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Blind Pilot Decontamination
Ralf R. Müller, Senior Member, IEEE and Laura Cottatellucci and Mikko Vehkaperä

Abstract—A nonlinear channel estimation method based on
a subspace projection is proposed. It is suitable for strongly
asymmetric antenna array systems. It is shown that the so-
called pilot contamination problemis an artefact of linearchannel
estimation. It can be overcome in cellular systems with power-
controlled handoff if the channel estimation method proposed
in this paper is used. An intuitive explanation for this finding
is established by means of an isomorphism between a massive
MIMO system and a spread-spectrum system with unknown
signature sequences. The proposed method of channel estimation
is based on a spectral decomposition of the matrix of received
signal vectors collected over one coherence interval. It isanalyzed
by means of random matrix and free probability theory.

Index Terms—Multiple antennas, multiple-input multiple-
output (MIMO) systems, massive MIMO, spread-spectrum, chan-
nel estimation, principal component analysis, random matrices,
free probability.

I. I NTRODUCTION

I N [1], a multiple antenna system was proposed that mimics
the idea of spread-spectrum. Like a large processing gain

can be realized in a spread-spectrum system by massive use
of radio spectrum, a large array gain is realized by a massive
use of antennas elements. This system design has attracted
considerable attention recently, see e.g. [2] for a survey.It is
commonly referred to asmassive MIMO. Its advantage over
the old spread-spectrum idea lies in the fact that antennas
can be manufactured in arbitrarily high numbers, while radio
spectrum is limited.

Given perfect channel state information, the signals received
at all antenna elements can be combined coherently. The array
gain grows unboundedly with the number of antenna elements
at the access point. Therefore, massive use of antennas ele-
ments can overcome both multiuser interference and thermal
noise for any given number of users and any given powers of
the interfering users.

In [3], however, a pessimistic conclusion about the perfor-
mance of massive MIMO in cellular systems was reached.
Based on the explicit assumption of no coordination among
cells and on the implicit assumption of linear channel es-
timation [3, Eq. (5)], it was concluded that the array gain
can be achieved only for data detection, but not for channel
estimation. The author argued that channel state information,
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though not required to be perfect, must have at least a certain
quality in order to utilize unlimited array gains. As a result,
pilot interference from neighboring cells would limit the
ability to obtain sufficiently accurate channel estimates and
be the new bottleneck of the system. This effect, commonly
referred to aspilot contamination [4], was believed by many
researchers, e.g. [3]–[8] to be a fundamental effect, despite the
lack of a solid proof that it cannot be overcome.

Recent works have indicated that pilot contamination is
not as fundamental as it was thought to be: Using Bayesian
channel estimation, [9] found that pilot contamination can
vanish under certain conditions on the channel covariance
matrix if some cooperation among cells is allowed. Using an
eigenvalue decomposition of the sample covariance matrix of
the received signal, [10] found that for a wide range of system
parameters, the channel can be estimated blindly with greater
accuracy than with linear methods.

In this paper, we show that pilot contamination is, in fact,
not a fundamental effect, but a shortcoming of linear channel
estimation. We show, that the array gain can easily be utilized
to also have the accuracy of channel estimation growing
unboundedly with the number of antennas. Furthermore, we
show that this can be achieved with polynomial complexity in
the number of antenna elements. As in [10], our approach also
starts with an eigenvalue decomposition of the sample covari-
ance matrix (or equivalently a singular value decomposition
of the received signal matrix). Unlike [10], it does not aim to
subsequently estimate the channel matrix before performing
data detection. It projects the received signal onto an (almost)
interference-free subspace where communication is governed
by a non-linear compound channel that can be estimated easily.

Utilizing random matrix theory (RMT), we analyze for
which system parameters the subspace of the signal of interest
can be identified blindly. We find that power-controlled hand-
off protocols solve the blind identification problem for allusers
except for those that are close to cell boundaries. For those
users an exception handling is required and two methods for
it are proposed.

In Section II, we introduce the system model. In Section III,
we propose the algorithm for nonlinear channel estimation
utilizing the array gain. In Sections IV and V, we investigate
the performance of this algorithm by analytic and simulative
means, respectively. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a wireless communication channel. In order to ease
notation and for sake of conciseness, let the channel bandwidth
be smaller than the coherence bandwidth. Channels whose
physical bandwidth is wider than the coherence bandwidth can
be decomposed into equivalent parallel narrowband channels
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by means of orthogonal frequency division multiplexing or
related techniques.

Let the frequency-flat, block-fading, narrowband channel
from T transmit antennas toR > T receive antennas be
described by the matrix equation

Y = HX +Z, (1)

whereX ∈ CT×C is the transmitted data (eventually multi-
plexed with pilot symbols),C ≥ R1 is the coherence time in
multiples of the symbol interval,H ∈ CR×T is the channel
matrix of unknown propagation coefficients,Y ∈ CR×C is
the received signal, andZ ∈ CR×C is the total impairment.
Furthermore, we assume that channel, data, and impairment
have zero mean, i.e.EX = EH = EZ = 0. The impairment
includes both thermal noise and interference from other cells
and is, in general, neither white nor Gaussian.

Note that (1), can also be understood as a code-division
multiple-access (CDMA) system with the columns ofH de-
noting the spreading sequences andR denoting the processing
gain. It is well-known that CDMA can be demodulated without
knowledge of the spreading sequences by means of blind
algorithms, see e.g. [11]. Many of those algorithms can alsobe
applied in massive MIMO systems. In the following section,
we introduce an algorithm, which we consider particularly
suited for cellular massive MIMO.

III. PROPOSEDALGORITHM

A. General Idea

Before going into the details of the proposed algorithm, we
start with the idea behind the proposed procedure. Consider
the channel model (1) for a single active transmit antenna,
i.e. T = 1 and look for the matched filterm† such that the
signal-to-noise ratio (SNR) at its output is maximum. In white
noise, maximizing the SNR is equivalent to maximizing the
total received power normalized by the power gain of the filter.
Thus, the optimum filter is given by

m
◦ = argmax

m

m†Jm

m†m
(2)

with
J = E

X,Z|H

{
Y Y

†
}
. (3)

It is a well-known result of linear algebra that the vectorm◦

maximizing the right hand side of (2), commonly referred to as
the Rayleigh quotient, is that eigenvector ofJ that corresponds
to the largest eigenvalue ofJ . Since we do not know the matrix
J , we have to cope with the approximate solution

m
∗ = argmax

m

m
†
Y Y

†
m

m†m
. (4)

This approximation is tight for large number of antenna
elements, i.e. we have the almost sure convergence of the inner
product

|〈m◦;m∗〉| → ||m◦|| · ||m∗|| (5)

1The assumptionC ≥ R is made to simplify the exposition. In fact, all
the formulas presented in the following hold forC < R, as well, although
their derivations might require modifications.

asR → ∞, if the largest eigenvalue of the noise is negligible
against the largest eigenvalue of the signal, i.e.

lim
R→∞

max
m

m†ZZ
†
m

m†m

max
m

m†HXX
†
H

†
m

m†m

= 0. (6)

Note that the limitR → ∞ implicitly implies C → ∞, since
C ≥ R. Therefore, we assume in the sequel thatR and C
scale in the same way.

The limit condition (6) is not hard to fulfill. In fact, it
holds true for independent constant variance entries inZ,
H, and X. To see this note that the largest eigenvalue
of ZZ

† scales linear withR, as the number of entries
in Z ∈ CR×C grows quadratic, but the number of non-
zero eigenvalues grows linear. At the same time the largest
eigenvalue ofHXX

†
H

† grows quadratic withR, as the
number of entries inH ∈ C

R×T grows linear, the number
of entries inX ∈ CT×C grows linear, but the number of
non-zero eigenvalues isT and thus constant.

