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Abstract—This paper studies a Gaussian relay network, where
the relays can either transmit or receive at any given time,
but not both. Known upper (cut-set) and lower (noisy network
coding) bounds on the capacity of a memoryless full-duplex relay
network are specialized to the half-duplex case and shown to be
to within a constant gap of one another. For fairly broad range
of relay network sizes, the derived gap is smaller than what is
known in the literature, and it can be further reduced for more
structured networks such as diamond networks. It is shown that
the asymptotically optimal duration of the listen and transmit
phases for the relays can be obtained by solving a linear program;
the coefficients of the linear constraints of this linear program are
the solution of certain ‘assignment problems’ for which efficient
numerical routines are available; this gives a general interesting
connection between the high SNR approximation of the capacity
of a MIMO channel and the ‘assignment problem’ in graph
theory. Finally, some results available for diamond networks are
extended to general networks. For a general relay network with 2

relays, it is proved that, out of the 4 possible listen/transmit states,
at most 3 have a strictly positive probability. Numerical results
for a network with K − 2 < 9 relays show that at most K−1

states have a strictly positive probability, which is conjectured to
be true for any number of relays.

I. INTRODUCTION

Cooperation between nodes in a network has been pro-

posed as a potential and promising technique to enhance

the performance of wireless systems in terms of coverage,

throughput, and diversity. The simplest form of collaboration

can be modeled as a Relay Channel (RC) [1]. The RC is a

multi-terminal network where a source conveys information

to a destination with the help of one relay. A relay is said to

work in Half-Duplex (HD) mode if at any time / frequency

instant it can not simultaneously transmit and receive. The

HD modeling assumption is, at present, more practical than

the Full-Duplex (FD) one since practical restrictions, such as

the inability to perfectly cancel the self-interference, make the

implementation of FD relays challenging. Motivated by the

undeniable practical importance of the RC, in this paper we

analyze a system where the communication between a source

and a destination is assisted by multiple HD relays.

Despite the large amount of work on the RC, its capacity is

still not known in general. [1] developed two coding schemes,

Decode-and-Forward (DF) and Compress-and-Forward (CF),

a general upper bound on the capacity (cut-set) and showed

capacity for certain classes of RCs. [2] derived upper and lower

bounds on the capacity of the Gaussian HD RC; the former

is based on the cut-set argument; the latter exploits Partial

DF; the relay listen/transmit switch is considered as fixed (i.e.,

deterministic switch). [3] showed that larger achievable rates

can be attained with a random switch at the relay; moreover it

argued that HD constraints can be incorporated into the general

memoryless FD framework by considering appropriate state

random variables. Here we follow the approach of [3] and

specialize known FD inner and outer bounds to the HD case.

For Gaussian HD relay networks with K nodes (a source, a

destination and K−2 relays), [4] showed that quantize-map-

forward (QMF) achieves the cut-set upper bound to within 5K
bits but did not consider random switch in the upper bound. [5]

showed that QMF can be implemented with lattice codes and

it reduced the gap to 5(K−2) while also properly accounting

for the random switch in the upper bound. In Theorem 1

we show that, for fairly broad range of relay network sizes

(from networks with few relays to up to 239 relays), the

gap of [5] can be reduced to (K/2) log(4K) by using Noisy

Network Coding (NNC) [6]. Our derived gap is valid for a

general fully connected HD relay network. In the FD literature,

it is well known that the gap of 1.26K bits for a general

network [6] can be reduced to 2 log(K−1) bits for a diamond

network [7]. In a diamond network the network topology is

restricted compared to a general network, i.e., the source can

not communicate directly with the destination and the relays

can not communicate among themselves. In Theorem 2 we

show that similar conclusions hold for HD networks, namely,

we derive a reduced gap for HD diamond networks.

In a HD network with K−2 relays, there are 2K−2 possible

combinations of listen/transmit states for the relays. For the

diamond network with K − 2 = 2 relays, [8] showed that at

most K − 1 = 3 states, out of the 2K−2 = 4 possible ones,

with strictly positive probability suffice to achieve capacity

to within 4 bits; in this case we say that there are K − 1
active states. Inspired by [8], [9] showed that for a special

HD diamond network with 3 relays, at most 4 states are active.

