
Pathological Behaviors for RLM and RLC

A. Legout and E. W. Biersack
Institut EURECOM

B.P. 193, 06904 Sophia Antipolis, FRANCE
flegout,erbig@eurecom.fr

Abstract

RLM [4] and RLC [7] are two well known receiver-driven
cumulative layered multicast congestion control protocols.
They both represent an indisputable advance in the area of
congestion control for multimedia applications. However,
there are very few studies that evaluate these protocols, and
most of the time, these studies conclude that RLM and RLC
perform reasonably well over a broad range of conditions.

In this paper, we evaluate both RLM and RLC and show
that they exhibit fundamental pathological behaviors. We
explain in which context these pathological behaviors hap-
pen, why they are harmful, and why they are inherent to the
protocols themselves and cannot be easily corrected. Our
aim is to shed some light on the fundamental problems with
these protocols1.

Keywords: RLM, RLC, Pathological behaviors, Conges-
tion Control, Multimedia, Multicast, Cumulative layers.

1 Introduction

Multimedia applications will probably become some of the
most popular applications in the Internet. One fundamental
problem when introducing a new application in the Internet
is to find an efficient way (for both the application and the
network) to do congestion control. Cumulative layered mul-
ticast congestion control protocols are presented as the best
solution for the dissemination of multimedia content to a
heterogeneous set of receivers (see for instance [4, 7, 6, 3]).
Therefore, these applications are the subject of active re-
search.

Steven McCanne et al. introduced the first receiver-driven
cumulative layered multicast congestion control protocol
called RLM [4]. The behavior of RLM is determined by a
state machine where transitions among the states are trig-
gered by the expiration of timers (the join-timer and the
detection-timer) or the detection of losses. The maintenance
of the timers and the loss estimator are fundamental parts of
the RLM protocol. In order to scale with the number of re-
ceivers, RLM needs an additional mechanism calledshared
learning. McCanne evaluated RLM for simple scenarios

1Published in the Proceedings of NOSSDAV’2000, 26th - 28th June
2000, Chapel Hill, North Carolina, USA

and only considered inter-RLM interaction. He found that
RLM can result in high inter-RLM unfairness. Bajaj et
al. [1] explored the relative merits of uniform versus priority
dropping for the transmission of layered video. They found
that RLM performs reasonably well over a broad range of
conditions, but performs poorly in extreme conditions like
bursty traffic. Gopalakrishnan et al. [2] studied the behavior
of RLM for VBR traffic and show that RLM exhibits high
instability for VBR traffic, has very poor fairness properties
in most of the cases, and achieves a low link utilization with
VBR traffic.

A TCP-friendly version of RLM, called RLC, was intro-
duced by Vicisano et al. [7]. RLC is based on the generation
of periodic bursts that are used for bandwidth inference and
on synchronization points (SP) that indicate when a receiver
can join a layer. The TCP-friendly behavior is mainly due
to the exponential distribution of the layers that results in an
exponential decrease of the bandwidth consumed (like TCP)
in case of losses. While the exponential distribution of the
layers is not a requirement for the TCP-like behavior if the
protocol drops the layers in an exponential way, it consider-
ably simplifies the protocol. We are not aware of any study
considering another layer distribution. Vicisano found that
RLC can be unfair with TCP for large packet sizes.

According to these previous studies, RLM and RLC seem
to perform reasonably well in a broad range of cases. How-
ever, in this paper, we evaluate both RLM and RLC with
very simple scenarios and show that they exhibit pathologi-
cal behaviors. We explain in which context these patholog-
ical behaviors happen, why they are harmful, and why they
are inherent to the protocols themselves and cannot be easily
corrected. Our aim is to shed some light on the fundamental
problems with RLM or RLC.

The paper is organized as follows. In section 2 we present
the scenarios considered for the simulations. We discuss the
results of the simulation for RLM in section 3, and for RLC
in section 4. We conclude the paper in section 5.

