
Coordinator-Master-Worker Model For Efficient Large
Scale Network Simulation

Bilel Ben Romdhanne
Mobile Communication
Department, Eurecom

benromdh@eurecom.fr

Navid Nikaein
Mobile Communication
Department, Eurecom

nikaeinn@eurecom.fr

Christian Bonnet
Mobile Communication
Department, Eurecom

bonnet@eurecom.fr

ABSTRACT
In this work, we propose a coordinator-master-worker (CMW)
model for medium to extra-large scale network simulation.
The model supports distributed and parallel simulation for a
heterogeneous computing node architecture with both multi-
core CPUs and GPUs. The model aims at maximizing the
hardware usage rate while reducing the overall management
overhead. In the CMW model, the coordinator is the top-
level simulation CPU process that performs an initial par-
titioning of the simulation into multiple instances and is
responsible for load balancing and synchronization services
among all the active masters. The master is also a CPU
process and provides event scheduling, synchronization, and
communication services to the workers. It manages work-
ers operating potentially on different computing resources
within the same shared memory context and communicates
with the coordinator and others masters through the mes-
sages passing interface. The worker is the elementary actor
of CMW model that performs the simulation routines and
interacts with the input and output data, and can be a CPU
or a GPU thread.
Compared to existing master-worker models, the CMW

is natively parallel and GPU compliant, and can be ex-
tended to support additional computing resources. The per-
formance gain of the model is evaluated through different
benchmarking scenarios using low-cost publicly available GPU
platforms. The results have been shown that the speedup
up to 3000 times can be achieved compared to a sequential
execution and up to 6 times compared to a mono-GPU MW-
based simulation. The hardware activities rate of the CMW
services for both CPU and GPU are analyzed in detail.

Categories and Subject Descriptors
I.6.0 [Computing Methodologies]: SIMULATION AND
MODELING—General ; C.4 [Computer Systems Orga-

nization]: PERFORMANCE OF SYSTEMS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Keywords
PADS, PDES, Large scale simulation, System architecture,
GPGPU, Heterogeneous computing

1. INTRODUCTION
Stochastic simulation is used to study a wide range of

applications from medical systems to the wireless communi-
cation networks. The simulation of such systems may have
various objectives ranging from analyzing the system behav-
ior to the validation of new concepts. Thus, the simulation
becomes an essential tool on the development cycle of mod-
ern technologies. Even if simulation provides generally re-
producible results, the scalability remains a key challenge.
In fact, increasing the size and more generally the realism
level of the simulated system leads to a nonlinear increase
in the required resources and the execution time, which in
turn reduces significantly the simulation efficiency [1].

To speedup a large scale simulation, there are two triv-
ial approaches: either to parallelize and/or distribute the
simulation over several instances (also known as logical pro-
cess LP) and/or to use a dedicated accelerator to handle
the bottleneck. The distribution of a simulation over mul-
tiple computing nodes delivers a significant scalability gain
at the cost of higher complexity and overhead to ensure the
simulation correctness and efficiency. The first approach is
to use a flat architecture where LPs collaborate to realize
the simulation using distributed algorithms for the commu-
nication and the synchronization is widely used for small
to medium sizes. However it generates a significant man-
agement overhead. To limit the overhead in the flat archi-
tecture when targeting a large scale simulation, a two level
hierarchical architecture was introduced, where a specific
process (called the server) ensures the management of the
simulation. The involvement of that process varies from one
platform to another. The master-worker (MW) model is
an example of two-level hierarchical architecture that han-
dles efficiently meta-computing systems [2]. Such a design is
optimized for recent public hardware, however specific con-
siderations must be done to increase (i) the data locality as
flops are cheap but communication is expensive, and (ii) the
simulation efficiency by exploiting the capability of hetero-
geneous computing node. To deal with the MW limitations
while coping with computational challenges of heterogeneous
computing node architecture, a hierarchical approaches was
proposed in [3]. In that work a new concept based on the
interaction between CPU-based and GPU-based component
was discussed and a specific consideration for the data local-
ity was introduced nevertheless, it ignore the GPU memory



restriction and induces a constant synchronization delay [4].
In this paper, we propose to consider the meta-computing