In [9], it was also numerically verified that for a general HD

diamond network with (K−2)≤7 relays, at most K−1 states

are active; it was conjectured that this result holds for any K.

Here we show that these results do not depend on the particular

topology of diamond networks. In particular, in Theorem 5 we

analytically show that at most 3 states are active in a general

HD network with 2 relays by using a proof technique different



from [8]. Based on numerical evidences we conjecture that the

conjecture of [9] holds for a general HD relay network, namely

that in a network with K− 2 HD relays, at most K− 1 states

are active, out of the 2K−2 possible states.

In [8], [9] it was shown that determining the optimal values

of the state probabilities of a diamond network is equivalent

to solving a Linear Program (LP). Not surprisingly, the same

holds for a general HD network as stated in Theorem 3 where

we show, by properly accounting for power allocation and

random switch, that a LP gives the asymptotic optimal values

of the state probabilities at high SNR, i.e., in a generalized

Degrees of Freedom (gDoF) sense [4]. One of the difficul-

ties in determining the gDoF lies in the absence of known

numerically efficient ways to evaluate the coefficients of the

constraints in the LP, which are log-det expressions similar

to the capacity of a MIMO channel. In a HD network with

K−2 relays, one has to evaluate 22(K−2) such log-det terms.

In Theorem 4 we make a connection between the problem of

finding the gDoF of a MIMO channel with the graph theo-

retic problem of determining the maximum weighted bipartite

matching (MWBM) of a bigraph, also known as assignment

problem. As a result, known polynomial time algorithms for

the MWBM problem, such as the Hungarian algorithm, can

be readily used to efficiently determine the gDoF of a general

HD relay network. Citations from the graph theory literature

on these problems are omitted for sake of space.

II. SYSTEM MODEL

We use the following notation convention: [n1 : n2] is the set

of integers from n1 to n2 ≥ n1; [x]+ := max{0, x} for x ∈ R;

Y j is a vector of length j with components (Y1, . . . , Yj); for an

index set A we let YA = {Yj : j ∈ A}; 0j is the all zero row

vector of length j; 1j is the all one column vector of length j;

Ij is the identity matrix of dimension j; f1(x)
.
= f2(x) means

that limx→+∞ f1(x)/f2(x) = 1.

A relay network has one source (node 1) that sends a

message to one destination (node K) with the help of K − 2
causal HD relays (numbered from 2 to K−1) through a shared

memoryless channel. We use here the standard definition of

capacity, which we do not repeat for sake of space.

A single-antenna complex-valued power-constrained Gaus-

sian HD relay network has input/output relationship

Y = (IK − S)HSX+ Z, (1)

where: Y :=[Y1, . . . , YK ]T ∈C
K is the vector of the received

signals, X := [X1, . . . , XK ]T ∈ C
K is the vector of the

transmitted signals, S := diag[S1, . . . , SK ] is the diagonal

matrix that indicates the state of the relays (here S1 = 1
since the source always sends, Sk ∈ {0, 1}, k ∈ [2 : K − 1],
since a relay can either receive or transmit, and SK = 0 since

the destination always receives), H = [hij ] ∈ C
K×K is the

constant channel matrix known to all terminals, where hij with

(i, j) ∈ [1 : K]2 represents the channel from node j to node i.
Without loss of generality, we assume that the channel inputs

are subject to the average power constraint E
[
|Xk|

2
]
≤ 1,

k ∈ [1 : K − 1], and that the noises at all nodes are jointly

Gaussian with zero mean and unit variance. Furthermore we

assume that the noises are independent.

The capacity C of the Gaussian HD relay network in (1)

is not known. We say that C is known to within GAP bits

if one can show an achievable rate R(in) and an outer bound

R(out) such that R(out) ≤ R(in) + GAP, and where GAP is a

constant that does not depend on the channel gain matrix H

in (1). Knowing the capacity to within a constant gap implies

the exact knowledge of the gDoF defined as

d := lim
SNR→+∞

C

log(1 + SNR)
, (2)

where the channel gains are parameterized as |hij |
2 = SNR

βij

for some fixed set {βij ≥ 0 : (i, j) ∈ [1 : K]2}.