B. Detailed Algorithm

Having found an algorithm for a single transmitter and white
noise, we now apply this idea to multiple transmit antennas
and analyze its performance in colored noise. Consider the
singular value decomposition

Y = UΣV
† (7)

with unitary matricesU ∈ C
R×R andV ∈ C

C×C and the
R × C diagonal matrixΣ with diagonal entriesσ1 ≥ σ2 ≥
· · · ≥ σR sorted in non-increasing order. As shown in [10],
the columns ofU are highly correlated with the columns of
H. Based on this observation [10], proposes two algorithms
for improved nonlinear estimation of the channel matrixH .

In the sequel, we propose a strategy different from the one
in [10]. We decompose the matrix of left singular vectors

U = [S|N ] (8)

into the signal space basisS ∈ CR×T and the null space basis
N ∈ CR×(R−T ). Now, we project the received signal onto the
signal subspace and get

Ỹ = S
†
Y . (9)

The null space basisN is not required in the sequel. In
fact, there is no need to compute the full singular value
decomposition (7). Only the basis of the signal subspace
S is needed and there are efficient algorithms available to
exclusively calculateS.

Consider now the massive MIMO case, i.e.R ≫ T : The
T -dimensional signal subspace is much smaller than theR-
dimensional full space, which the noise lives in. White noise
is evenly distributed in all dimensions of the full space. Thus,
the influence of white noise onto the signal subspace becomes
negligible asR → ∞. In other words: The considerations for
the largest eigenvalue in (6) and its corresponding eigenvector
in (5) are equally valid for theT largest eigenvalues and their
corresponding eigenvectors, as long asT is finite.
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Using the algorithm above, we can achieve an array gain
even without the need for estimating the channel coefficients.
In fact, channel estimation can be delayed until the received
signal has been projected onto the signal subspace and the
dominant part of the white noise has already been suppressed.

In order to save complexity it is sensible not to estimate
the channel matrixH , at all. Instead, we directly consider the
subspace channel

Ỹ = H̃X + Z̃ (10)

and estimate the much smaller subspace channel matrixH̃ ∈
CT×T . Although the data dependent projection (9) implies that
the noiseZ̃ = S

†
Z ∈ CT×C is not independent from the data

X, neglecting this dependence is an admissible approximation
that becomes exact due to (5), as the number of receive
antennasR grows large.

In addition to white noise, there is co-channel interference
from L neighboring cells. For sake of notational convenience,
we assume that the number of transmit antennas is identical
in all cells and equal toT . The interference from neighboring
cells is anything but white. It is the more colored, the smaller
the ratio

α =
T

R
(11)

which will be calledload in the following. AnyR-dimensional
channel vector is orthogonal to any other channel vector in
the limit R → ∞. This holds regardless whether the two
channel vectors correspond to transmitters in the same cell
or in different cells. In the limit of zero load, i.e.α → 0,
we have an even stronger result: the subspace spanned by the
co-channel interference is orthogonal to the signal subspace.2

That means that in the limitR/T → ∞, the (L + 1)T
largest singular values of the received signal matrixY become
identical to the Euclidean norms of the(L + 1)T channel
vectors. If we can identify which singular values correspond
to channel vectors from inside the cell as opposed to channel
vectors from transmitters in neighboring cells, we can remove
the interference from neighboring cells by subspace projection.

C. Identifying Signals of Interest

Note that forR → ∞, the system has infinite diversity
and the effect of short-term fading (Rayleigh fading) vanishes.
Thus, the norm of a channel vector is solely determined by
path loss and long-term fading (shadowing). In a cellular
system with perfect received power control and a power-
controlled handoff strategy, the norm of channel vectors from
neighboring cells can never be greater than the norm of
channel vectors from the cell of interest. We conclude that
the identification of singular values belonging to transmitters
within the cell of interest is possible by means of ordering
them by magnitude in the limit(R,α) → (∞, 0), i.e. the
number of receive antennas grows large while the number of
transmit antennas does not.

2Note that the pairwise orthogonality of channel vectors holds for R →

∞, in general, and does not requireα → 0. However, the orthogonality of
subspaces requiresα → 0 in addition toR → ∞, as the accumulation of
T = αR vanishing pairwise correlations is not vanishing, in general.

For practical systems with small, but nonzero load, i.e.0 <
α ≪ 1, a certain power margin is required between signals of
interest and interfering signals. For most interfering users, such
a power margin is created for free by shadowing and path loss.
However, there might be few users close to cell boundaries
who lack such a power margin. As a kind of countermeasure, a
power margin has to be engineered for them. There are various
ways to do so. In the sequel, we will exemplarily list two such
potential methods.

One way to create an additional power margin is a smart
choice of frequency or time re-use patterns. However, this
requires coordination among cells. Another way to create an
additional power margin is to equip each user with at least
two transmit antennas. Then, the few users who suffer from
insufficient power margin can form beams that favor one of the
base stations or access points over others3. This will noticeable
increase their power margins. The majority of users will not
need to employ such methods and can use the two antennas
for spatial multiplexing.

IV. PERFORMANCEANALYSIS

We have demonstrated above, that the proposed algorithm
works in principle in massive MIMO systems as the number
of receive antennas grows much larger than the product of
transmit antennas and neighboring cells. In practical systems,
the number of transmit and receive antennas is finite and the
loadα can be made very small but not arbitrarily small as in
the classical massive MIMO setting. Then, in real systems
the asymptotic properties are only approximated. A useful
and insightful approach to understand the behavior of a real
network consists in assuming that bothT andR grow large
with a fixed ratioα. This setting can be studied effectively
by RMT. In this section, we will adopt results from RMT to
answer the question, how large is large enough in practice.

We decompose the impairment process

Z = W +H IXI (12)

into white noiseW and interference fromL neighboring
cells where interfering dataXI ∈ C

LT×R is transmitted in
neighboring cells and received in the cell of interest through
the channelHI ∈ CR×LT . Combining (1) and (12), we get

Y = HX +H IXI +W . (13)

Let the entries of the data signalX be iid with zero mean
and varianceP . Let the entries of the channel matrixH
be also iid with zero mean, but have unit variance. Let the
entries of the matrix of interfering signalsXI be iid with zero
mean and varianceP and let the entries of thekth column
of the matrix of interfering channelsH I be iid with zero
mean and varianceIk/P such that the ratioIk/P accounts
for the relative attenuation between out-of-cell userk and the
intracell users. Let the empirical distribution ofIk converge
to a limit distribution asLT → ∞ which is denoted byPI(·).
Furthermore, we assume that the elements of the noiseW are

3Note that such beam forming does not require channel state information.
One can keep on forming random beams until a sufficient power margin is
reached.
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Fig. 1. Asymptotic eigenvalue distribution of the matrixY Y
†/R in solid

red line forα = 1
100

, κ = 10
3
, P = −10 dB, Ik = P

4
∀k, W = 0 dB. The

asymptotic eigenvalue distribution is compared to the empirical eigenvalue
distribution forT = 3, R = 300, andC = 1000 given by the histogram in
blue.

independent and identically distributed (iid) with zero-mean
and varianceW . Finally, we define the normalized coherence
time

κ =
C

R
. (14)

Let us denote the asymptotic eigenvalue distribution ofY Y
†

as PY Y †(x). In Appendix A, we show that this asymptotic
eigenvalue distribution obeys

sGY Y † (s) + 1 =

− PTCα (sGY Y † (s) + 1− κ)GY Y †(s)

ακ− PTC (sGY Y † (s) + 1− κ)GY Y †(s)

−
∫

xLTCα (sGY Y † (s) + 1− κ)GY Y †(s)dPI(x)

ακ− xTC (sGY Y † (s) + 1− κ)GY Y †(s)

− WC (sGY Y † (s) + 1− κ)GY Y †(s)

κ
(15)

with

GY Y †(s) =

∫
dPY Y †(x)

x− s
(16)

denoting its Stieltjes transform. By means of the Stieltjes
inversion formula

p(x) =
1

π
lim

y→0+
ℑG(x+ jy) (17)

the asymptotic eigenvalue distribution is obtained.
In Figure 1, the solid line in red shows the asymptotic

eigenvalue distribution ofY Y
†/R obtained by (15)-(17). The

histogram in blue shows the empirical eigenvalue distribution
of Y Y

†/R for T = 3, R = 300, andC = 1000. We observe
that the distribution is decomposed into three disjunct bulks:
A noise bulk to the far left, a bulk of the signal of interest to
the right, and an interference bulk in between. The fact that
the bulks do not overlap enables us to blindly separate the
signals of interest from interference and noise as discussed in
Section III-C.