2 Simulation Topologies

Fig. 1 shows the three topologies used to evaluate the be-
havior of RLM and RLC. A source and a receiver, when not
specified, refer to a RLM (or RLC) source and receiver, re-

1



R2R1

SM

RM

RM

RM

SM

N1

N1

SM RM

RMSM

RU

N2

RUSU

SU

k

M

R3

R4

10ms
1Mb

256Kb 50ms

128Kb
100ms

56Kb 30ms

250Kb
50ms

10Mb
5ms

64Kb 30ms

T

T

m

Top

op

op
3

2

1

Figure 1: Simulation Topologies.

spectively. The first topology,Top1 , consists of one source
and four receivers. We evaluate the speed, the accuracy,
and the stability of the convergence in the context of a large
heterogeneity of link bandwidths and link delays. The sec-
ond topology,Top2 , consists of one source andm receivers.
For all the simulations, the links(N1; RM) have a band-
width uniformly chosen in[500; 1000] Kbit/s and a delay
uniformly chosen in[5; 150] ms. We evaluate the scalabil-
ity with respect to session size. The last topology,Top3 ,
consists ofM multicast sources (with one receiver), andk
unicast sources. For all the simulations, the links(SM ; N1),
(SU ; N1), (N2; RM), and (N2; RU) have a bandwidth of
10 Mbit/s and a delay of 5 ms. We evaluate the scalabil-
ity of the multicast protocol with an increasing number of
multicast sessions and with an increasing number of unicast
sessions. Also, we evaluate the fairness of the multicast pro-
tocol towards the unicast sessions.

We evaluate RLM and RLC using the ns [5] simulator.
We use the following default parameters for our simula-
tions: The multicast routing protocol is DVMRP (in partic-
ular graft and prune messages are simulated). We chose the
packet size for all the flows (RLM, RLC, CBR, and TCP) to
be 500 bytes.

RLM and RLC are designed for FIFO scheduling. How-
ever, we made all the simulations for both FIFO and FQ
scheduling; in a given simulation, all the queues are either
Fair Queuing (FQ) queues with a shared buffer or FIFO
queues. The main reason for considering FQ scheduling
is to evaluate how FQ impacts the behavior of RLM and
RLC2.

2Another reason is the following: In [3] we introduce a new cumulative
layered multicast congestion control protocol called PLM. This protocol

3 Pathological behaviors of RLM

We use the ns implementation of RLM with the parameters
as chosen by McCanne in [4]. For all the simulations, the
buffer size (or shared buffer size for FQ) is 20 packets. We
run all the simulations for RLM for a duration of 1000 sec-
onds.

In several places, in this section, we consider thin layers
(typically 10 Kbit/s or 20 Kbit/s layers granularity). We do
not argue that thin layers are reasonable, practically appli-
cable, etc. (Linda Wu et al. [8] study an architecture ex-
ploiting thin layers/streams). In fact, we use thin layers as
a diagnosis tool; thin layers clearly exhibit pathological be-
haviors that still hold with coarse layers. However, directly
using coarse layers does not allow to easily find if there is a
pathological behavior and what is the reason of this patho-
logical behavior.

The first simulation evaluates the speed, the accuracy, and
the stability of RLM convergence onTop1 . We consider
10 Kbit/s layer granularity. We only present the results for
FIFO scheduling (FQ scheduling gives the same result as,
in this experiment, we have only one source). We see in
Fig. 2(a) the very slow convergence time of RLM. Receiver
R1 needs more than 400 seconds to converge to the opti-
mal rate. Moreover, the mean loss rate for this simulation
is 3.2%. The 10 Kbit/s layers granularity is a tough test
for RLM, and shows a pathological behavior of RLM in ex-
treme cases. The slow convergence time is explained by the
value of the minimum join-timer of RLM that is fixed to 5
seconds. The smaller the layer granularity, the slower the
convergence. The significant loss rate is explained by the
loss threshold of RLM set to 25%. With such small lay-
ers, we never enter in a congestion period where a receiver
experiences a loss of more than 25% of the packets. Each
receiver sees a persistent loss rate for the whole simulation
that results in a mean loss rate of 3.2%. As a receiver can
only do a join experiment if he does not see losses during a
given period of time, there is very low number of join exper-
iments in this simulation. We made another simulation with
exponential layer sizes starting at 32 Kbit/s (the layer band-
width distribution isf32,64,128,256,512,1024g Kbit/s) and
give the results in Fig. 2(b). In this case RLM performs sig-
nificantly better than in the previous case. The convergence
time is reasonably fast. We clearly see the join experiments
that are, in this case, the main reason for a mean loss rate of
0.81%.