III. CAPACITY TO WITHIN A CONSTANT GAP

This section characterizes the capacity of the Gaussian HD

relay network in (1) to within a constant gap. To accomplish

this, we adapt the cut-set upper bound [10] and the NNC lower

bound [6] to the HD case by following the approach proposed

in [3]. Our main result is:

Theorem 1 The cut-set upper bound for a general Gaussian

HD relay network with K − 2 relays is achievable to within

GAP ≤ max
ℓ∈[0:K−2]

{min{1 + ℓ,K − 1− ℓ} log (1 + ℓ) (3)

+min {1 + 3ℓ, ℓ+K − 1}} ≤ (K/2) log(4K) bits. (4)

Proof: The proof can be found in Appendix A.

The linear part of the gap in (3) is partly due to the random

switch at the relays, which can convey at most 1 bit of

information per relay per channel use. In the cut-set bound, we

upper bounded this amount of information by the number of

relays. For large K, the optimal value of ℓ in (3) is ℓ ∼= K−2
2 ,

which provides the looser gap in (4). For fairly broad range

of relay network sizes (up to 239 relays), our NNC-based gap

in (4) improves on the gap of 5(K−2) bits in [5].

The gap in Theorem 1 grows with K and for large K it

could be too large to give an approximate capacity character-

ization. A smaller gap may be obtained by several means:

• Inspired by [6], one could envisage to use more sophisticated

bounding techniques. In [11], we proved that a more involved

strategy based on a water-filling power allocation reduces the

gap to 2.021K bits, which is smaller than that in [5] for K≥4,

i.e., for strictly more than one relay.

• By employing other achievable schemes. For example,

Partial DF gives a smaller gap than NNC in a single relay

case [12]. However, Partial DF seems not to extend easily to

networks with an arbitrary number of relays [10], which is the

main reason why we considered NNC here.

• By deriving tighter bounds on specific network topologies,

such as the diamond network [7], for which we can show

Theorem 2 The cut-set upper bound for the Gaussian HD

diamond network with K − 2 relays is achievable to within

GAP ≤ (K − 4) log(2) + 4 log(K) + 2 log(e).



Proof: The proof directly follows from Appendix A, by

taking into consideration the fact that in the diamond network

the channel matrix H has rank 2 (and thus Rank[HA,s] = 2)

and by using the possibly suboptimal value σ2 = K/2− 1.

As expected, the gap in Theorem 2 for the HD diamond

network is, in general, smaller than that in (4), which is in

line with what happens in FD. However, for the FD diamond

network the gap is logarithmic in K [7], while the gap in

Theorem 2 is linear in K. This is a consequence of further

upper bounding, in the cut-set upper bound, the entropy of

[1, S2:K−1, 0] by the number of relays, which is linear in K.

IV. ANALYSIS OF OPTIMAL SCHEDULES

With the result of Theorem 1, and by substituting the

expression in (9) from Appendix A into (2), we can evaluate

the gDoF of the Gaussian HD relay network. Similarly to [8],

[9], the gDoF is the solution of the LP

d = max{fT x} s.t.

[
−A 12K−2

1
T
2K−2 0

]
x ≤ f , x ≥ 0, (5)

where f
T := [02K−2 , 1], x

T := [λ1, . . . , λ2K−2 , d], and the

square matrix A, of dimension 2K−2, contains the high-SNR

pre-log factors of the different log-determinant terms from the

expression in (9) in Appendix A.

We next describe how to evaluate the entries of A by

establishing an interesting connection between this problem

and the assignment problem in graph theory. The importance

of this connection stems for the fact that the computation of the

entries of A can be performed very efficiently by using known

polynomial time algorithms for the assignment problem.

We start with few definitions. A weighted bipartite graph, or

bigraph, is a graph whose vertices can be separated into two

sets such that each edge in the graph has exactly one endpoint

in each set. Moreover, a non-negative weight is associated with

each edge in the bigraph. A matching, or independent edge

set, is a set of edges without common vertices. The MWBM

problem, or assignment problem, is defined as a matching

where the sum of the edge weights in the matching has

the maximal value. The Hungarian algorithm is a polynomial

time algorithm that efficiently solves the assignment problem.

