
QoS for Distributed Objects by Generating
Tailored Protocols

Matthias Jung, Ernst W. Biersack
Institut Eurécom, 2229 Route des Crˆetes, 06190 Sophia Antipolis, France

fjung,erbig@eurecom.fr

In ECOOP’00 Workshop on QoS for Distributed Object
Systems, Cannes, France

Abstract

This paper presents a way to introduce quality of service management in
distributed object systems based on the idea of tailorable and configurable
protocol components.

1 Introduction

Distributed object systems (DOS)1 (like DCOM [4], CORBA [9], or RMI
[10]) allow to simplify the implementation of distributed systems by hiding
distribution concerns and allowing the programmer to concentrate on the
application logic. However, todays DOS provide almost no support to ac-
commodate the quality of service requirements of distributed applications.
Developers thus either must accept service mismatches or make large efforts
to integrate possibly complex communications related functions into the ap-
plication, which clearly contradicts the objectives of middle-ware systems.

Integrating QoS management into DOS is a challenging research topic
that concerns different components of the system. One research direction
proposes to integrate QoS management into the middle-ware system by
modifying and extending it. TAO [8] extends a CORBA Object Request

1Also refered to as middle-ware systems

Broker by real-time facilities. The Object Management Group (OMG) pub-
lished specifications for real-time and fault-tolerant services. Other exam-
ples for specialized middleware systems are Electra [5], Eternal [6], or DOORS
[11]. A second approach proposes to extend the programming model to
make QoS concerns explicit. Examples for this approach are QualityOb-
jects (QuO) [12], MAQS [1], and the Squirrel project [3]. Another approach
proposed by [7] introducesinterceptorlayers between the middleware in-
frastructure and the application to avoid changing neither the middleware
system nor the application logic.

We believe that one reason for the inflexibility of common DOSs is
due to the fact that distributed object services are generally built on top
of TCP. The stream based nature of TCP does not match very well the re-
quest/response character of distributed object calls and does not provide any
QoS differentiation. Consider a distributed game in the Internet: multicast,
real-time services, and security functions are required in one distributed ap-
plication, even expected from a single distributed object. None of these
services are supported by TCP and are impossible to be realized efficiently
on top of TCP.

Building a distributed object system on top of a light-weight protocol
like UDP, which performs only de-multiplexing and guarantees that a deliv-
ered packet is not corrupted, gives more flexibility in applying QoS. How-
ever, building own protocols requires a lot of efforts in design and imple-
mentation, especially when reliability is required. If it would be possible
to generate protocols dynamically in dependence of interface specifications
of distributed objects and allow to integrate them with specialized proto-
cols (each of which is responsible for a certain QoS criterion), the efforts of
integrating QoS into the protocols of distributed objects can be minimized.

2 Proposal
Our work comprises two parts: the first part tackles structuring of protocol
software and responds to the question how protocol software can be struc-
tured and organized to

� reduce crosstalk of protocol streams of different objects

� assure different QoS for different methods of distributed objects

� allow easy modification, extension, and tailoring of protocol software

We identified a system of architectural design patterns [2] that follow a
vertical structure to overcome the problems of simply layering protocol ser-

2

vices. We propose to vertically slice protocols intodata paths, divide data
paths into a chain ofprotocol function objects, encapsulate message headers
in objects, and decouple function and header objects. The architecture has
been implemented in a protocol environment prototype in Java. The fine
granularity of the protocol function objects and the highly reflective char-
acter of the framework allow to easily combine and configure new proto-
cols out of re-usable components. Furthermore, the vertical structure allows
to extend and remove new services without interfering with other services.
This is the key requirement to allow for different QoS in a single protocol
session.

Proxy
Compiler

Interface

Server-
Proxy

Client-
Proxy

Interface

service protocols

client representation
protocol

server representation
protocol

tailored object
protocols

Protocol
 Generator

Protocol
 Editor

representation
 protocols

Figure 1: Generation tools

The second part consists of a set of tools to generate and integrate pro-
tocols and proxies. The protocol generatortakes a Java interface as input,
maps methods to data paths, constructs message formats in dependence of
parameters, and produces representation protocolcode. A representation

3

UDP UDP

Remotely
Accessible

Object

Client-
Proxy

Server-
Proxy

tailored object
protocols

Figure 2: System Integration

protocol performs parameter conversion and maps communication data to
methods. Example code for a client protocol based on an interface that de-
fines the method int add(int,int) is depicted in Figure 3.