system, which is composed of several interconnected het-
erogeneous computing nodes as a system of subsystem. The
main rule is to maximize the interactions inside a computing
node with minimum communication overhead with outside
world. To achieve this, we suggest to extend the master-
worker model by introducing a third actor called coordi-
nator. The model is denoted as coordinator-master-worker
(CMW). At the top level, the coordinator ensures the global
time synchronization and the load balancing among the mas-
ters. At the second level, the master locally manages the
time synchronization and event scheduling among the work-
ers. At the third level, the workers are the executing threads
performing tasks. From the coordinator point of view, the
master manages one simulation instance, which is why the
master-worker subsystem is refereed as an extended logical
process (ELP). In contrast to hierarchical MW models, in
CMW model, event generation process is capable of produc-
ing native parallel event sets. Furthermore, the scheduling
policy is capable of managing both cloned and independent
foreign events. Finally, the synchronization and communi-
cation processes target to maximize the locality inside the
ELP by applying domain-specific operations between CM
and MW. In addition, there is no vector-state exchange be-
tween the coordinator and masters, and each master must
ensures the simulation correctness independently, thereby
the coordinator is not considered as a top-level master as it
neither assigns tasks nor transfers data.
The reminder of the paper is organized as follows. In

Section 2, we present the background information. Section
3 provides the related work. In Section 4, we present the
CMW model and its features. Section 5 presents the bench-
marking scenarios and validation results for the CMWmodel
in comparison with MW model. Finally Section 6 concludes
the paper and provides a short summary of the contribution
of this work.

2. BACKGROUND
This section provides a technological context for the pro-

posed CMW model by highlighting the GPU features and
programming model as well as a brief description of Cunet-
sim network simulator used to benchmark the CMW model.

2.1 Technological Context
Graphics Processing Units (GPUs) are specialized elec-

tronic circuits, dedicated to the graphical rendering. Al-
though, their preliminary architecture was rigid they be-
come increasingly programmable, flexible and computation-
ally powerful. Modern GPUs are throughput-oriented de-
vices made up of hundreds of processing cores. They main-
tain a high throughput and low memory latency by multi-
threading between thousands of threads. GPUs are based
on a two-level hierarchical architecture. They are made of
vector processors at the top level, also known as stream-
ing multiprocessors (SMs) for NVIDIA GPUs. Each vector
processor contains an array of processing cores; termed as
scalar processors (SPs). Inside one vector, SPs communicate
with each other through an on-chip user-managed memory,
termed as shared memory. In addition, the GPU is an in-
dependent device which embeds its specific RAM accessible
for all processing cores; that qualifies it to be entirely inde-
pendent. Even if the GPU is promising for high speed par-

allel computing, the programing model is relatively different
than the CPU. However, the concept of General-purpose
computing on graphics processing units (GPGPU) aims to
provide a user-friendly APIs. In this context, CUDA[5] and
OpenCL[6] APIs are the most advanced software program-
ming solutions and share the same SPMD(Single Program
Multiple Data) programming model. Due to its developed
ecosystems and the wide range of compliant libraries, we
choose the CUDA environment as a technological support.

2.2 Cunetsim Framework
Cunetsim is a wireless mobile network simulator design

for large scale simulations. The main idea is to perform
an entire network simulation inside the GPU context, where
each simulated node is executed by one dedicated GPU core,
i.e. independent execution environment for each simulated
node. Cunetsim implements the MW model and introduces
an innovative CPU-GPU co-simulation methodology in that
it considers the GPU as a main simulation environment and
the CPU as a controller. In addition, nodes communicate
using the message passing approach based on the buffer ex-
change without any global information. It has to be men-
tioned that Cunetsim is developed following a hardware-
software co-design methodology optimized for the NVIDIA
GPUs architecture.

In what is relevant to this work, we focus on extend-
ing the MW architecture to support an additional actor,
the coordinator, for the purpose of benchmarking. In fact,
Cunetsim considers the pair CPU-GPU as a unified shared
memory parallel system in which the master is a CPU pro-
cess and workers are GPU threads. The master ensures the
correctness and events scheduling of the simulation while
each worker is logically associated with one simulated node,
where all its data and processes are on the GPU. However,
the initial design of Cunetsim only supports one GPU, which
limits the scalability of the framework by that of used GPU
in terms of available memory and computational power [7].
To resolve the memory size limitation, Cunetsim applies a
dynamic off-loading and on-loading of workers between the
CPU and GPU context.

3. RELATED WORK
Parallel desecrate event simulators (PDES) are built around

the collaboration of several logical processes, where the sim-
ulation context is broken-down into several simulation in-
stances with respect to the spatial or functional distribu-
tion [8]. To address the scalability issue of PDES, there are
three main approaches [9]: architectural optimization, local
optimization, and bottlenecks acceleration.