Equipped with these definitions we can show

Theorem 3 For a general HD relay network, the (i, j) ∈ [1 :
2K−2]2 entry of the matrix A in (5) evaluates to the MWBM

of a bigraph with weight matrix

[
(IK−diag[1, sj , 0]) B diag[1, sj , 0]

]
{K}∪Ac

i
,{1}∪Ai

(6)

where B is the ‘SNR-exponent matrix’ defined as [B]ℓk =
βℓk ≥ 0 : |hℓk|

2 = SNR
βℓk , (ℓ, k) ∈ [1 : K]2. The index set

Ai and the vector sj in (6) are determined from the pair of

indices (i, j), which gives the position within the matrix A,

as explained in the footnote 1.

The proof of Theorem 3 is a straightforward application

of the following general result that establishes the equality

between the gDoF of a MIMO channel, i.e., its high-SNR

pre-log factor, and the MWBM problem.

Theorem 4 Let H ∈ R
k×n be a full-rank matrix, where

without loss of generality k ≤ n. Let Sn,k be the set of all

k-combinations of the integers in [1 : n] and Pn,k be the set

of all k-permutations of the integers in [1 : n]. Then,

|Ik +HH
H |

.
= SNR

MWBM(B) (7)

MWBM(B) := max
ς∈Sn,k

max
π∈Pn,k

k∑

i=1

[Bς ]i,π(i) (8)

where B is the ‘SNR-exponent matrix’ defined as [B]ℓk =
βℓk ≥ 0 : |hℓk|

2 = SNR
βℓk , (ℓ, k) ∈ [1 : K]2, and B

ς is a

square matrix obtained from B by retaining all the rows and

the columns indexed by ς .

Proof: We only provide a sketch of the proof (the details

may be found in [11]). First we prove that |Ik + HH
H |

.
=

|HH
H | at high SNR, then we apply the Cauchy-Binet formula,

the determinant Leibniz formula and the Cauchy-Swartz in-

equality to |HH
H |. In Appendix B, we provide two examples

on how (8) can be applied.

With Theorem 4 we can now compute the matrix A in (6)

for a general HD relay network and so find the gDoF. A closed

form solution for the LP in (5) is not available in general. Even

for networks with restricted topology, like diamond networks,

the analytical solution of (5) is elusive. Nonetheless, it is

possible to make statements on the ‘sparsity’ of an optimal

solution for the state probability vector [λ1, . . . , λ2K−2 ].
For the case of the HD diamond network, it was noted in

[9] that, out of the 2K−2 states, at most K−1 are active. An

interesting question is whether this is a consequence of the

special topology of a diamond network or whether it holds for

any HD relay network. For K−2=2 relays we can show:

Theorem 5 For a general HD relay network with 2 relays,

there exists an optimal schedule, i.e., an optimal value of the

22 possible listen-receive configurations/states for the relays,

that optimizes d in (5) with at most 3 active states.

Proof: We only provide a sketch of the proof (the details

can be found in [11]). The key idea – and main difference

with respect to [8] – is to determine the channel parameters

under which setting one of the λ’s to zero is without loss of

optimality. The result is the following generalization of [8]: if

[β21 − β41]
+[β31 − β41]

+ ≥ [β42 − β41]
+[β43 − β41]

+,

1Index i refers to a “cut” in the network and index j to a “state of the
relays”. Both indices range in [1 : 2K−2] and must be seen as the decimal
representation of a binary number with K−2 bits. Ai, i ∈ [1 : 2K−2], is the
set of those relays who have a one in the corresponding binary representation
of i (e.g., for K−2=3 and i=6=1·22+1·21+0·20 we have A6={2, 3} and
therefore Ac

6={4}). sj , such that P(S[2:K−1]=sj)=λj , j ∈ [1 : 2K−2],
sets the state of a relay to the corresponding bit in the binary representation
of j (e.g., for K−2=3 and j=6 we have s6=[1, 1, 0], which means that
nodes 2 and 3 are sending and node 4 is receiving).
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Fig. 1. Average, minimum and maximum number of active states to
characterize the capacity of a HD relay network.

then λ1 = 0 without loss of optimality, otherwise λ4 = 0.

We conjecture that, for a general HD relay network with

any number of relays, Theorem 5 continues to hold, similarly

to the conjecture in [9] for the diamond network. Namely:

Conjecture: For a general HD relay network with K − 2
relays, there always exists an optimal schedule that maximizes

the gDoF with at most K − 1 active states.