The protocol editorallows to integrate the generated object specific rep-
resentation protocolcode with pre-implemented service protocolcode such
that different methods can be associated with different service characteris-
tics. A service protocol may be a real-time protocol, it may manage mul-
ticast groups, or perform admission control; service protocols are thus the
core of QoS management. Some kind of specification is needed for each
method to express how representation and service protocols should be com-
bined (e.g. in form of an IDL extension for QoS). In our prototype imple-
mentation of the protocol editor, the server side programmer does this ”by
hand” , i.e. he is free to choose any existing service protocol he wants and
combine it accordingly with the generated representation protocol.

The proxy compilergenerates server and client proxies for the Java in-
terface and links them with the generated protocol code. The server proxy
reads requests from the generated protocol, performs method calls to its re-
motely accessible object, and sends the responses via the generated protocol.
The client proxy represents the server object in the client application. Figure
5 and Figure 4 give an impression how the generated code looks like. The

4

tools used are illustrated in Figure 1.
Building a distributed application comprises the following steps:

1. the application developer writes a Java interface, which declares all
methods that a distributed object is supposed to implement

2. the application developer implements a class considered to be remotely
accessible (based on the defined interface)

3. the protocol-generator uses the interface as input to produce code that
constructs a representation protocol

4. the proxy generator tool generates code that serves as proxy between
application (server or client) and the protocol code

5. the application developer uses the protocol-editor tool to combine the
produced representation protocol with protocol components required
by the application (e.g. real-time, multicast-management, admission
control)

6. by using the generated proxies, a distributed object can be easily and
transparently be integrated in the client application

The interaction of the components at runtime is depicted in Figure 2.

3 Benefits

Our approach promotes an open, extensible system that allows to integrate
any QoS criteria at any time – by just integrating a new service protocol
that supports it. Tackling QoS integration at the lowest level promises to
be the most efficient approach, since QoS are managed close to where they
originate. It also fits well into existing middle-ware systems since it avoids
complexity and modification on higher levels. Transparency for the appli-
cation is also guaranteed; compared to Java’s RMI things are getting even
easier since distributed objects are not obliged to extend special classes.

Acknowledgments

This work is sponsered by Siemens ZT IK2, Munich.

5

References
[1] C. Becker and K. Geihs, “MAQS - Management for Adaptive QoS-

enabled Services” , In IEEE Workshop on Middleware for Distributed
Real-Time Systems and Service, San Francisco, USA, 1997.

[2] M. Jung and E. Biersack, “Order-Worker-Entry: A System of Patterns
to Structure Communication Protocol Software” , In Proc. of Euro-
PLoP, Bad Irsee, Germany, July 2000.

[3] R. Koster and T. Kramp, “Structuring QoS-Supporting Services with
Smart Proxies” , In IFIP/ACM InternationalConference on Distributed
Systems Platforms and Open Distributed Processing, Hudson River
Valley, USA, April 2000.

[4] D. Krieger and R. M. Adler, “The Emergence of Distributed Compo-
nent Platforms” , IEEE Computer, pp. 43–53, March 1998.

[5] S. Maffeis, “Adding Group Communication and Fault Tolerance to
CORBA” , In Proceedings of USENIX Conference on OO Technologies,
Monterey, CA, June 1995.

[6] L. Moser, P. Melliar-Smith, P. Narasimham, L. Tewksbury, and
V. Kalogeraki, “The Eternal System: An Architecture for Enter-
prise Applications” , In 3rd InternationalEnterprise DistributedObject
Computing Conference (EDOC), University of Mannheim, Germany,
sep 1999.

[7] J. Pruyne, “Enabling QoS via Interception in Middleware” , , Hewlett-
Packard Labatories, 2000.

[8] D. Schmidt, D. Levine, and T. Harrison, “The Design and Perfor-
mance of a Real-time CORBA Object Event Service” , In Proceedings
of OOPSLA, Atlanta, Georgia, April 1997.

[9] J. Siegel, CORBA – Fundmentals and Programming, John Wiley and
Sons, Inc., 1996.

[10] Sun Microsystems, “The Java Remote Method Invocation Specifi-
cation” , 1999, http://chatsubo.javasoft.com/current/doc/rmi-spec/rmi-
spec.ps.

[11] S. Yajnik, “DOORS: Fault Tolerance for CORBA Applications” , In
FIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, The Lake District, England, September
1998.