The architectural optimization attempts to efficiently par-
allelize and distribute the simulation over a set of computing
nodes. In the flat design, different LPs are considered to be
equivalent and they collaborate to perform the simulation in
a distributed fashion [10]. The scalability remains an issue
in the flat design when the number of LPs increase [11]. In
the literature several optimizations, such as the lookahead
[12] and the opportunistic and combined synchronization [9],
are proposed to reduce the idle time induced by the synchro-
nization process. The two-level hierarchical design provides
a solution to the scalability issue by introducing a centralized
management service (called the server or master) in charge
of synchronization and job assignment processes. The well-
known example is the master/worker model compatible with



meta-computing systems [13]. The main challenge here is
the communication overhead caused by the non-locality of
the master with respect to the worker when the simulation
becomes large (i.e. in the order of several millions of simu-
lated nodes). Furthermore, the master remains the critical
bottleneck in such a setup as it drives the entire simulation.
The multi-tier design addresses the scalability for hetero-
geneous computing nodes by partitioning them into several
non-overlapping subsystems with one dedicated master [14].
The number of tiers depends on the setup and available re-
sources, which could potentially cause large synchronization
delay due to cascading of the masters. This concept is ex-
tended to support GPU [3], where the synchronization and
communication overhead is significantly reduced in term of
number of exchanged messages. However, the delay remains
an open issue in multi-tier architecture. Furthermore, the
state vector mechanism remains existing and introduces a
significant delay since each master manages larger works
then traditional LPs [15, 4], thus the latency issue needs
to be addressed.
The local optimization aims to improve the efficiency of

each LP in its environment. We distinguish two main trends:
local parallelism and engineering optimization. In general lo-
cal parallelism acts at the event level to maximize the usage
of multi-core CPUs or GPUs. The parallel event schedul-
ing over CPU presents a reasonable tradeoff between the
backward compatibility and the efficiency since it uses all
available cores to execute in parallel future events[16] . How-
ever this approach relays on a unique central events list and
one scheduler, which remains the bottleneck when targeting
larger CPUs (e.g. INTEL MIC with 80 cores) [17]. A sim-
ilar approach, introduced by Park et all [18, 19] proposes
to use the GPU as a multi-core computing co-processor. It
relays on one central events list (CEL) and 8 threads, each
of which runs on one core of the GPU and pops events from
the CEL independently. However, that approach has two
major limitations: first it uses a central event queue which
becomes inevitably the system bottleneck with larger GPUs,
second it considers a GPU core as a CPU one while the GPU
is essentially based on SIMD architecture, where all threads
must achieve the same routine. To handle this restriction,
a dedicated GPU scheduling approach was proposed in [20],
where authors use the event clustering approach to maximize
the GPU usage while simplifying the scheduling work. Nev-
ertheless, this approach supports only one GPU that limits
its scalability by that of the GPU in use. On the other
hand, engineering optimization aims to maximize the usage
of new hardware capabilities such as the different memory
levels on the CPU and vectorial units. It acts mainly at the
process/instruction level. A smart usage of that capabili-
ties allows a significant performance gain [21]. Nonetheless,
that approach is closely related to the implementation of
each solution in one side and to the considered hardware on
the other side.
Bottlenecks acceleration aims to improve the simulation

efficiency by reducing the impact of a specific part of the
simulation which broken-down the system due to its process
complexity. Except software solutions which back to the
previous case(local optimization), bottlenecks acceleration
offloads that process on a specific hardware such as DSPs,
FPGAs or GPUs. The DSP is mainly used to process sig-
nals and presents a real gain when the simulation considers
physical phenomenas such as radio signal simulation, but

does not offer a rich programming model suitable for exper-
imentation. The FPGA provides a great tradeoff between
the efficiency of the DSP and a reasonable programming
flexibility. therefore it was largely used to accelerate exist-
ing solutions, in particular, Steenkister et all [22] used the
FPGA as a signal accelerator for wireless network simula-
tion. The OpenAirInterface [23] initiative provides an SDR
implementation of 4G wireless network (i.e. LTE/LTE-A)
using full GPP model, while the RF subsystem is processed
by a specific FPGA. Even if FPGA provides an important
processing gain, it does not provide a flexible programming
model and cannot be used in large scale. In that context, the
GPU is an emerging solution which combines programma-
bility, computing power and advanced parallelism capabil-
ities. The advantage of the GPU is also demonstrated by
Perumalla et all [24] and several works used it as a channel
simulation accelerator [25, 26]. In this context, the GPU be-
comes a promising solution providing perspectives for large
and extra-large scale parallel and distributed simulations.
The main limitation of the GPU, however, relies on its pro-
gramming model, which is not fully compliant with the x86
architecture. Other efforts have been given to provide an ef-
ficient processing solution based system-on-chip (SoC) and
network-on-chip (NOC) or even a larger computing solution
proposed recently by INTEL [27].

