CONCLUSION

In this paper, we consider the problem of scheduling
n deadline-sensitive malleable batch jobs on C identical
machines. Our core result is a new theory to give the first
optimal scheduling algorithm so that C machines can be
optimally utilized by a set of batch tasks. We further derive
three algorithmic results in obvious or non-obvious ways: (i)
the best possible greedy algorithm for social welfare maxi-
mization with a polynomial time complexity of O(n2) that
achieves an approximation ratio of s−1

s , (ii) the first dynamic
programming algorithm for social welfare maximization with
a polynomial time complexity of O(max{ndLCL, n2}), (iii)
the first exact algorithm for machine minimization with a
polynomial time complexity of O(n2). Here, L and d are
the number of deadlines and the maximal deadline of tasks.

Future work includes exploring the possibility of extending
the definition in this paper of the optimal state of executing
malleable tasks on identical machines respectively to the case
with release time and to the case in which each task consists
of several subtasks with precedence constraints. Then, based
on this, one may attempt to find the optimal schedule for

those cases and to propose similar algorithms in this paper
for those extended cases.

REFERENCES

[1] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
”Bridging the Tenant-Provider Gap in Cloud Services.” In Proceedings
of the 3rd ACM Symposium on Cloud Computing. ACM, 2012.

[2] V. Ishakian, R. Sweha, A. Bestavros, and J. Appavoo. ”CloudPack:
Exploiting Workload Flexibility through Rational Pricing.” In Pro-
ceedings of the ACM/IFIP/USENIX 13th International Middleware
Conference. Springer, 2012.

[3] N. Jain, I. Menache, J. Naor, and J. Yaniv. ”A Truthful Mechanism for
Value-Based Scheduling in Cloud Computing.” In Proceedings of the
4th International Conference on Algorithmic Game Theory. Springer,
2011.

[4] N. Jain, I. Menache, J. Naor, and J. Yaniv. ”Near-Optimal Scheduling
Mechanisms for Deadline-Sensitive Jobs in Large Computing Clus-
ters.” In Proceedings of the 24th ACM symposium on Parallelism in
Algorithms and Architectures. ACM, 2012.

[5] B. Lucier, I. Menache, J. Naor, and J. Yaniv. ”Efficient Online
Scheduling for Deadline-Sensitive Jobs.” In Proceedings of the 25th
ACM symposium on Parallelism in Algorithms and Architectures.
ACM, 2013.

[6] N. Jain, I. Menache, and O. Shamir. “On-demand, Spot, or Both: Dy-
namic Resource Allocation for Executing Batch Jobs in the Cloud.” In
the 11th International Conference on Autonomic Computing. USENIX
Association, 2014.

[7] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv.
”Truthful Online Scheduling with Commitments.” In Proceedings of
the 16th ACM conference on Economics and Computation. ACM,
2015.

[8] P. Bodik, I. Menache, J. Naor, and J. Yaniv. ”Brief Announcement:
Deadline-Aware Scheduling of Big-Data Processing Jobs.” In Proceed-
ings of the 26th ACM symposium on Parallelism in Algorithms and
Architectures. ACM, 2014.

[9] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and Rodrigo
Fonseca. ”Jockey: Guaranteed Job Latency in Data Parallel Clusters.”
In Proceedings of the 7th ACM European Conference on Computer
Systems. ACM, 2012.

[10] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan et al. ”Apache Hadoop goes realtime
at Facebook.” In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data. ACM, 2011.

[11] H. Hu, Y. Wen, T.S. Chua and X. Li. ”Toward Scalable Systems for
Big Data Analytics: A Technology Tutorial.” IEEE Access, vol. 2,
2014, pp.652-687.

[12] V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum. ”FlowFlex:
Malleable Scheduling for Flows of MapReduce Jobs.” In Proceedings
of the ACM/IFIP/USENIX 14th International Middleware Conference.
Springer, 2013.

[13] J. Wolf, Z. Nabi, V. Nagarajan, R. Saccone, R. Wagle, K. Hil-
drum, E. Pring, and K. Sarpatwar. ”The X-flex Cross-Platform
Scheduler: Who’s the Fairest of Them All?.” In Proceedings of
the ACM/IFIP/USENIX 13th International Middleware Conference,
Industry Track. ACM, 2014.

[14] T. White. ”Hadoop: The definitive guide.” O’Reilly Media, Inc., 2012.
[15] D. Karger, C. Stein, and J. Wein. Scheduling Algorithms. In CRC

Handbook of Computer Science. 1997.
[16] E. L. Lawler, ”A Dynamic Programming Algorithm for Preemptive

Scheduling of a Single Machine to Minimize the Number of Late
Jobs.” Annals of Operations Research 26.1 (1990): 125-133.

[17] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Dead-
line Scheduling for Real-Time Systems: EDF and Related Algorithms.
Kluwer Academic, 1998

[18] X. Wu and P. Loiseau. ”Algorithms for Scheduling Deadline-Sensitive
Malleable Tasks.” arXiv Preprint arXiv:1501.04343v4, 2015.

[19] G. Brassard, and P. Bratley. Fundamentals of Algorithmics. Prentice-
Hall, Inc., 1996.

[20] G. Even, Recursive greedy methods, in Handbook of Approximation
Algorithms and Metaheuristics, T. F. Gonzalez, ed., CRC, Boca Raton,
FL, 2007, ch. 5.

[21] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithm. Cambridge University Press, 2011.