The three bulks are not disjunct in general, but only for
certain values of the involved system parameters. It is there-
fore of utmost importance for practical design of blind pilot

decontamination to know which system parameters do lead
to bulk separation. The extremely good match between the
asymptotic distribution and the empirical distribution for finite
matrices corroborate the usefulness to study the support ofthe
asymptotic eigenvalue distribution ofY Y

† and the asymptotic
conditions of bulk separability.

A. Unilateral Approximation

The general result for the asymptotic eigenvalue distribution
(15) is implicit and not very intuitive. In the following, we
develop an approximate analysis for small, but not vanishing
loadsα. It is based upon the separate calculation of each bulk
and subsequent rescaling of the bulks due to pairwise bulk-to-
bulk repulsion. We will see that it leads to explicit and intuitive
design guidelines.

In the large antenna limitR = C/κ → ∞, the singular
values ofW /

√
CW follow the Marchenko-Pastur law, i.e.

pW (x) =

√
4
κ − (x − 1− 1

κ)
2

πx
(18)

for 1/
√
κ−1 < x < 1/

√
κ+1. In the worst case, theT largest

singular values of the noise affect the signal of interest. The
power of white noise being present iñY is thus at most

TCW

(
1 +

1√
κ

)2

. (19)

The total power of the signal of interest at the receiver is
TRCP and the signal-to-noise ratio iñY is lower bounded
by

SNR ≥ P

W

R
(
1 + 1√

κ

)2 . (20)

The signal-to-noise ratio scales linearly with the number of
receive antennasR and can be made as large as desired by
adding more and more receive antennas. The influence of the
coherence timeC ≥ R onto the signal-to-noise ratio is at most
a factor of 4 and plays only a minor role.

In addition to white noise, there is co-channel interference
from neighboring cells. The co-channel interference is not
white but, like the signal of interest, highly concentratedin
certain subspaces. The empirical distribution of the squared
singular values of the normalized signal of interest, i.e.
HX/

√
TR, is shown in Appendix B to converge, asR → ∞,

to a limit distribution which forα ≪ 1 is supported in the
interval

P =

[
κP

α
− 2P

√
κ2 + κ

α
;
κP

α
+ 2P

√
κ2 + κ

α

]
. (21)

The empirical distribution of the squared singular values of
the normalized co-channel interference, i.e.H IXI/

√
TR, also

converges to a limit distribution. Forα ≪ 1, it is supported
in the interval

I =

[
κI

α
− 2I

√
L
κ2 + κ

α
;
κI

α
+ 2I

√
L
κ2 + κ

α

]
(22)

for Ik = I ∀k. We remark that the conditionIk = I ∀k
is unrealistic, in practice. However, the general case is not
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tractable by analytic means. We note, however, that setting
all interference powers to the maximum interference power
among the users is a worst case scenario which is covered by
(22).

When separately calculating the eigenvalue spectra of the
signal-of-interest, the interference and the noise, the accuracy
of the results suffers from the eigenvalues in different bulks
repelling each other. In the following, we will correct for this
effect up to first order. We decompose one bulk of eigenvalues
into single eigenvalues. Then, we introduce correction factors
that account for the scaling of one of the single eigenvalues
due to the presence of one other bulk of eigenvalues. We will
then approximate the influence of several other bulks, e.g.
noise bulk and interference bulk, by multiplying the correction
factors. This procedure is an approximation, since we neglect
the fact that also the scaled bulk of eigenvalues repels the
scaling bulk and that the two scaling bulks repel each other.4

The presence of additive noise scales the eigenvalues of
both the signal of interest and the interference. As shown in
Appendix C-A, the scale factors are given forR ≫ T by

nP =

(
1 +

W

PR

)(
1 +

W

PC

)
(23)

and

nI =

(
1 +

W

IR

)(
1 +

W

IC

)
, (24)

respectively. Note that the two scale factors converge to 1 in
the large system limit irrespective of the loadα, if the noise
powerW does not scale with the system size.

The presence of interference scales the eigenvalues of the
signal of interest and vice versa. As shown in Appendix C-B,
the scale factors for non-overlapping bulks are given forR ≫
T by

iP =

(
1 +

Lα/κ
P
I − 1

)(
1 +

Lα
P
I − 1

)
(25)

and

iI =

(
1 +

α/κ
I
P − 1

)(
1 +

α
I
P − 1

)
, (26)

respectively. Note, however, that these scale factors are only
accurate ifP ≫ I. This limits their usefulness in practice.

If the two supporting intervals do not overlap, i.e.

nPiPP ∩ nIiII = ∅ (27)

or equivalently

P

I
>

nIiI
nPiP

·
1 + 2

√
αL
(
1 + 1

κ

)

1− 2
√
α
(
1 + 1

κ

) , (28)

4To better understand this procedure consider a system with sun (noise
bulk), earth (interference bulk) and moon (bulk of signal ofinterest) which
mutually affect each other by gravity. We decompose the mooninto single
atoms. These atoms are too small to affect the path of the earth. So we can
calculate the position of the moon atoms without accountingfor the force
the moon enacts onto the earth. Then, we apply the same procedure for the
interaction between moon atoms and the sun and superimpose the results
of the moon-earth and moon-sun interactions. The fact, thatsun and earth
influence each other is hereby ignored.

the singular value distribution of the sum of the signal of
interest and the interference converges, asR → ∞, to a limit
distribution that is composed of two separate non-overlapping
bulks [12]. Note that in the limitα → 0, the signal bulk always
separates from the interference bulk as long asP/I > 1.
Therefore, the signal subspace and the interference subspace
can be identified blindly. The interference can be nulled out
and pilot contamination doesnot happen.

B. Bilateral Approximation at High SNR

The previous approximation was intuitive, but its accuracy
is limited. In this subsection, we use perturbation theory for a
more precise approximation for small loadα ≪ 1 and Ik =
I, where we account for the mutual interaction between the
interference bulk and the bulk of the signal of interest.

Let us denote byPW andIW the eigenvalue bulks corre-
sponding to the signal subspace and the interference subspaces,
respectively, when the white noise variance isW . Additionally,
let us assume thatP > I as in systems of practical interest.
Finally, let us define

r =
α

PTC
=

1

PRC
(29)

t =
α

ITC
=

1

IRC
(30)

ζ = WC. (31)

The following results are shown in Appendix D: In the high
SNR regime, i.e. forW = 0, the inverse of the Stieltjes trans-
form is well approximated by the rational function (32) shown
on top of the next page. The extremes of the functions(1)(G)
are the solutionsG1, G2, G3, G4 to the quartic equation (33)
shown on top of the next page. IfGi, for i = 1, 2, 3, 4, are
all real with G1 < G2 < G3 < G4 and s(1)(G2) < s(1)(G3)
then an approximation ofP0 andI0 is given by

P0 ≈ [s(1)(G3), s
(1)(G4)] (34)

I0 ≈ [s(1)(G1), s
(1)(G2)]

and the two intervals [s(1)(G3), s
(1)(G4)] and

[s(1)(G1), s
(1)(G2)] are disjoint.