The conjecture holds for the case of 2 relays as proved in

Theorem 5. We proceeded through the following numerical

evaluations: for each value of K−2 ∈ [2 : 8], we generated

uniformly at random the SNR exponents of the channel gains,

we computed the entries of A in (6) with the Hungarian

algorithm, we solved the LP in (5) with the simplex method

and we counted the number of constraints that equal the

optimal gDoF (which is a known upper bound on the number

of non-zero entries of an optimal solution). The minimum and

the maximum number of active states were found to be 1 and

K − 1, respectively, as shown in Fig. 1, which also shows

the average number of active states computed by giving an

equal weight to all the tried channels. Note that the minimum

number of active states for a generic HD relay network with

K−2 relays has to be at least K−1. To see this, consider a ‘line

network’ where the source can only communicate with relay 1,

relay 1 can only communicate with relay 2, etc, and relay K−2
can only communicate with the destination; in a line network,

K−1 non-zero states are necessary to enable the source to

communicate with the destination. It is interesting that the

minimum number of active states given by K−1 appears to be

also the required maximum number of active states for optimal

gDoF-wise network operation. If the reduction of the number

of active states from exponential to linear as conjectured holds,

it offers a simpler and more amenable way to design the

network [9].

V. CONCLUSIONS

In this work we studied the Gaussian HD relay network

and characterized its capacity to within a constant gap by

considering a random switch at the relays. We showed that

this gap may be further reduced by considering more structured

systems, such as the diamond network. We conjectured that, in

a (K−2)-relay network, the optimal schedule has at most K−1
active states, instead of the possible 2K−2. This conjecture has

been supported by the analytical proof in the case of 2 relays

and in general by numerical results. An interesting feature of

our conjecture is the formal proof of the equivalence between

the problem of finding the coefficients of the gDoF linear

program and the associated assignment problem.
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APPENDIX A

PROOF OF THEOREM 1

We partition the relays into two sets: those in A lie on the

node 1 side of the cut while those in Ac lie on the node K
side of the cut, for all A ⊆ [2 : K− 1], Ac := [2 : K− 1]\A.

Upper Bound. The cut-set bound for the general FD network

[10] adapted to the HD case [3] gives for each A

max{R}≤I(X1, XA, SA;YK ,YAc |XAc,SAc, S1=1, SK=0)

(a)

≤ |A|+
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1+HA,sK{1}∪A,sH

H
A,s

∣∣

(b)

≤ |A|+
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1 +HA,sH

H
A,s

∣∣

+
∑

s∈[1:2K−2]

λsRank[HA,s] log
(
max{1,Tr[K{1}∪A,s]}

)

(c)

≤ |A|+
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1 +HA,sH

H
A,s

∣∣

+min{1+|A|,1+|Ac|} logmax



1,

∑

s∈[1:2K−2]

λsTr[K{1}∪A,s]





(d)

≤
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1 +HA,sH

H
A,s

∣∣ (9)

+min{1 + |A|, 1 + |Ac|} log (1 + |A|) + |A| (10)

where the inequalities are due to the following facts:

Inequality (a): chain rule of the mutual information,

by considering that the discrete random variable

S[2:K−1] has at most 2K−2 masses and by letting

λs := P[S[2:K−1] = s] ∈ [0, 1] for s ∈ [1 : 2K−2]
such that

∑
s∈[1:2K−2] λs = 1. Here we use the convention

that “S[2:K−1] = s” means that the j-th entry of S[2:K−1] is



equal to the j-th digit in the binary expansion of the number

s. For example: with K = 5 and s = 4 = 1 ·22+0 ·21+0 ·20,

the notation “S[2:K−1] = s means S2 = 1, S3 = 0, S4 = 0”.

KA,s represents the covariance matrix of XA

conditioned on [S[2:K−1] = s, S1 = 1, SK = 0] and

HA,s = [(IK−diag[1, sj , 0])Hdiag[1, sj , 0]]{K}∪Ac,{1}∪A.

Because of the power constraint we must have∑
s∈[1:2K−2] λs

[
K[1:K],s

]
k,k

≤ 1, k ∈ [1 : K].