The second experiment evaluates the scaling of a single
RLM session with respect to the number of receivers on
topologyTop2 . We consider 50 Kbit/s layer granularity.
For this simulation, we consider the link(SM ; N1) with a

requires a Fair Queuing network (i.e. a network where every queue is a FQ
queue). In order to compare PLM with RLM and RLC, we must consider
the same scenarios (the scenarios in this paper are a subset of the scenar-
ios in [3]) and in particular, the same scheduling discipline. Moreover, as
FQ improves the performance of RLM and RLC, it is fair to consider FQ
for the comparison between these protocols and PLM. We find that PLM
outperforms in all the cases RLM and RLC.

2



0 200 400 600 800 1000
0

5

10

15

20

25

30

Time (s)

La
ye

r
RLM Layer subscription

R1
R2
R3
R4

(a) Layer subscription for each RLM receivers, 10 Kbit/s layers.

0 200 400 600 800 1000
0

1

2

3

4

5

Time (s)

La
ye

r

RLM Layer subscription

R1
R2
R3
R4

(b) Layer subscription for each RLM receivers, exponential lay-
ers (2i � 32Kbit=s, i = 0; 1;2;3; � � �).

Figure 2: Speed, accuracy, and stability of RLM conver-
gence for a single session,Top1 .

bandwidth of 280 Kbit/s and a delay of 20 ms. We start 20
RLM receivers at timet = 5 s then we add one receiver
every five seconds fromt = 205 s to t = 225 s, and at
t = 400 s we add 5 more RLM receivers. The aim of this
experiment is to evaluate the impact of the number of re-
ceivers on the convergence time and on the stability, and to
evaluate the impact of late joins. We only present the results
for FIFO scheduling (FQ scheduling gives the same result
as, in this experiment, we have only one source). The most
interesting event in Fig. 3 is thereceiver synchronization.
Due to the shared learning, receivers cannot join upper lay-
ers while there are some receivers subscribed only to lower
layers. Indeed, the shared learning precludes a receiver to

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time (s)

La
ye

r

RLM Layer subscription

Figure 3: Scaling of a RLM session with respect to the num-
ber of receivers,Top2 .

do a join experiment if there is a pending join experiment
for a lower layer. Late joins can slow down the convergence
time for RLM receivers. We did the same experiment with
exponential layers and observed a similar behavior.

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLM throughput, M=3, bandwidth increment 5s

RLM
CBR

Figure 4: Mean throughput of RLM and CBR flows sharing
the same bottleneck, FIFO scheduling,Top3 .

The third experiment considers a mix of RLM and CBR
flows on Top3 . We consider a layer granularity of 20
Kbit/s. We comment this experiment for both FIFO and
FQ scheduling. For FIFO scheduling, we considerM = 3
RLM sessions andk = 1 CBR flow. The bandwidth of
link (N1; N2) is 200 � M = 600 Kbit/s and the delay is
20 ms. We start each of the three RLM receivers at times
t = 50; 100; 150 s and the CBR source at timet = 300 s;
we stop the CBR source att = 400 s. The CBR source rate
is 300 Kbit/s, half the bottleneck bandwidth. The aim of
this scenario is to study in the first part (before starting the
CBR source) the behavior of RLM with an increasing num-
ber of RLM sessions, and in the second part (after starting

3



0 200 400 600 800 1000
0

10

20
La

ye
r

RLM Layer subscription, M=3

0 200 400 600 800 1000
0

10

20

La
ye

r

0 200 400 600 800 1000
0

10

20

La
ye

r

Time (s)

(a) Layer subscription of each RLM session.

0 200 400 600 800 1000
0

10

20

30

pk
ts

 lo
st

RLM losses, M=3, bandwidth increment 500ms

0 200 400 600 800 1000
0

10

20

30

pk
ts

 lo
st

0 200 400 600 800 1000
0

10

20

30

pk
ts

 lo
st

Time (s)

(b) Loss rate of each RLM session.

Figure 5: RLM and CBR flows sharing the same bottleneck,
FIFO scheduling,Top3 .

the CBR source) the behavior of RLM in case of severe con-
gestion. When the CBR source stops we observe how fast
RLM grabs the available bandwidth.