Different approximations ofP0 andI0 can be obtained by
approximatings(G) by the function

s
(2)
0 (G) =

{
φ0(G) + ρ0(G), G ∈ [G∞

− , G∞
+ ]

φ0(G)− ρ0(G), elsewhere.
(35)

whereG∞
− andG∞

+ are the instances of

G∞ =
κ(r + t) + α(t+ Lr)

−2κ− 4α− 4Lα
±

√
κ2(r − t)2 + 2ακ(Lr2 + t2 − 3rt− 3Ltr) + α2(t+ Lr)2

−2κ− 4α− 4Lα
(36)

with minus and plus sign, respectively,

φ0(G) =
[
(2α(L+ 1)(κ− 1) + κ(κ− 4))G2

+ κ(α(t+ Lr) + (κ− 2)(t+ r))G + κ2rt
]

/2G2 ((2κ+ (L+ 1)α)G + κ(t+ r)), (37)
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s(1)(G) =
((L + 1)(κ− 2)α− κ)G2 + ((Lr + t)(κ− 1)α− κ(r + t))G− κrt

G((κ+ 2(L+ 1)α)G2 + ((Lr + t)α+ κ(r + t))G+ κrt)
. (32)

(2(L+ 1)2(κ− 2)α2 + (L+ 1)(κ− 4)κα− κ2)G4

+ (2((2(Lr + t))(L+ 1)(κ− 1)α2 + ((Lr + t)(κ− 1)− (2(L+ 1))(t+ r))ακ − (t+ r)κ2))G3

+ ((Lr + t)2(κ− 1)α2 + (t2 + Lr2)(κ− 2)κα− (6(L+ 1))rtκα− ((t+ r)2 + 2rt)κ2)G2

− 2rtκ((Lr + t)α+ (t+ r)κ)G − κ2r2t2 = 0 (33)

ρ0(G) =κ
[
κ(κ− 4α(L+ 1))G4 + 2κ(κ(t+ r)

− 3α(Lr + t))G3 + ((t2 + 4rt+ r2)κ2

− 2ακ(Lr − t)(r − t) + α2(t+ Lr)2)G2

2κrt(κ(t+ r) + α(t+ Lr))G+ κ2t2r2
]1/2

/
(
2G2 ((2κ+ (L+ 1)α)G + κ(t+ r))

)
. (38)

This approximation of the inverse Stieltjes transform is derived
in Appendix D. The extremes of this function cannot be
derived in close form. Then, we approximate them by the
zeros ofρ0(G), G(2)

1 , G
(2)
2 , G

(2)
3 , andG(2)

4 . If G(2)
1 < G

(2)
2 <

G
(2)
3 < G

(2)
4 and s

(2)
0 (G

(2)
2 ) < s

(2)
0 (G

(2)
3 ), we obtain the

approximations

P0 ≈ [s
(2)
0 (G

(2)
3 ), s

(2)
0 (G

(2)
4 )] = [φ0(G

(2)
3 ), φ0(G

(2)
4 )] (39)

I0 ≈ [s
(2)
0 (G

(2)
1 ), s

(2)
0 (G

(2)
2 )] = [φ0(G

(2)
1 ), φ0(G

(2)
2 )].

which are motivated in Appendix D. The approximated inter-
vals in (34) and (39) obtained by application of perturbation
theory are a very good approximation ofP0 andI0 as shown
in Figure 2. The approximation obtained by (39) contains the
support of the asymptotic eigenvalue distribution.

As well known, the quartic equations to determineGi and
G

(2)
i , i = 1, . . . 4, admit solutions in closed form. However,

they are not insightful and handy because of their complexity.
Thus, in the following, we propose looser approximations of
the intervalsP0 and I0 yielding handier conditions on bulk
separation. Further approximations yield

P0 ⊂
[
s
(2)
P (GPℓ

), s
(2)
P (GPu

)
]

(40)

where

s
(2)
P (x) =

2ακ(L+ 1)− 2α(L+ 1) + 2κ(1− κ)

2((1 + L)α− κ)x+ 2κ(t− 2r)

+
κ(κ(t− 5r) + α(t+ Lr) + 4r − 2t)x+ κ2r(t− 3r)

2x2(((1 + L)α− κ)x+ κ(t− 2r))
(41)

andGPℓ
andGPu

equal the instances of (42), shown on top
of the next page, which is obtained by selecting the plus and
minus sign, respectively. Similarly, for the bulk associated to
the interference subspace,

I0 ⊂
[
s
(2)
I (GIℓ

), s
(2)
I (GIu

)
]

(43)
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(2)
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(2)
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[s
(2)
0 (G

(2)
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(2)
3 ), s
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Fig. 2. Bulk-support approximation of the asymptotic eigenvalue dis-
tribution of the matrix Y Y

†/R by (34) and (39) for α = 1
100

,

κ = 10
3
, P = −10 dB, Ik = P

4
∀k. A further approximation

[ℜ(s
(2)
0 (G1)), ℜ(s

(2)
0 (G2))]

⋃
[ℜ(s

(2)
0 (G3)), ℜ(s

(2)
0 (G4))] is also shown.

The histogram in blue is the empirical eigenvalue distribution for T = 3,
R = 300, and C = 1000 while the red line is the asymptotic eigenvalue
distribution.

where

s
(2)
I (x) =

2ακ(L+ 1)− 2κ(κ− 1)− 2α(L + 1)

2((α(L + 1)− κ)x− κ(2t− r))

+
κ((4− 5κ)t+ (κ− 2)r + α(t+ Lr))x + κ2t(r − 3t)

2x2((α(L + 1)− κ)x− κ(2t− r))
(44)

and GIℓ
and GIu

are obtained by selecting the instance of
(45), shown on top of the next page, with plus and minus sign,
respectively. The derivation of the proposed approximations
for P0 andI0 is detailed in Appendix D.

By enforcingGIu
< GPℓ

we obtain a bound on the ratio
α
κ as a decreasing function of the ratioβ = r

t = I
P

α

κ
≤ (1 − β)2(Lβ2 + 3(L+ 1)β + 1− 2(1 + β)

√
3Lβ)

(Lβ2 − 1)(Lβ2 + 6(L− 1)β − 1) + (9L2 − 2L+ 9)β2
.

(46)
Figure 3 shows the region of parametersα

κ and β where
the bulks of the eigenvalues for the signals of interest and the
one for interference do not overlap for various values ofL. As
expected, the separability region shrinks when the interference
from adjacent cells increases, i.e.,L increases.
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G
(2)
P = −κr(t− r)

κ(t− r) + α(t+ (L− 2)r)± 2
√
ακ(t− r)2 − α2r(t + (L− 1)r)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)
(42)

GI = −κt(t− r)
κ(t − r) + α((2L − 1)t− Lr)± 2

√
ακL(t− r)2 + α2Lt((L− 1)t− Lr)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)
(45)
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Fig. 3. Separability region obtained by (46) forL = 2, 4, and 7.