This work presents a new simulation model, denoted as
coordinator-master-worker, which aims to increase the ef-
ficiency of the large scale network simulation for hetero-
geneous computing node architecture. The coordinator is
introduced as a third-level actor to ensures the master syn-
chronization and load-balancing services. Furthermore, the
task of master as defined in the standard MW model is re-
vised to maximize the locality, which is achieved by allow-
ing the master to uniquely manage a pool of workers co-
located on the same shared memory context. The worker is a
lightweight thread operating on specific computing resource,
i.e. GPU or CPU, within the same memory space. Fi-
nally, the CMWmodel guarantees the simulation correctness
through a periodic time interval acting as a checkpoint mech-
anism instead of the state vector transition, which proves to
achieve a significant gain in terms of data transfer delay and
synchronization.

4. COORDINATOR-MASTER-WORKER AR-
CHITECTURE

The CMW architecture is designed around three actors:
coordinator(C), master(M) and worker(W). The coordina-
tor, is a top-level simulation CPU process with two funda-
mental tasks: load balancing and synchronization among all
the active masters. The master, is also a CPU process and
represents an intermediate entity of the simulation. It man-
ages workers operating potentially on different computing
resources within the same shared memory context and com-
municates with the coordinator and others masters through
the messages passing interface (MPI) [28]. The worker is
the elementary actor of CMW that performs the simulation
routines and interacts with the input and output data. Typ-
ically, a worker can be a CPU or a GPU thread. In CMW,
there is only one coordinator operating on N masters, each
of which manages K workers. We denote one master and its
associated K workers as an extended logical process (ELP).

In the CMW model, the simulation is first distributed



over a certain number of workers (all simulated components
in classical terminology) for the considered simulation sce-
nario. Then, workers are partitioned into separated simu-
lation instance according to the user-defined spatial and/or
functional policies. Each simulation instance is managed by
one master, and all the workers with the same simulation
instance interact with the external world uniquely through
the master. In a simple case, each simulated instance is
performed by one master on one computing nodes. The
communication is done through a diffferent dedicated shared
memory, as shown in Figure 1, depending on the locality of
the workers with respect to each other and the underlying
target-specific (i.e. CPU or GPU) memory capabilities.

Figure 1: The CMW architecture

In the following subsections, we present the main services
and features offered by the CMW model.

4.1 Massive Parallel Events Generation
The massive parallelism concept is a suitable software

model for SIMD hardware, and in particular for the GPU
programming. The main idea consists of generating cloned
threads, each of which performs the same operation on an in-
dependent data. This concept is derived from the graphical
processing software, where each pixel or polygon is processed
independently and in parallel by the same algorithm. We
propose to generate similar and independent events rather
than detecting events that can potentially be executed in
parallel.

4.2 Parallel Events Scheduling
In CMW, the event scheduling is done independently for

each ELP by the master, and each master manages locally
all its events. The event scheduler is designed based on the
hardware and software co-design methodology for CPU and
GPU target, and it is performed both at the software and
hardware level. At the software level, the scheduler orga-
nizes the events in two dimensions, namely in time interval
and in parallel event group (or blocks in GPU terminology),

which are later used for an efficient hardware mapping. At
the hardware level, the embedded GPU GigaThread hard-
ware scheduler first distributes event thread blocks to vari-
ous SMs, and second assigns each individual thread to an SP
inside the corresponding SM (refer to Section 2.1). Further-
more, the scheduler assigns two timestamps to each event:
the real timestamp as provided by the event generator used
to keep track of event timing, and the execution timestamp
as calculated by the event scheduler used to maximize the
hardware activity rate without compromising the simulation
correctness.

The software scheduler operates as follows. It first par-
titions an arraylist into the time interval and the parallel
event group, as shown in the Figure 2(a) and 2(b). Then, it
sorts all the events in time and regroups those events that
can be executed in parallel either into cloned independent
events (CIE) if the events differ only in data, or into indepen-
dent foreign events (IFE) if events differ in both algorithm
and data. Finally, it distributes events over the arraylist,
where each array represents the parallel event group for a
given time interval (see Figure 2(c)). It has to be mentioned
that, the CIE are considered by the scheduler as an event set
(ES) and processed by the scheduler as a unique entry, while
the IFE are considered as a heap of events and processed by
the scheduler as multiple entries. To increase the efficiency,
when an event is assigned to one interval, its execution
timestamp will be aligned with the beginning of that inter-
val. However, if that event has one or multiple dependencies
that falls within the same time interval, the scheduler pre-
serves such dependencies and executes the event before the
others, otherwise the execution of all the other events will
be postponed to the next time interval. The soft scheduler
makes use of asynchronous and non-blocking CUDA calls to
communicate with the GPU through the driver, which in
turn generates the corresponding thread blocks on-the-fly.
Upon the reception of thread blocks from the driver, the
hardware scheduler dispatches received blocks to available
SMs and transfers the data from the CPU to the GPU con-
text. When an SM receives a thread block, the scheduler
distributes the wrap of 32 threads executing the same path
in the CIE to SPs.