Fig. 4 shows the mean throughput of the three RLM ses-
sions and Fig. 5(a) shows the layer subscription for the
three RLM receivers. There is a slow convergence due to
the small layer granularity. We see also a high unfairness
among the sessions during the whole simulation. Moreover,
the high period of congestion (when the CBR source sends
packets) results in a large number a losses for the RLM
sessions (see Fig. 5(b)). When the CBR source starts and
creates congestion, the RLM sessions start dropping lay-

ers. However, the process of dropping layers with RLM is
very conservative (sluggish) and induces significant transi-
tory losses (see Fig. 5(b)). Indeed, a receiver can only drop
one layer per detection-timer period. The mean loss rate is
2.3% in this experiment. We note the same effect as in ex-
periment one: The small layers result in losses that never
exceed the loss threshold (see Fig. 5(b)), therefore never re-
sult in a layer drop, and result in a very low number of join
experiments (see Fig. 5(a)). We did the same simulation
with exponential layers. As expected, the large layer granu-
larity results in a higher reactivity for RLM. When the CBR
source starts, RLM reacts fast to the congestion by drop-
ping one layer (dropping one layer is enough in this case to
avoid congestion). The resulting mean loss rate is reduced
to 1.4%. However, RLM results in a very high unfairness
in case of exponential layers as well. The first session gets
roughly 500 Kbit/s, the second gets roughly 100 Kbit/s, and
the third session must drop all the layers.

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLM throughput, M=3, bandwidth increment 5s

RLM
CBR

Figure 6: Mean throughput averaged over 5s intervals, FQ
scheduling,Top3 .

For FQ scheduling, we considerM = 3 RLM sessions
and k = 3 CBR flows. The bandwidth of link(N1; N2)
is 200 � M = 600 Kbit/s and the delay is 20 ms. We
start each of the three RLM receivers respectively at time
t = 50; 100; 150 s. We start the CBR sources at time
t = 300 s and stop the CBR sources att = 400 s. The rate
of each CBR source is 500 Kbit/s. We choose as many CBR
sources as RLM sessions to simulate severe congestion. In-
deed, with FQ, the only way to create congestion is to sig-
nificantly increase the number of sessions. In this case, the
three CBR sources grab half of the bottleneck bandwidth.

Fig. 6 shows the mean throughput for the three RLM ses-
sions. The most noticeable point, compared to the FIFO
scheduling case, is the good fairness among the RLM ses-
sions. However, even with FQ scheduling, the fairness is
not ideal (see Fig. 6 betweent = 400 s andt = 800 s). The
mean loss rate for this simulation is 4.6%. As FQ enforces
fairness among all the flows, the RLM flows can not grab

4



more bandwidth than their fair share. While, with FIFO
scheduling a RLM flow can grab more bandwidth than its
fair share from the CBR flow. Therefore, the RLM receivers
experience more losses with FQ than with FIFO. We do not
notice any other significant difference compared to the FIFO
scheduling case. We did the same simulation with exponen-
tial layers and observed a good fairness among the RLM
flows (according to the layer granularity). RLM reacts fast
to the congestion and the resulting mean loss rate is lower
than 1%.

0 200 400 600 800 1000
0

50

100

150

200

250

300

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLM with TCP, bandwidth increment 5s

RLM 
TCP1
TCP2

(a) RLM session starts first.

0 200 400 600 800 1000
0

50

100

150

200

250

300

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLM with TCP, bandwidth increment 5s

RLM 
TCP1
TCP2

(b) RLM session starts after TCP1.

Figure 7: Mean throughput of RLM and TCP flows sharing
the same bottleneck, FIFO scheduling,Top3 .

The fourth experiment considers a mix of one RLM ses-
sion and TCP flows onTop3 . We considerM = 1 RLM
session andk = 2 TCP flows and a layer granularity of 20
Kbit/s. The bandwidth of link(N1; N2) is 100� (M +k) =
300Kbit/s and the delay is 20 ms. We do all the simulations

for FIFO and FQ scheduling. In a first set of simulations,
we start RLM first att = 0 s, then TCP1 att = 300 s,
and TCP2 att = 600 s. In a second set of simulations, we
start TCP1 first att = 0 s, then RLM att = 300 s, and
TCP2 att = 600 s. For FQ scheduling, the simulations do
not bring any new results compared to the previous experi-
ment. In summary, with FQ scheduling, RLM shares fairly
the bandwidth with TCP (according to the layer granular-
ity), and experience a transitory period of congestion when
a new TCP flow starts. This period of congestion results in
a significant loss rate (from to 2% to 8%according to the
simulation scenario) with 20 Kbit/s layer granularity, and
in a low loss rate (around 0.5% for all the scenario) with
exponential layers.