C. Bilateral Approximation for General SNR

An approach similar to the one proposed for the high SNR
regime in Appendix D can be applied forW > 0 to determine
approximated supports of the bulksPW andIW . We propose
the conclusive results in the following while the derivations
are detailed in Appendix E. Then,

PW ⊂
[
ς
(2)
P (ΓPℓ

), ς
(2)
P (ΓPu

)
]

(47)

whereς(2)P (x) is defined in (48) on the top of next page and
ΓPℓ

andΓPu
equal the instances of (49), shown also on top

of the next page, which are obtained by selecting the plus and
minus sign, respectively. Similarly, for the bulk associated to
the interference subspace,

IW ⊂
[
ς
(2)
I (ΓIℓ

), ς
(2)
I (ΓIu

)
]

(50)

whereς(2)I (x) is defined in (51) on the top of the next page
and ΓIℓ

and ΓIu
are obtained by selecting the instance of

(52), shown also on the top of the next page, with plus and
minus sign, respectively.

Interestingly, the separability condition obtained by enforc-
ing ΓIu

< ΓPℓ
yields to condition (46) as in the case of

absence of noise. This is not as surprising as it may look at
first sight, as it was already observed from (23) and (24) that
the noise does not affect the support in the large system limit.

The tightness of the proposed approximation is assessed
by numerical simulations. In Figure 4 we consider the same
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(2)
I

(ΓIu)]

Fig. 4. Eigenvalue pdf of a network withT = 3, L = 2, R = 300, and
W = 0 with approximation of its support boundaries

communication system as in Figure 1 but additionally impaired
by Gaussian noise with variance equal to 0dB. Beside the
histogram of the eigenvalues for a finite systems and the
asymptotic eigenvalue pdf drawn in solid line, we show the
intervals

[
ς
(2)
I (ΓIℓ

), ς
(2)
I (ΓIu

)
]
, and

[
ς
(2)
P (ΓPℓ

), ς
(2)
P (ΓPu

)
]
.

The vertical lines indicate the approximation of the boundaries
of the asymptotic pdf obtained by perturbation analysis. The
approximations based on the second order Taylor expansion
ς
(2)
P (x) and ς(2)I (x) include the actual asymptotic support.

V. NUMERICAL RESULTS

In this section, we provide simulation results for the un-
coded bit error rate (BER) and compare the proposed SVD-
based algorithm, with the conventional linear channel and
data estimation scheme considered in [3]. For all cases we
set P/W = 0.1 (SNR is −10 dB), that is, assume that
the system operates in the low SNR region. Identical set of
orthogonal pilot sequences of lengthT is adopted by all the
access points to facilitate channel estimation. We consider first
the effect of increasing the number of receive antennas while
the rest of the parameters are fixed toT = 3, L = 2, and
C = 1000. As may be observed from Fig. 5, the proposed
algorithm (SVD) widely outperforms the receiver based on
linear channel estimation in [3] (conventional). Furthermore,
while the BER of the conventional receiver has an evident error
floor, the BER performance of the proposed receiver improves
unboundedly with a slope that increases as the ratioI/P
decreases. This trend confirms that the pilot contamination
problem is overcome, at least in principle.

The effect of relative interference strengthI/P and number
of length-T pilot sequencesτ is plotted in Fig. 6. Forτ = 1
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ς
(2)
P (x) =

ακ(L + 1)− α(L + 1) + κ(1− κ) + ζ(κ− 1)(t− 2r)

((1 + L)α− κ+ ζ(t − 2r))x+ κ(t− 2r)

+
κ

2x2

(κ(t− 5r) + α(t+ Lr) + 4r − 2t+ ζr(t − 3r))x + κr(t− 3r)

((1 + L)α− κ+ ζ(t− 2r))x + κ(t− 2r)
(48)

Γ
(2)
P =

−κr(t− r)
[
ζr(t − r) + κ(t− r) + α(t+ (L− 2)r)± 2

√
ακ(t− r)2 − α2r(t + (L− 1)r)

]

(r(t − r)ζ + (α− κ)t+ (αL + κ)r)2 + 4rζ((α + κ)r2 − (α+ 2κ)tr + κt2) + 4ακLr(t− r)
(49)

ς
(2)
I (x) =

ακ(L + 1)− κ(κ− 1)− α(L + 1)− (κ− 1)(2t− r)ζ

(α(L + 1)− κ− ζ(2t− r))x − κ(2t− r)

+
κ((4 − 5κ)t+ (κ− 2)r + α(t+ Lr)− κζt(3t− r))x + κ2t(r − 3t)

2x2((α(L + 1)− κ− ζ(2t− r))x − κ(2t− r))
(51)

ΓI =
−κt(t− r)

[
κ(t− r) + α(2L− 1)t− αLr + t(t− r)ζ ± 2

√
ακL(t− r)2 + α2Lt((L− 1)t− Lr)

]

(αt+ Lαr − tκ+ rκ+ t(t− r)ζ)2 + 4(t− r)(t[(κ + αL− α)t− (αL + κ)r]ζ + ακLr)
(52)
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Fig. 5. BER vs. number of receive antennas withT = 3, C = 1000, L = 2,
andP/W = 0.1 (SNR is−10 dB).

the same orthogonal pilots are used for all access points. In
the caseτ = 5, 10, random pilot sequences and zero-forcing
channel estimation is employed. The RMT thresholds for the
given parameters areI/P = 0.61 andI/P = 0.78 according
to (28) and (46), respectively. The proposed algorithm achieves
significant performance gains below the RMT thresholds when
compared to linear channel estimation. For very strong inter-
ference, however, the conventional receiver outperforms the
subspace approach. The reason is because we always select
only theT strongest eigenvectors for projection, but for finite
system sizes and close to the RMT threshold this is suboptimal
and we lose a large amount of useful signal while projecting
towards interference. This effect can be mitigated by selecting
more thanT eigenvectors for subspace projection whenI/P
is expected to be close to the threshold predicted by RMT.
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Fig. 6. BER vs. relative interference strength withT = 3, R = 300,
C = 1000, L = 2, and P/W = 0.1 (SNR is −10 dB). The number of
length-T pilot blocks isτ = 1, 5, 10.

VI. SUMMARY AND CONCLUSIONS

We proposed a practical algorithm with polynomial com-
plexity to avoid pilot contamination in cellular systems with
power controlled handoff. The dominant complexity of this
algorithm is a singular value decomposition of the received
signal block. The algorithm was analyzed by means of random
matrix theory. The analysis shows that pilot contaminationis
not a fundamental effect, but is overcome by means of the
proposed algorithm.

This paper has focussed solely on the reverse link channel.
For the forward link channel, one can exploit channel reci-
procity in time-division duplex systems. Similar to the reverse
link channel, knowledge of the full channel matrix is not
required. Basic considerations of linear algebra show thatit
is sufficient to know the subspace which the channel vectors
of interest span in order to solely require accurate channel
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estimates for the projected channel (10).

APPENDIX A
EIGENVALUE DISTRIBUTION

Consider the random matrix

D =

K∑

k=−1

akBkCk (53)

with ak ∈ R, Bk ∈ Cn×mk andCk ∈ Cmk×n being random
matrices with iid. zero-mean entries with variance1/mk and
1/n, respectively. First, we will derive the asymptotic eigen-
value distribution ofDD

† in terms of its Stieltjes transform
GDD†(s). Let Dk = BkCk. From [13, Eq. (31)], we have

−s2G3
DkD

†

k

(s)− s(ρk − 1)G2
DkD

†

k

(s)+ sρkGDkD
†

k

(s) = ρk.