Figure 2 illustrates the event management in CMW soft-
ware scheduler. We observe that E2.1, E2.2, E2.3 and E2.4
are the CIE and are grouped into a unique entry as an ES2.
Events within the same time interval, namely ES2, E1, and
E3 are aligned with the beginning of that interval, and that
how the event dependency between E6 and E8 is preserved
by the scheduler.

4.3 Hierarchical Synchronization Model
In simulations, there are three distinct notions of time:

(i) the physical time, representing the time that a physi-
cal event requires to be performed, (ii) the simulation time,
representing the physical time in the simulation, and (iii)
the wallclock or execution time, which is the elapsed real
time during the execution of the simulation, as measured by
a hardware clock. In a distributed and parallel setting, we
further distinguish two different times depending on whether
the simulation is time-driven or event-driven. In the first
case, the time is locally represented using an independent
clock for each LP, which advances from the current event
timestamp to the next one, while in the latter case, the
time is represented using a global clock for all LPs, which



(a) Original events graph according the real timestamps

(b) Parallel event groups and the execution timestamps

(c) Software representation the scheduled event arraylist

Figure 2: CMW event scheduling model

advances continually from one value to the next with a pre-
defined granularity.
In the CMW, each actor has its instance of the clock,

which are synchronized following a hierarchical model. First,
the coordinator defines the duration of a work unit (WU)
regarding the simulation time (e.g. 1s), and advances the
clock sequentially following a time-driven model from the
timestamp of current to the next WU. Then, the clock of
each master is synchronized at the beginning of each WU.
Each master advances its own clock following a time-driven
model from the current to the next execution time interval.
Master updates the clock of active workers (i.e. workers
executing an event) to the real timestamp of that event. As
a result, the clock of workers are updated following an event-
driven model and it advances from the real timestamp of the
current event to the next event.
The synchronization protocol is performed between the

coordiantor and associated masters (C-M) as well as the
master and associated workers (M-W). For the C-M synchro-
nization, the coordinator sends an WU message and specifies
the WU ID and its duration, i.e. WU(ID,TIME) allowing
masters to perform the simulation during the WU time (see
Figure 3). When the WU is finished, each master acknowl-
edges the WU by sending an MACK message corresponds to
the triple (M ID, WU ID, W ID[]). The latter represents a
list of workers’ ID used to inform the coordinator about the
workers associated with different spatial area (mainly due
to mobility), which is used for the purpose of load balancing

as described in Section 4.4. During each WU, masters are
synchronized based on a lookahead mechanism. For the M-
W synchronization, it is performed locally as follows. When
receiving a WU message from the coordinator, the master
starts the event scheduling and updates the clock of each ac-
tive worker, before executing any related event, to the real
timestamp of that event. Limiting the update procedure
only to active workers allows a significant reduction in syn-
chronization overhead without compromising the simulation
correctness.

Figure 3: Typical message sequence diagram of the

synchronization protocol between the coordinator

and the masters

4.4 Load Balancing
In CMW, the load balancing is done by the coordinator

and consists of (i) spatial mapping of ELPs to available com-
puting nodes when the simulation starts, and (2) monitoring
the efficiency of each master in terms inter-ELP communica-
tion during the simulation. The latter may trigger a worker
migration between ELPs under the control of the coordi-
nator to maximize the locality of communicating workers
during the simulation. Such a migration happens between
two work units and may introduce an additional delay in
the course of simulation caused by the context transfer and
update from the source ELP to the target ELP.

4.5 Hierarchical communication model
The communication model of CMW is based on the mes-

sage passing, where each message is physically written on
the destination buffer. To maximize the efficiency of the
workers, two buffers are introduced for each worker in the
CMW model: in-buffer and out-buffer. The in-buffer con-
tains all the messages that is subject to be received during
the receive event of each worker, while the out-buffer in-
cludes all messages that must be sent during the send event
of each worker. Depending on the locality of the workers and
the underlying target-specific (i.e. CPU or GPU) memory
capabilities, the communication is done through a different
yet dedicated shared memory (see Figure 1). Four different
methods are possible as described below.