Inequality (b): by exploiting the following relation:

0 � K � λmax(K)I � Tr[K]I, where ‘Tr’ is

the trace. Moreover for a 6= 0 the following holds

|I+ |a| K| ≤ max{1, |a|}Rank[K] |I+K|.
Inequality (c): since the rank of a matrix is at most the

minimum between the number of rows and columns.

Inequality (d): by using Jensen’s inequality and because of

the input power constraints.

Lower Bound. The NNC lower bound for the general FD

network [6] adapted to the HD case [3] gives for each A

max{R}≥I(X1,XA;ŶAc ,YK |XAc ,XK ,S[2:K−1],S1=1,SK=0)

− I(YA; ŶA|X[1:K], ŶAc , YK , S[2:K−1], S1=1, SK=0)

(a)

≥
∑

s∈[1:2K−2]

λs log

∣∣∣∣I|Ac|+1+
1

1+σ2
HA,sH

H
A,s

∣∣∣∣−|A| log

(
1+

1

σ2

)

(b)

≥
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1 +HA,sH

H
A,s

∣∣−|A| log

(
1 +

1

σ2

)

+
∑

s∈[1:2K−2]

λsRank[HA,s] log

(
min

{
1,

1

1 + σ2

})

(c)

≥
∑

s∈[1:2K−2]

λs log
∣∣I|Ac|+1 +HA,sH

H
A,s

∣∣ (11)

−min{1+|A|, 1+|Ac|}log(1+σ2)−|A| log

(
1+

1

σ2

)
(12)

where the inequalities are due to the following facts:

Inequality (a): in all states, we consider i.i.d. N (0, 1) inputs

with Q=S[1:K] to allow the relays to coordinate, and with

Ŷk:=Yk+Ẑk for Ẑk∼N (0, σ2) independent of everything else.

Inequality (b): for a 6= 0 the following holds |I + |a| K| ≥
min{1, |a|}Rank[K] |I+K|.
Inequality (c): since the rank of a matrix is the minimum

between the number of rows and columns.

Gap. By taking the difference between the upper and the

lower bounds and by using the possibly suboptimal value σ2 =
1 we immediately obtain the gap in Theorem 1.

APPENDIX B

EXAMPLES OF MWBM PROBLEMS

Example 1: Case k = n = 2. Consider

log
(∣∣I2 +HH

H
∣∣) SNR≫1.

= log
(
SNR

max{β31+β42,β32+β41}
)

H :=

[
h31 h32

h41 h42

]
=

[
SNR

β31/2 ejθ31 SNR
β32/2 ejθ32

SNR
β41/2 ejθ41 SNR

β42/2 ejθ42

]
.

The corresponding MWBM problem has one set of vertices

A1 consisting of k= |A1|=2 nodes (refer to these vertices as

nodes 1 and 2 – see second subscript in the channel gains) and

the other set of vertices A2 consisting also of n = |A2| = 2
nodes (refer to these vertices as nodes 3 and 4 – see first

subscript in the channel gains). The weights of the edges

connecting the vertices in A1 to the vertices in A2 can be rep-

resented as the non-negative weights βij , i = 3, 4, j = 1, 2.

One possible matching assigns node 3 to node 1 and node 4 to

node 2 (total weight β31 + β42), while the other assigns node

3 to node 2 and node 4 to node 1 (total weight β32+β41); the

best assignment is the one that gives the largest total weight.

This MWBM is exactly the pre-log of the log-det formula.

To exclude the case of rank deficient channel matrix in our

setting we pose a reasonable distribution, such as for example

the i.i.d. uniform distribution, on the phases θij , i=3, 4, j=
1, 2, so that almost surely the channel matrix is full rank.

Example 2: Case k = 2, n = 3. The MWBM allows to find

the high-SNR approximation of the capacity for any MIMO

system. As an example, consider a full-rank MIMO systems

with n = 3 transmit antennas (nodes 1, 2, 3) and k = 2 receive

antennas (nodes 4 and 5) and with SNR-exponent matrix B =[
β41 β42 β43

β51 β52 β53

]
. In this case we have

MWBM(B) = max
{
β41 + β52, β41 + β53, β42 + β51,

β42 + β53, β43 + β51, β43 + β52

}

which can also be obtained, with enough patience, by comput-

ing the limiting value of the corresponding log-det formula.
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