(54)
with

ρk =
mk

n
(55)

With [12, Lemma 1], we get

−sG̃3
Dk

(s)− (ρk − 1)G̃2
Dk

(s) + sρkG̃Dk
(s) = ρk (56)

with G̃Dk
(s) denoting the Stieltjes transform of the sym-

metrized singular value distribution ofDk. The definition of
the R-transform [14] gives

R̃Dk
(w) =

ρkw

ρk − w2
(57)

and additive free convolution implies

R̃D(w) =

K∑

k=−1

a2kρkw

ρk − a2kw
2
. (58)

It follows straightforwardly from the definition of the R-
transform that

1

G̃D(s)
= −s+ R̃D

(
−G̃D(s)

)
(59)

and with [12, Lemma 1] that

1

GDD†(s)
= −s+

√
s R̃D

(
−√

sGDD†(s)
)

(60)

= −s−
K∑

k=−1

a2kρksGDD†(s)

ρk − a2ksG
2
DD†(s)

. (61)

Next we consider the decomposition

D =

[
E

F

]
(62)

with E ∈ Cβn×n. From [15, Theorem 14.10], we have

REE†(w) = RDD†(βw). (63)

In the Stieltjes domain, this R-transform relation translates into

βGEE†(s) = GDD†

(
s+

β − 1

βGEE†(s)

)
. (64)

Thus, we find with (61)

1

βGEE† (s)
=− s− β − 1

βGEE†(s)

−
K∑

k=−1

a2kρk

(
s+ β−1

βG
EE† (s)

)
βGEE† (s)

ρk − a2k

(
s+ β−1

βG
EE† (s)

)
β2G2

EE† (s)

(65)

and

sGEE† (s) = −1−
K∑

k=−1

a2kρk

(
s+ β−1

βG
EE†(s)

)
βG2

EE† (s)

ρk − a2k

(
s+ β−1

βG
EE†(s)

)
β2G2

EE† (s)
.

(66)

Now, we consider the matrixY in (13) as a special case of
E. This implies

K = LT (67)

β =
R

C
=

1

κ
(68)

ρ−1 =
T

C
=

α

κ
(69)

a2−1 = PTC (70)

ρ0 → ∞ (71)

a20 = WC (72)

ρk =
1

C
∀k > 0 (73)

a2k = IkC ∀k > 0 (74)

and (15) is obtained in the limitK → ∞. Note that the entries
of B0C0 become iid. asρ0 → ∞.

APPENDIX B
INTERVAL BOUNDARIES

It is shown in [13, Eq. (31)], that the asymptotic eigenvalue
distribution ofX†

H
†
HX/TR has a Stieltjes transformG(s)

fulfilling

s2κ2G3(s) + sκ(α+ 1− 2κ)G2(s)+

(sα+ (κ− 1)(κ− α))G(s) − α = 0. (75)

The support of the distribution is given by the interval[x1;x2]
wherex1 andx2 are the two largest nonnegative solutions to
the equation [13, Eq. (37)]

4x3 −
(
10κ+ 10 +

10κ

α
− α− κ2

α
− 1

α

)
x2+

2

(
4κ2 + 4 +

4κ2

α2
− 2κ− 2κ2

α
− 2κ

α
− κ3

α
− κ3

α2
− κα

− κ

α2
− α− 1

α

)
x+ α(κ− 1)2

(κ
α
− 1
)2(

1− 1

α

)2

= 0.

(76)

For α ≪ 1, this can be approximated by

4x3 −
(
10κ− κ2 − 1

) x2

α
+ 2

(
4κ2 − κ3 − κ− 8κα

−8κ2α
) x

α2
+

(κ− 1)2

α3

(
κ2 − 4κα− 4κ2α

)
= 0. (77)
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It can easily be verified that (77) has the following three roots:

x1 =
κ

α
− 2

√
κ2 + κ

α
(78)

x2 =
κ

α
+ 2

√
κ2 + κ

α
(79)

x3 = − (κ− 1)2

4α
< 0. (80)

This completes the derivation.

APPENDIX C
EIGENVALUE REPULSION

In order to find the support of the asymptotic eigenvalue
distributions we follow [16, Eq. (48)]. There it is shown that
the boundaries of the support of the asymptotic eigenvalue dis-
tribution are extrema of the inverse of the Stieltjes transform.
For a particular example different from ours, the procedureis
explained in greater detail in [17, Chapter 7].

A. Noise Correction Factor

First, we address the eigenvalue shift due to presence of
white noise.

Consider the random matrix

D =
(√

PAB +
√
WC

)(√
PAB +

√
WC

)†
(81)

whereA ∈ CR×αR, B ∈ CαR×κR, andC ∈ CαR×κR with
iid. zero-mean unit-variance entries. We have from (15) that
the limiting Stieltjes transform ofDD

† obeys

sαG+ 1 +
α(sαG+ 1− κ)G

rκ− (sαG+ 1− κ)G
+

ζ(sαG+ 1− κ)G

κ
= 0

(82)
with r and ζ defined in (29) and (31), respectively. Solving
for sα, we find

sα =
α+ rκ

G − 2− 2ζG
κ + ζr + κ+ 2ζG

2G
κ (ζG+ κ)

±

√
α(α− 2κ+ 2rκ

G + 2ζr) + (κ+ ζr + rκ
G )2

2G
κ (ζG+ κ)

(83)

where only the negative root is sensible since
1
R trace(DD)† = limG→0 sα + 1

G must exist. Forα = 0, we
get

s0 =
−κ− ζG + κζG

G(ζG + κ)
(84)

=
ζκ

κ+ ζG
− 1

G
. (85)

At the interval boundaries,

∂sα
∂G

=
Z(G)

N(G)
(86)

with obvious definition of the enumeratorZ(G) and the
denominatorN(G), must vanish. We find that

lim
α→0

Z(G) = 0 (87)

has the following four solutions

G1 =
κ(1 +

√
κ)

ζ(κ− 1)
(88)

G2 =
κ(1−√

κ)

ζ(κ− 1)
(89)

G3 = 0 (90)

G4 =
−rκ

κ+ ζr
. (91)

Plugging into (85) gives

s0(G1) =
ζ(1 −√

κ)2

κ
(92)

s0(G2) =
ζ(1 +

√
κ)2

κ
(93)

s0(G3) = −∞ (94)

s0(G4) =

(
ζ +

1

r

)(
1 +

rζ

κ

)
. (95)

Clearly, s0(G1) ands0(G2) are the left and right boundaries
of the noise bulk. The solutions0(G3) is not sensible. The
point s0(G4) marks the position of the signal of interest.

Without noise, i.e.ζ = 0, the signal of interest would
be positioned at1/r. Thus, the presence of noise scales the
signals by a factor of

s0(G4)

s0(G4)
∣∣
ζ=0

= (1 + rζ)

(
1 +

rζ

κ

)
. (96)

B. Interference Correction Factor

Next, we address the eigenvalue shift due to presence of
interference.

Consider the random matrix

E =
(√

PAB +
√
ICD

)(√
PAB +

√
ICD

)†
(97)

whereA ∈ CR×αR, B ∈ CαR×κR, C ∈ CR×βR, andD ∈
CβR×κR with iid. zero-mean unit-variance entries. We have
from (15) that the limiting Stieltjes transform ofEE

† obeys

sαG+1+
α(sαG+ 1− κ)G

rκ− (sαG+ 1− κ)G
+

β(sαG+ 1− κ)G

tκ− (sαG+ 1− κ)G
= 0

(98)
with r andt defined in (29) and (30), respectively.