6

[12] J. Zinky, R. Schantz, J. Loyall, K. Anderson, and J. Megquier, “The
Quality Objects (QuO) Middleware Framework” , In RM – Workshop
on Reflective Middleware, New York, USA, April 2000.

7

public void init() throws ProtocolConstructionException {
Environment env=getEnvironment();
//ORDER DEFINITIONS
OrderRegistrar orderReg=new OrderRegistrar();
env.setOrderRegistrar(orderReg);
.....
// Definition of the order-type add_callOut
OutputOrderType O7_addc=new OutputOrderType();
orderReg.addOrder(O7_addc);
StructureRegistrar r_O7_addc=new StructureRegistrar();
O7_addc.setStructureRegistrar(r_O7_addc);
O7_addc.setName("add_callOut");
O7_addc.setPriority(5);
O7_addc.setNrOutputSAP(0);
O7_addc.setOrderID(4);
//Define all ENTRYs
probeans.entries.IntegerEntryType O7_addc_E6_____=new probeans.entries.IntegerEntryType()
r_O7_addc.addEntry(O7_addc_E6_____);
O7_addc_E6_____.setVisibleFlag(true);
O7_addc_E6_____.setInitFlag(true);
O7_addc_E6_____.setSize(4);
probeans.entries.IntegerEntryType O7_addc_E7_____=new probeans.entries.IntegerEntryType()
r_O7_addc.addEntry(O7_addc_E7_____);
O7_addc_E7_____.setVisibleFlag(true);
O7_addc_E7_____.setInitFlag(true);
O7_addc_E7_____.setSize(4);
//Define all PARAMETER-relations

// Definition of the order-type add_respIn
InputOrderType O8_addr=new InputOrderType();
orderReg.addOrder(O8_addr);
StructureRegistrar r_O8_addr=new StructureRegistrar();
O8_addr.setStructureRegistrar(r_O8_addr);
O8_addr.setName("add_respIn");
O8_addr.setPriority(5);
O8_addr.setNrInputSAP(0);
O8_addr.setOrderID(11);
//Define all ENTRYs
probeans.entries.IntegerEntryType O8_addr_E8_____=new probeans.entries.IntegerEntryType()
r_O8_addr.addEntry(O8_addr_E8_____);
O8_addr_E8_____.setVisibleFlag(true);
O8_addr_E8_____.setInitFlag(true);
O8_addr_E8_____.setSize(4);
.....
return env;

}

Figure 3: Generated Client Protocol Code

8

CLIENT-STUB:
public int add(int p1, int p2) {
int methodNr=4;
try {
Object[] param={new Integer(p1), new Integer(p2)};
allWriteAPIs[methodNr-1].accept(param);
try {
synchronized(blocking[methodNr-1]) {
blocking[methodNr-1].wait();
}
}
catch(Exception e) {
throw new RuntimeException("remote error calling add(int p1, int p2)");
}
return ((Integer)results[methodNr-1]).intValue();
}
catch(Exception e) {
throw new RuntimeException("local system error in add(int p1, int p2)");
}

}

public void deliver(Object[] o, Deliverable d) {
try {
int i=((InputOrder)d).getOrderID()-numberOfMethods;
if (o.length!=0)

results[i-1]=o[0]; //set return value
synchronized(blocking[i-1]) {
blocking[i-1].notify();
}
}
catch(Exception e) {
throw new RuntimeException("incoming information is unusable");
}

}

Figure 4: Generated Code of Client Stub

9

public void deliver(Object[] o, Deliverable d) {
try {

int i=((InputOrder)d).getOrderID();
Address a=((InputOrder)d).getAddress();
switch (i) {

case 1: {
callMethod1(o,a);
break;

}
case 2: {

callMethod2(o,a);
break;

}
case 3: {

callMethod3(o,a);
break;

}
case 4: {

callMethod4(o,a);
break;

}
}

}
catch(Exception e) {

throw new RuntimeException("incoming information is unusable");
}

}

private void callMethod4(Object[] o, Address a) {
//code for add
int methodNr=4;
try {

int p1=((Integer)o[0]).intValue();
int p2=((Integer)o[1]).intValue();
Object[] ret={ new Integer(myObj.add(p1, p2)) };
allWriteAPIs[methodNr-1].accept(ret,a);

}
catch(Exception e) {

throw new RuntimeException("local system error in add(p1, p2)");
}

}

Figure 5: Generated Code of Server Skeleton

10