1. If both workers are in the same GPU block, the mes-
sage is written on the GPU shared memory and a ref-
erence is given to the destination. If there is more than
one destination, the message is writen to the in-buffer
of the destinations ensuring that each worker has the
entire control on its message.

2. If both workers are in the same GPU but on foreign
blocks, the message is written on the GPU global mem-
ory and a reference is given to the destination. Multi-
ple destination will receive distinct message as in the
first case.



3. If both workers are in the same ELP (i.e. the same
memory space), the message is written on the destina-
tion in-buffer using SLI/PCIe direct (CUDA) commu-
nication. In this case, the destination can either be a
CPU worker or a worker in a different GPU.

4. If both workers are in two different foreign ELPs, the
source ELP writes the message on a global out-buffer
of the master. The master will use the network com-
munication to transfer the message to the destination
master.

In what concerns the master, it has three buffers: in-
buffer, out-buffer, and one global out-buffer for inter-ELP
communication. All the workers within the same ELP can
use the global out-buffer to communicate with the remote
workers. This global out-buffer is processed by the master
periodically, which aggregates incoming messages into dif-
ferent message bundles as a function of their target ELPs.
To determine the target ELP, each master maintains a ta-
ble allowing to look up the target ELP based on the ID of
the worker. This table is built when the simulation starts
and updated when a migration happens (by the coordina-
tor). Upon the reception of a message bundle by the target
ELP, the original messages are restored and delivered to the
target worker. This operation introduces an extra delay on
message delivery as it does not provide a per-message call-
back mechanism allowing workers to request a fast service.
However, it minimizes drastically the overhead related to
the transmission of a large number of messages.

5. EXPERIMENTAL EVALUATION
The testbench to evaluate the CMW model relies on three

parallelization frameworks, namely CUDA, OpenMP and
MPI, and one development Kit, the PGI suite as shortly
explained below.

1. The Compute Unified Device Architecture (CUDA) is
the software parallel computing platform and a pro-
gramming model created by NVIDIA. It provides API,
libraries, compilers, debugger, and drivers to manipu-
late easily NVIDIA GPUs for a general purpose pro-
cessing [5].

2. The Open Multiprocessing (OpenMP) is an API that
supports multiprocessing on a shared memory context.
Based on pre-compilation directives, the OpenMP han-
dles the creation and management of threads using fork
and join operations.

3. The Message Passing Interface (MPI) is a portable
message-passing system providing an abstraction layer
for distributed programming, which is usable on a vari-
ety of platforms. In particular, it provides the concept
of barriers synchronization with a reduced latency and
communication overhead [29].

4. The PGI suite is a commercial C/C++ compiler, which
provides several automatic parallelization features. Fur-
ther, it generates optimized binary for different CPU
architectures and incorporates a full CUDA CC++
compiler for targeting X64 CPUs. It supports the uni-
fied binary technology, which consists on the creation
of a multi-target binary (GPU, INTEL CPU and AMD
CPU) from an initial native CUDA code.

In the following subsections, we present the benchmarking
scenario and the experimental setup. Then, we highlight
the evaluation metrics and performance evaluation with the
relevant simulators. Finally, we analyze and discuss the re-
sults.

5.1 Scenario and Setup
To evaluate the performance of the CMW model com-

pared to a standard MW model under large scale conditions,
we extend the benchmarking methodology proposed in [7] to
support distributed scenario. The benchmarking scenario is
illustrated in Figure 4 and is based on a static network topol-
ogy, where nodes are arranged into six independent activity
areas of 5km2, named AA0 to AA05. In each AA, nodes are
placed within a square. By default, the last node of each
AA is connected to the first node of the next square. The
scenario includes one traffic source, which generates 600 uni-
formly distributed packets with packet size if 128 bytes and
inter-departure time of 1 second. The generator is located
at the AA0 and the destination is located on the AA05. All
nodes forward unseen packets after a delay of 1 second, thus
flooding the entire network. The network connectivity is
modeled using a simple probabilistic dropping probability,
which is identical for all links. The sender is the node with
the lowest ID and the receiver is the one with the highest
ID.

This benchmarking scenario has the particularity that the
total number of events increases linearly as a function of the
number of nodes in the network. Thus, it allows a proper
analysis of both the event scheduler and the synchronization
process.