Solving for sα leads to a cubic equation and is a tedious
task. Nevertheless, Maple 16 can do it symbolically. Forα =
0, we get

s0 =
Gκ− 2G+Gβ + tκ

2G2

−
√
β2G2 + 2βGtκ− 2βG2κ+ κ2(G+ t)2

2G2
. (99)

At the interval boundaries,

∂sα
∂G

=
Z(G)

N(G)
(100)

with obvious definition of the enumeratorZ(G) and the
denominatorN(G), must vanish. Forα → 0, one of the bulks
will disappear. Thus,N(G) andZ(G) will have a common
zero in the limitα → 0. This common zero corresponds to
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the position of the vanishing bulk. Instead of inspecting the
zeros ofZ(G) when searching for the interval boundary of
the vanishing bulk, we can also look at the zeros ofN(G)5.
We find that

lim
α→0

N(G) = 0 (101)

has the following four solutions

G1 =
−κt

(
√
κ+

√
β)2

(102)

G2 =
−κt

(
√
κ−√

β)2
(103)

G3 = 0 (104)

G4 =
rκ(t− r)

κ(r − t)− βr
. (105)

Obviously,G4 is the desired zero, since the other zeros do not
depend onr. Plugging into (99) gives6

s0(G4) =
(t− r + βr

κ )(t− r + βr)

r(t − r)2
. (106)

Thus, the presence of interference scales the signal of interest
by factor of

s0(G4)

s0(G4)
∣∣
β=0

=

(
1 +

β/κ

t/r − 1

)(
1 +

β

t/r − 1

)
. (107)

The scale factor of the interference is obtained by exchanging
the role of signal and interference.

APPENDIX D
THE NOISELESS SYSTEM

In this section we analyze the behaviour of the noiseless
system when the number of interfering signals and signals
of interest are proportional and very small compared to the
number of receive antennas but not vanishing, i.e.α → 0.
We still consider the random matrix in (97) but both the
dimensions of the interference and signal subspace grow
proportionally, i.e.,β = αL. Under these assumptions, (98)
can be written as

αG(sG + 1− κ)(κ(t+ Lr)− (L+ 1)(sG+ 1− κ)G)

(rκ− (sG+ 1− κ)G)(tκ − (sG+ 1− κ)G)
+

(sG+ 1)(tκ− (sG+ 1− κ)G)(rκ − (sG+ 1− κ)G)

(rκ − (sG+ 1− κ)G)(tκ− (sG+ 1− κ)G)
= 0.

(108)

By simple inspection, we observe that the numeratorN(s) of
the l.h.s. in (108) is a function obtained by perturbation ofa
cubic function ins

N0(s) = (sG+1)(tκ− (sG+1−κ)G)(rκ− (sG+1−κ)G)
(109)

by a quadratic function ins proportional toα

Np(s) = G(sG+1−κ)(κ(t+Lr)− (L+1)(sG+1−κ)G).
(110)

5This procedure is necessary sinceZ(G) fills many pages even in the limit
of α → 0 and finding its zeros is intractable. However,limα→0 N(G) only
fills several lines and Maple can find its zeros in closed form.

6Note that fort, β → ∞ with ζ = β

t
, (95) is recovered, as for infinite load

the interference becomes white and has the same effect as thewhite noise.

Then, for smallα the zeros of the original numeratorN(s) =
N0(s) + αNp(0) can be computed as a perturbed version of
the zeros inN0(s) given by

s0,0 = − 1

G
(111)

s0,P = − (1− κ)G− κr

G2
(112)

s0,I = − (1− κ)G− κt

G2
. (113)

Let us observe that (111) corresponds to the Stieltjes transform
of a pdf p(x) = δ(x), i.e. the eigenvalue distribution of a
matrix with all zero eigenvalues and we are interested in its
perturbed version by the signal and interference subspaces.
Then, we focus on the perturbation of this function to deter-
mine the inverse Stieltjes transform. This initial observation
will avoid further discussions on the selection of the multiple
zeros ofN(s). Then, a first order Taylor expansion ofN(s)
in s0,0

N(s) ≈ Np(s0,0) +
∂N(s)

∂s

∣∣∣∣
s=s0,0

(s− s0,0) (114)

yields a linear equation ins to determine the approximation
of the inverse Stieltjes transforms(1)(G)

s(1)(G) = s0,0 +
Np(s0,0)

∂N(s)
∂s

∣∣∣
s=s0,0

presented in (32). Note thats(1)(G) maintains the pole inG =
0 as the Stieltjes transform ofp(x) = δ(x) but also presents
two additional poles in (36) as effect of the perturbation. In
Figure 7 we show the exact inverse Stieltjes transform in solid
blue lines and compare it withs(1)(x), the approximation via
perturbation theory, ands = − 1

G . In Figure (7), the gaps of
the solid blue lines correspond to regions wheres(G) assumes
complex conjugate values for real values ofG. The extremes
of the functions(G) determine the supportP0 ∪ I0 of the
asymptotic eigenvalue distribution ofY Y

† while the extremes
of s(1)(G) are related to the estimation[s(1)(G1), s

(1)(G2)]∪
[s(1)(G3), s

(1)(G4)]. The presence of poles ins(1)(G) is an
artefact of the first order Taylor expansion of the polynomial
N(s) and corresponds to the region where theN(s) has two
complex conjugate solutions.

In order to improve the approximation of the zeros ofN(s)
in the intervals where they are complex, we consider a second
order Taylor expansion ofN(s) arounds0,0 and we obtain the
quadratic function ins :

N
(2)
0 (s) =

(
(−2κ− α(L + 1))G4 − κ(t+ r)G3

)
s2

+
(
(κ2 + κ(2(1 + L)α−4)− 2(1 + L)α)G3

+((r+t)κ2 +((t+Lr)α−2t−2r)κ)G2+κ2rtG
)
s

+ (κ2(1− α(L + 1)) + 2κ(α(L+ 1)− 1)

− α(L+ 1))G2 + (κ2(r + t− (Lr + t)α)

+ (α(t+ Lr)− t− r)κ)G + κ2rt (115)

which is a polynomial ins with two zeros

s̃
(2)
0 (G) = φ0 ± ρ0(G)
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Fig. 7. Analysis of the inverse Stieltjes transforms(G), its version without
perturbation, i.e.s = − 1

G
, and its approximation via perturbation theory

s(1)(G). Eigenvalue pdf support of a noiseless system withL = 2, α = 1
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,

κ = 10
4
, P = 0.1 and I = P

4
and its approximation by the estimation
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⋃
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Fig. 8. Comparison of the inverse Stieltjes transforms(G) with its
approximationss(1)(G) ands(2)0 (G) for the case of a noiseless system with
L = 2, α = 1

100
, κ = 10

4
, P = 0.1 and I = P

4
. The star markers show

the extremes of the functions(1)(G). The triangle markers show the points
wheres(2)0 (G) becomes complex for real values ofG. The diamond markers

show the points wheres(2)
P

(G) ands(2)
I

(G) become complex for real values
of G, i.e. in ascending orderGIℓ

, GIu
, GPℓ

, andGPu
.

where ρ0(G) and φ0(G) are defined in (38) and (37), re-
spectively. The inverse of the Stieltjes transform, selected
as perturbation ofs = − 1

G , is s
(2)
0 (G) as defined in (35).

Note thatφ0(G) − ρ0(G) cannot be the desired inverse in
the interval [G∞

− , G∞
+ ] since it presents a pole inG =

− (t+r)κ
2κ+α(L+1) ∈ [G∞

− , G∞
+ ] while φ0(G) + ρ0(G) does not.

However,φ0(G)+ρ0(G) is not the desired inverse outside the
interval [G∞

− , G∞
+ ] since it behaves likeG−2 in a surrounding

of G = 0 and likeG−1 for G → ±∞.
In contrast to the analogous problem with the first order Tay-

lor approximations(1)(G), the computation of the extremes
of the functions(2)0 (G) do not have a closed form solution
since their computation implies the solution of two polynomial

equations of degree seven. In order to acquire deeper insight
on the problem, let us observe the behaviour ofs

(2)
0 (G)

shown in Figure 8. The match betweens(G) and s
(2)
0 (G) is

nearly perfect in the surroundings of the extremes. Figure 8
suggests to approximate the extremes ofs

(2)
0 (G) by the points

where s
(2)
0 (G) becomes complex, i.e. the zeros ofρ0(G).