In the following we consider FIFO scheduling. Fig. 7
shows the mean throughput averaged over 5 seconds inter-
vals of the RLM and TCP flows for FIFO scheduling. When
RLM starts first it grabs all the available bandwidth. TCP
can only achieve a very small throughput (see Fig. 7(a)) due
to the large RLM loss threshold of 25%. Indeed, when RLM
is in the steady state, a receiver must experience a loss rate
higher than the loss threshold to drop a layer. However, TCP
is not able to create a large enough congestion and therefore
fails to grab bandwidth from RLM. When RLM starts after
TCP1, RLM is not able to grab bandwidth from TCP. This
is due to the join experiment process of RLM. When a RLM
receiver does a join experiment and experiences losses dur-
ing this join experiment, he infers that it can not join this
layer. Moreover, in order to do a join experiment, a receiver
must not see any loss during a given period of time. The
key point is: whereas a RLM receiver in steady state needs
a 25% loss rate to drop a layer, a RLM receiver needs only
one loss to infer than he cannot join a layer or to preclude a
join experiment (the reader can refer to [4] for all the details
about the RLM protocol).

In conclusion, we found several pathological behaviors
of RLM: i) The minimum join timer gives a large lower
bound to the speed of convergence; ii) The high loss thresh-
old can result in a high mean loss rate. Moreover, it results
in a very aggressive behavior when competing with TCP. iii)
The shared learning results in receiver synchronization; iv)
The join experiment process results in a very conservative
behavior when competing with TCP flows; v) The conser-
vative drop process (one layer dropped per detection-timer)
results in extended transient periods of losses in case of con-
gestion.

Each of these pathological behaviors is very hard to cor-
rect as the parameters involved are the result of complex
tradeoff. The minimum join timer is a tradeoff between the
speed of convergence of the frequency of the join experi-
ments. The loss threshold is a tradeoff between a conserva-
tive and a reactive behavior in case of loss. One solution is
for both, the join timer and the loss threshold, to dynami-
cally adjust these parameters according to the network con-
ditions. However, that requires complex network inference
mechanisms: an additional (large time scale) bandwidth in-

5



ference mechanism to infer if a receiver needs to add several
or only few layers to reach the equilibrium; an additional
congestion inference mechanism to determine if the con-
gestion is heavy (one needs to drop several layers to reach
the equilibrium) or light (one needs to drop only one layer
to reach the equilibrium). These questions need further re-
search. The shared learning and the join experiment pro-
cess are foundations of the RLM protocols and cannot be
changed without redesigning the whole protocol. Finally,
the conservative drop process is necessary for RLM to avoid
over-reaction to losses and is, therefore, very hard to tune.

4 Pathological behaviors of RLC

We use the ns implementation of RLC with the parameters
as chosen by Vicisano in [7]. We identify behaviors in the
ns version of RLC that are not conform with the description
of RLC in [7]. We do not correct these behaviors as we
do not know if they are intended by the authors or if they
are the result of a bug. We always take into account these
behaviors in our simulations and discuss them when they
impact the results. The mainpeculiarbehavior is that RLC
drops the current layer when it experiences losses during
a burst, whereas, according to [7], RLC should stay at the
current layer and just infer that it cannot join an upper layer.

RLC can be considered a TCP-friendly version of RLM
with the improvement of the synchronization points (data
packets with a special flag) and a new bandwidth inference
mechanism based on periodic bursts. In fact, we show that
both the synchronization points and the periodic bursts lead
to pathological behaviors, and that the RLC behavior is very
sensitive to the queue size.

0 20 40 60 80 100
0

5
RLC Layer subscription

La
ye

r

0 20 40 60 80 100
0

5

La
ye

r

0 20 40 60 80 100
0

5

La
ye

r

0 20 40 60 80 100
0

5

Time (s)

La
ye

r

R1 

R4 

R2 

R3 

Figure 8: Layer subscriptions for a single session, 4 re-
ceivers,Top1 .

For all the simulations with RLC, we just indicate the rate
B0 of the base layerL0. The rate of layerLi isBi = 2i �B0.