Figure 4: Benchmarking scenario with six distinct

activity areas

The hardware setup is based on a meta-computing nodes
interconnected through a Gigabit local area network. It in-
cludes 4 workstations: three of them include each an IN-
TEL i7 3930k CPU (6 cores with hyper-threading), 32GB
of DDR3 and Two GeForce GTX680 2GB (1536 cores for
GPGPU computing), and the last node includes an i7 930
(4 cores) with one GTX460 and plays the role of the coor-
dinator in case of CMW architecture. The OS is Ubuntu
Linux 11.10, the PGI compiler version is the 12.9 and the
Nvidia driver version is 295.41. In the present study, we
compare the performance of the following simulators:

1. D-NS3: is the distributed CPU-based version of NS3
based on the MPI API that implements standard flat
model. The software setup of D-NS3 is composed of 6
LPs each of which simulates one AA and each LP uses
3 cores of the CPU.

2. Cunetsim: is the original version of the Cunetsim
simulator with mono-GPU support based on the MW
model [7]. The software setup of Cunetsim is composed
of 1 ELP, which simulates 6 AA using one GPU.



3. D-Cunetsim-GPU: is the distributed multi-GPU ver-
sion of the Cunetsim that implements the CMWmodel.
It includes 6 GPUs and 3 computing nodes. The soft-
ware setup is composed of 6 ELPs each of which sim-
ulates one AA and each ELP uses one GPU.

4. D-Cunetsim-CPU: is the distributed CPU version
of the Cunetsim that implements the CMW model. It
also has 6 GPUs and 3 computing nodes. The software
setup is composed of 6 ELPs each of which simulates
one AA and each ELP uses 3 cores of one CPU.

We consider two fundamental metrics: the relative speedup1

and hardware activity or usage rate measured in percent-
age of total execution time. The relative speedup of a dis-
tributed network simulator is defined as the ratio between
the runtime of a sequential reference simulator, standard
NS3 in over that of the benchmarking simulator, which pro-
vides an overall system efficiency regardless of the hardware.
The hardware activity rate is a monitoring metric provided
by the OS representing the percentage of time used by the
components of the CMW model.

5.2 The Relative Speedup
The relative speedup is a representative metric used to

measure the efficiency of a parallel and distributed simula-
tors. However there are two main parameters, which influ-
ence directly the speedup: (i) the size of each simulated area
and (ii) the inter-area (ELP in case of CMW) communica-
tion.

5.2.1 Impact of network density
To study the impact of the network density in simulation

speedup, we select four representative network scales, in-
cluding small, medium, large, and extra-large, each of which
contains receptively 150, 2.4k, 15K and 303k nodes placed
uniformly across the 6 AA. Results are summarized in Fig-
ures 5 for each network scale indexed from 1 to 4, where
we observe four main conclusions. First, the cost of ini-
tialization for all the distributed simulations is extremely
high for a small scale simulation. We observe that for 150
nodes, the D-NS3 and D-Cunetsim-CPU are only two times
faster than the benchmarking sequential reference simula-
tor, NS3, while they used 6 cores. As for the Cunetsim and
D-Cunetsim-GPU, they are slower than NS3 as the data
transfer delay between the CPU and GPU context becomes
dominant while the GPU processing delay is negligible.
For a medium scale network (2.4k nodes on the simu-

lation which represents 400 nodes per AA while we have
1536 cores), the normalized speedup becomes significant and
GPU-based simulators can perform the simulation up-to 8
times faster than that of the CPU-based. The D-NS3 and
D-Cunetsim-CPU present a gain of 9 and 10.8 times with
respect to NS3. It has to be mentioned that this scenario
includes a small number of independent events, which in
turn reduces the scheduling time. Moreover, results of the
Cunetsim and the D-Cunetsim-GPU remain below the ex-
pectations as GPUs are extremely under-utilized (400 work-
ers per AA).
From 15K nodes, the event density increases rapidly and

the scheduling becomes an expensive task. In particular,

1Relative speedup and normalized speedup are used inter-
changeably

its impact is more significant on the performance of CPU
based simulator. Indeed, the per events scheduler used in
the D-NS3 proved to be less efficient by a factor of 2 than
per events-set scheduler used in D-Cunetsim-CPU (see sec-
tion 4.2). As for the scalability, Cunetsim proved to be
scalable with a relative speedup of 380 times. We observe
however, that the performance of D-Cunetsim-GPU is sig-
nificantly improved (the speedup is about 1000 times). In
this scenario, the maximum capacity of the GPU is not yet
reached.

To simulate 303K nodes, each AA is populated with 50K
nodes, and the event rate becomes extremely large, mak-
ing per-event scheduling very costly. In fact each D-NS3
instance must schedule about 121M events during the simu-
lation while the D-Cunetsim-CPU schedules 10K of events-
set. Therefore, when D-Cunetsim-CPU reaches a speedup of
17.8 times, D-NS3 achieves only a speedup of 7 times while
both use the same hardware. We also found that Cunetsim
achieves the maximum gain, speedup of 560 times, on such
a large scale scenario as the GPU reaches its optimal oper-
ating level with the total number of 50k threads [30]. Fur-
thermore, D-Cunetsim-GPU presents a significant speedup
of 3300 times. We note that D-Cunetsim-GPU outperforms
Cunetsim in the order of 5.89, which is very close to the
number of GPU used in each case, i.e. 1:6. By comparing
Cunetsim and D-Cunetsim-GPU, we conclude that the over-
head due to the synchronization and the inter-ELP process
remains reasonable in the CMW model.