This approximation implies again the solution of a polynomial
equation of degree four yielding the zerosG(2)

1 , G
(2)
2 , G

(2)
3 ,

and G
(2)
4 with G

(2)
1 ≤ G

(2)
2 ≤ G

(2)
3 ≤ G

(2)
4 . Although the

zerosG(2)
1 , G

(2)
2 , G

(2)
3 , andG

(2)
4 can be expressed in closed

form, their expression is too cumbersome to be insightful. In
order to obtain more practical and useful results we consider
the second order Taylor expansion ofN(s) in s0,P ands0,I ,
which yields

N(s) ≈
(
(κ− α(L+ 1))G4 + κ(2r − t)G3

)
s2

+
(
(2κ(α(L+ 1) + 1− κ)− 2α(L+ 1))G3

+ ((t− 5r)κ2 + κ(4r − 2t+ αt+ αLr))G2

+ κ2r(t− 3r)G
)
s+ (κ2(−2− Lα− α+ κ)

− α(L+ 1) + κ(2α(L + 1) + κ))G2

+ (κ2(3κr − α(Lr + t) + t− 5r) + κ(2 − t)

+ ακ(t+ Lr))G+ 3κ2r(κr − r + κ2t+
κr2

G
)

(116)

N(s) ≈
(
(κ− α(L+ 1))G4 + κ(2t− r)G3

)
s2

+
(
(−2κ2 + 2(1 + (1 + L)α)κ− 2α(L + 1))G3

+ ((r − 5t)κ2 + ((t+ Lr)α− 2r + 4t)κ)G2

+ κ2(r − 3t)tG
)
s+ (κ3 − (2 + (L+ 1)α)κ2

+ (1 + 2(1 + L)α)κ− (L + 1)α)G2

+ (3κ3t+ (r − (Lr + t)α − 5t)κ2 + ((t+ Lr)α

− r + 2t)κ)G+ 3κ3t2 + t(r − 3t)κ2 +
t3κ3

G
.

(117)

The zeros of (116) and (117) are relatively good approxi-
mations of the actual inverse Stieltjes transforms(G) in the
surrounding of the poles (36). Let us denote themŝ(2)P (G)

and ŝ
(2)
I (G), respectively. By using again as approximation

for the extremes of̂s(2)P (G) and ŝ
(2)
I (G), the values ofG

where ŝ(2)P (G) and ŝ
(2)
I (G) become complex, i.e. the points

where the discriminants of (116) and (117) vanish, we can
obtain simpler approximations of the extremes. In fact, the
discriminants of (116) and (117) are again quartic polynomials
in G but with two zeros inG = 0. The other two zeros
can be easily computed and are given by (42) forŝ

(2)
P (G)

and by (45) forŝ(2)I (G). Then, observing that the irrational
components of̂s(2)P (G) and ŝ

(2)
I (G) vanish in G = G

(2)
P

and G = G
(2)
I , respectively,ŝ(2)P (G

(2)
P ) = s

(2)
P (G

(2)
P ) and

ŝ
(2)
I (G

(2)
I ) = s

(2)
I (G

(2)
I ) with s

(2)
P (G) and s

(2)
I (G) defined in

(41) and (44), respectively. The observation that the instances
of GP and GI with sign plus are not greater than the
corresponding instances with sign minus, i.e.G

(2)
Pℓ

≤ G
(2)
Pu

andG(2)
Iℓ

≤ G
(2)
Iu

, yields the approximations (40) and (43).
By appealing to the previous results, in the following we
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derive condition (46) for bulk separability.
Under the assumptions of physical interest thatL ∈ N+ and

t ≥ r ≥ 0, G
(2)
P andG(2)

I are all negative real zeros7 if

t

r
≥ max

(
1 + α

2κ + α
2κ

√
1 + 4Lκ

α ,
1+Lα

2κ
+Lα

2κ

√

1+ 4κ

L2α

1+(L−1)α
κ

)

= 1 +
α

2κ
+

α

2κ

√
1 +

4Lκ

α
(118)

or equivalently

0 ≤ α

κ
≤ (t− r)2

r(t + (L− 1)r)
. (119)

By simple inspection, it is easy to verify thatG(2)
Iℓ

≤ G
(2)
Pu

under the above mentioned conditions of physical interest.
However, it is interesting to determine under which conditions
the two intervals[G(2)

Pℓ
, G

(2)
Pu

] and[G(2)
Iℓ

, G
(2)
Iu

] do not intersect,

i.e. whenG(2)
Iu

≤ G
(2)
Pℓ

. It can be verified, for example using
Maple, that this last condition is satisfied ifαβ and β = r

t
satisfy (46). Additionally, condition (46) implies also (119).

APPENDIX E
THE NOISY SYSTEM

The analysis of the system with noise follows along lines
similar to the ones adopted in the previous section. The fixed
point equation for the Stieltjes transform of the eigenvalue pdf
in (15) can be rewritten as

sG+ 1 +
ζ(sG+ 1− κ)G

κ

+
α(sG + 1− κ)G

rκ− (sG+ 1− κ)G
+

αL(sG+ 1− κ)G

tκ− (sG+ 1− κ)G
= 0 (120)

with r, t andζ defined in (29), (30), and (31).
The inverse functions(G) can be obtained as a zero of the

numerator of (120). As in the previous section, this is a cubic
function in s obtained as perturbation of the cubic function

N0(s) =
(
G(κ+ ζG)s + ζ(1− κ)G+ κ

)

×
(
rκ− (sG+ 1− κ)G

)(
tκ− (sG+ 1− κ)G

)

(121)

by a quadratic function

Np(s) = κG(sG+1−κ)(κ(t+Lr)− (L+1)(sG+1−κ)G).
(122)

Simple inspection of (121) and (122) shows that the introduc-
tion of noise has the only effect of modifyings0,0 in (111)
into

s̃0,0 = −ζ(1− κ)G+ κ

(κ+ ζG)G
(123)

while, up to a scaling factorκ, it leaves unchanged the
perturbationNp(s). The first order Taylor expansion ofN(s)
in s̃0,0 yields to an approximation of the inverse Stieltjes
transform whose extremes computation requires the solution of
a polynomial of degree six and it is not feasible in closed form.
Thus, we do not discuss further this case. On the contrary,

7These conditions are obtained by enforcing that the arguments of the
square roots in (116) and (117) are nonnegative.

for the second order expansion, all the results obtained forthe
noiseless system can be extended. The second order expansion
of N(s) in s̃0,0 yields a polynomial whose discriminant is
again a quartic equation inG. Similarly to the noiseless case,
to obtain approximations of practical use we consider the
second order expansions ofN(s) in s0,P and s0,I and we
approximate the extremes of the inverse Stieltjes transform by
the zeros of the corresponding discriminants. The expansion
in s0,P yields the approximationsΓ(2)

Pℓ
and Γ

(2)
Pu

in (49)
for the extremes of the inverse Stieltjes transform and the
approximation of the inverse Stieltjes transform boils down to
ς
(2)
P (Γ

(2)
Pu

) and ς(2)P (Γ
(2)
Pℓ

), with ς
(2)
P (G) defined in (48), when

evaluated inΓ(2)
Pℓ

and Γ
(2)
Pu

. Similar considerations hold for
approximation based on the second order expansion ins0,I .
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