If not specified, the default buffer size (or shared buffer
size for FQ) is 20 packets. The first simulation evaluates
the speed, the accuracy, and the stability of RLC conver-
gence forTop1 . The rate of the base layer is 32 Kbit/s. We
only present the results for FIFO scheduling (FQ schedul-
ing gives the same result as, in this experiment, we have
only one source). The queue size is 15 packets. Fig. 8
shows the layer subscription for the RLC receivers. The
solid line is forR1, the dashed line is forR3, the dotted line
is for R2, and the dashed-dotted line is forR4. This sim-
ple experiment shows one of the most fundamental problem
with RLC. For instance, whenR1 subscribes to layer 4, he
receives 256 Kbit/s. As his bottleneck bandwidth is 256
Kbit/s, he experiences no loss. The source sends periodi-
cally a burst that doubles, over a short period of time, the
sending rate to allow the receiver to infer if he can join a
higher layer. However, the burst does not make the queue
overflow, andR1 infers that he can join layer 5. After a
short period of time,R1 will experience a large number of
losses and will drop the layer. For receiverR1, we observe
a cascade drop from layer 5 to layer 3. However, this cas-
cade drop is due to the peculiar behavior pointed out at the
beginning of the section. Indeed, just after dropping layer
5, the queue will remain full (as the bottleneck bandwidth
is equal to the layer 4 rate), the source will generate a burst
that makes the queue overflow as the queue is already full
before the burst. The receiver will experience losses dur-
ing the burst and due to the peculiar behavior will drop the
layer 4. We can explain the behavior of the other receivers
in the same way. The periodic erroneous bandwidth infer-
ence leads to a mean loss rate up to 13%.

This experiment shows a fundamental pathological be-
havior of RLC. RLC’s bandwidth inference is based on the
generation of periodic bursts that aim to reduce the transi-
tory period of congestion due to join experiments (see [7]
for more details). To succeed, the burst must make the
queue overflow when there is not enough bandwidth to ac-
commodate a new layer. However, queue overflow happens
in our simulationsonly for a very judicious choice of the
queue sizes, which is impossible to do in a real network. As
the bandwidth inference does not succeed, the receivers pe-
riodically join a layer when there is not enough bandwidth
available to add this layer. That leads to periodic congestion
and periodic losses.

To avoid cascade drop, RLC uses a deaf period of fixed
length after dropping a layer during which it does not drop
layers. However, this deaf period reflects the delay between
the time the receiver sends a leave request and the time the
receiver sees the effect of the leave request on the bottleneck
router. This value varies highly over time and for different
receivers. As the join experiments are sender-based in RLC,
there is no way for a receiver to infer the appropriate dura-
tion for the deaf period without adding a complex protocol.
This is a significant weakness of RLC as a correct static
choice of the deaf period can be very difficult. If RLC must
drop several layers to react to a severe period of congestion,

6



the deaf period will significantly slow down the drop pro-
cess. However, we note that with exponentially distributed
layers, dropping one layer is most of the time sufficient to
react to congestion.

0 50 100 150 200 250 300
0

50

100

150

200

250

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLC scaling, m=30, bandwidth increment 5s

SP 

SP 

SP SP SP 

SP SP SP 

1 2 

8 7 6 5 

4 3 

Figure 9: Scaling of a RLC session with respect to the num-
ber of receivers,Top2 .

The second experiment evaluates the scaling of a single
RLC session with respect to the number of receivers on
topologyTop2 . For this simulation we consider the link
(SM ; N1) with a bandwidth of 250 Kbit/s and a delay of 20
ms. The queue size is 10 packets. We start 20 RLC receivers
at timet = 5 s then we add one receiver every five seconds
from t = 30 s tot = 50 s, and att = 80 s we add 5 RLC
receivers. The rate of the base layer is 8 Kbit/s. The aim
of this experiment is to evaluate the impact of the number
of receivers on the convergence time and on the stability,
and to evaluate the impact of late joins. We only present the
results for FIFO scheduling (FQ scheduling gives the same
result as, in this experiment, we have only one source). A
receiver can only increase his number of layers at synchro-
nization points (SP) if no losses are experienced during the
burst preceding that SP. The distance between two SPsdou-
bles at each layer, and the SPs at layerLi are a subset of
the SPs at layerLi�1 (see [7] for more details). Fig. 9
shows the mean throughput for all the receivers. We first
note that the small throughput oscillations around the mean
throughput are due to the succession of periodic burst and
silent period that slightly increases or decreases the mean
throughput averaged over 5 seconds intervals. The annota-
tionsSPi indicate the occurrence of some relevant SPs. In
this simulation, the bandwidth inference using bursts never
succeeds, i.e. the bursts never make the queue overflow, and
the receivers join an additional layer that the network cannot
support. We observe a new pathological behavior of RLC.
Betweent = 30 s andt = 50 s late joiners start. Around
t = 60 s, at the synchronization pointSP5 , some late join-

ers join layer 53 and the others join layer 4. But, as the
synchronization pointSP1 is synchronized withSP5 , the
first receivers (that join att = 5 s) join layer 6 that cannot
be supported. This results in a period of congestion that is
misinterpreted by the late joiners who drop a layer. The late
joiners can only subscribe to the highest layer supported at
SP6 , which is not synchronized with an upper layer SP. We
observe the same pathological behavior with the late joiners
that start att = 80 s. This pathological behavior signif-
icantly slows down the convergence speed. We note that,
even if the burst succeeds in inferring the available band-
width, the same problem persists. Indeed, if the burst (to
join layer 6) makes the queue overflow, the first receivers
will infer that they cannot join layer 6 and they will stay at
the current layer atSP1 . However, the late joiners cannot
join an upper layer atSP5 as they will see losses, shared
among all the layers, due to the burst on layer 5.

With the parameters choice in [7], the SPs are exponen-
tially spaced. At layeri, the distance between the SPs is
2i � 8 � s

B0

, wheres is the packet size andB0 is the through-
put of the base layer. ForB0 = 16 Kbit/s ands = 256
bytes, the distance between the SPs at layeri is roughly2i

seconds. For instance, a receiver can only join layer 6 every
64 seconds. The exponentially spaced SPs can significantly
slow down the convergence of the receivers to the highest
layers.

We did a third experiment that considers the same sce-
narios than the third experiment for RLM. We do not give
plots for this experiment as it does not exhibit pathological
behaviors. For this experiment, RLC performs reasonably
well. The RLC sessions share fairly the bandwidth among
each other and adapt reasonably fast to the transitory period
of congestion produced by the CBR source(s). The mean
loss rate for all the scenarios range from 0.6% to 2.9%.

The fourth experiment onTop3 considers a mix of RLC
and TCP flows. We considerM = 1RLC session andk = 2
TCP flows. The bandwidth of link(N1; N2) is 200 � (M +
k) = 300 Kbit/s and the delay varies from 20 ms to 400
ms. The rate of the base layer is 16 Kbit/s. We start RLC
at t = 0 s, TCP1 att = 50 s, and TCP2 att = 100 s. We
did all the simulations for both FIFO and FQ scheduling.
For FQ scheduling, we do not see any pathological behavior
and do not present the plots. In this case, RLC shares fairly
(according to the layer granularity) the bandwidth with the
TCP flows. For these scenarios, the mean loss rate range
from 0.7% to 1.6%.

Now we comment the simulations for the fourth exper-
iment with FIFO scheduling. Fig. 10(a) shows the mean
throughput averaged over 5 seconds intervals for the RLC
and TCP flows when the delay of the link(N1; N2) is 20
ms. When TCP1 starts, RLC drops to layer 1 and then os-
cillates between layer 1 and layer 2. When TCP2 starts, we
do not notice any particular behavior for RLC. This experi-

3In this simulation layer 4 corresponds to a 64 Kbit/s, layer 5 corre-
sponds to 128 Kbit/s, and layer 6 corresponds to 256 Kbit/s.

7



0 50 100 150 200
0

100

200

300

400

500

600

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLC with TCP, 20ms, bandwidth increment 5s

RLC 
TCP1
TCP2

(a) The delay of the link(N1; N2) is 20 ms.

0 50 100 150 200
0

100

200

300

400

500

600

Time (s)

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RLC with TCP, 200ms, bandwidth increment 5s

RLC 
TCP1
TCP2

(b) The delay of the link(N1; N2) is 200 ms.

Figure 10: Mean throughput of RLC and TCP flows sharing
the same bottleneck,Top3 .

ment shows that RLC can be very conservative compared to
TCP. Fig. 10(b) shows the same experiment than previously
except that the delay of the link(N1; N2) is 200 ms. We
see that when TCP1 starts, RLC shares fairly the bandwidth
with TCP1. When TCP2 starts, RLC gets a lower bandwidth
than the two TCP flows. In a last experiment (we do not give
the plot), we increase the delay of the link(N1; N2) to 400
ms. For this experiment, RLC fairly shares the bandwidth
with TCP1 and TCP2. The explanation of this behavior is
simple. The TCP cycle (i.e. the time between two losses)
is shorter with a small RTT than with a large RTT. As a
consequence, the smaller the RTT is, the larger the num-
ber of losses RLC experiences in a given time interval. As
the RLC throughput is function of the number of losses, the

higher the number of losses, the lower the RLC throughput.
In conclusion, we observed several pathological behav-

iors of RLC: i) The bandwidth inference mechanism based
on burst leads to a high number of losses and does not suc-
ceed to make the queue overflow. ii) The synchronization
points, as distributed in RLC, can significantly reduce the
speed of convergence of late joiners. iii) The claimed TCP-
friendly behavior of RLC results in a very conservative be-
havior of RLC compared to TCP.

Moreover, we cannot easily correct any of these patho-
logical behaviors. For the periodic bursts to succeed, we
must know how long the burst should persist in order to
make the queue overflow. That requires a mechanism close
to a bandwidth inference mechanism that renders to periodic
burst useless. Moreover, the static choice of the burst length
is a very difficult tradeoff between the probability to make
the queue overflow and the amount of periodic congestion
(and losses) generated. The pathological behaviors ii) and
iii) raise new questions: Does RLC still achieve its claimed
TCP-like behavior with non exponentially distributed lay-
ers? What is the influence of the placement of the SPs on
the RLC behavior? These questions are for future research.

5 Conclusion

In this paper, we have evaluated RLM and RLC on simple
scenarios. We show that both protocols exhibit pathological
behaviors. We discuss which part of the protocol leads to
a given pathological behavior and explain that most of the
time these pathological behaviors are difficult to correct. We
note that most of the problems come from the bandwidth
inference mechanism used that is responsible for transient
periods of congestion, instability, and periodic losses.

In [3] we present a new cumulative layered multicast con-
gestion control protocol, called PLM, based on the gen-
eration of packet pairs (PP) to infer the available band-
width. Bandwidth inference using PPs does not have any of
the weaknesses of the bandwidth inference mechanisms of
RLM and RLC, and PLM outperforms in all the cases RLM
and RLC. However, PLM requires a Fair Queuing network.
With a FIFO network, traditional solutions like RLM and
RLC are still necessary, but require improvements of the
bandwidth inference mechanism. We hope that this paper
contributes to identify the fundamental problems of these
protocols, and will stimulate research to improve these pro-
tocols.

References

[1] S. Bajaj, L. Breslau, and S. Shenker, “Uniform ver-
sus Priority Dropping for Layered Video”, InSIG-
COMM’98, Vancouver, British Columbia, CANADA,
September 1998.

8



[2] R. Gopalakrishnan, J. Griffioen, G. Hjalmtysson, and
C. J. Sreenan, “Stability and Fairness Issues in Layered
Multicast”, In NOSSDAV’99, 1999.

[3] A. Legout and E. W. Biersack, “PLM: Fast Con-
vergence for Cumulative Layered Multicast Transmis-
sion Schemes”, InProceedings of ACM SIGMET-
RICS’2000, Santa Clara, California, USA, June 2000.

[4] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven Layered Multicast”, InSIGCOMM 96, pp. 117–
130, August 1996.

[5] NS, UCB/LBNL/VINT Network Simulator - ns (ver-
sion 2), http://www-mash.cs.berkeley.edu/ns/.

[6] T. Turletti, S. Fosse-Parisis, and J. Bolot, “Experiments
with a Layered Transmission Scheme over the Inter-
net”, Research report, INRIA, B.P.93, Sophia-Antipolis
Cedex, France, November 1997.

[7] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like
Congestion Control for Layered Multicast Data Trans-
fer”, In Proceedings of IEEE INFOCOM, San Fran-
cisco, CA, USA, March 1998.

[8] L. Wu, R. Sharma, and B. Smith, “Thin Streams:
An Architecture for Multicasting Layered Video”, In
NOSSDAV’97, pp. 173–182, St Louis, Missouri, USA,
May 1997.

9