5.2.2 Impact of inter-AA communication
To study the impact of the inter-AA communication, we

increase the inter-connection at the level of border nodes.
We fix the number of node to 303K nodes and we increase
the inter-connection from 5% to 50% with intermediate value
of 10% and 25%. Figure 6 summarizes correspending results.
The first point that draws our attention is that the perfor-
mance of the CPU based frameworks remains stable as the
number of inter-AA connection increases. The speedup of D-
Cunetsim-CPU decreases by 25% and that of D-NS3 by 37%
when the inter-AA connection increases from 1% to 50%.
The higher robustness of the CMW model compared to the
traditional MW model is essentially due to the hierarchical
communication model (see section 4.5). The measurement
demonstrates that the D-Cunetsim-CPU model requires in
average 23% less network bandwidth than the D-NS3 while
the total number of exchanged message is equivalent. The
second relevant point is that the performance of the Cunet-
sim (Mono GPU based on the MW model) also remains
stable as the number of the inter-AA connection increases.
Its relative speedup decreases from 560 to 537 (5%). This
stability is due to the fact that nodes communicate always
using CUDAmemory primitives regardless of their AA. Con-
cerning D-Cunetsim-GPU framework, we observe that its ef-
ficiency is strongly correlated with the communication rate
between different ELPs. Thus, the more ELPs messages ex-
changed, the less efficient the system becomes. The relative
speedup decreases from 2900 to 300 times. This experimen-
tation demonstrates the importance of the scenario design
and the load balancing capabilities when dealing with the
distributed simulation.

5.3 Hardware Activity Rate
In Figure 7, we summarize the hardware activity rate of



(a) 150 nodes(25*6) (b) 2.4k nodes(400*6)

(c) 15k nodes(2500*6) (d) 303K nodes(50625*6)

Figure 5: The normalized speedup of different simulators as a function of network density

(a) 1% of inter-ELP connection (b) 10% of inter-ELP connection

(c) 25% of inter-ELP connection (d) 50% of inter-ELP connection

Figure 6: The normalized speedup of different simulators as a function of the percentage of inter-AA con-

nections



(a) CPU activity rate (%) (b) GPU activity rate (%)

Figure 7: Hardware activity rate of both CPU and GPU as a function of the network size

the CMW software components for both CPU and GPU.
For the CPU target, in addition to idle time and waiting
time, we measure three activities as follows. First, the syn-
chronization and communication time (Sync. & com.) of
CMW provided by MPI service. Second, the event schedul-
ing time capturing the event management and assignment
at the software level. Third, the data transfer time repre-
senting the CPU to GPU context transfer. We consider 4
networks scales as described in Section 5.1. The major ob-
servation is that during a large scale experimentation (case
4), the CPU is under-utilized (less than 10%), and that some
additional tasks such as real time monitoring can still be
performed by the CPU without compromising the simula-
tion efficiency. Furthermore, we observe that the scheduler
uses less than 4% of the CPU, which presents an exceptional
efficiency level for such a large scale scenario.
For the GPU target, in addition to the idle time, we mea-

sure two other activities: (1) the processing time represent-
ing the time required to execute events, and (2) the data
transfer time representing the GPU to CPU context trans-
fer. The idle time is measured as the average of the idle
time of all GPU cores. We observe that the usage of the
GPU, is inversely proportional to that of the CPU. Thus,
for a large scale experimentation the GPU is heavily loaded
with negligible idle time. We can conclude that the CMW
model is more adequate for large scale simulations with the
heterogeneous computing node architecture.

6. CONCLUSIONS
The network simulation becomes a main support of the

technological development life cycle. Even if simulations
provide generally reproducible results, the scalability remains
a key challenge. In fact, increasing the scale of the simu-
lated system leads to a nonlinear increase of the required
resources on one hand and the execution time on the other
hand, which in turn reduces significantly the simulation effi-
ciency [1]. Parallel and distributed simulations is considered
as the main approach to improve the speedup for large and
extra-large scale simulation. However, existing simulation
models does not take into account the heterogeneous com-
puting node architecture combining multi-core CPU with
powerful GPUs, which represents a key ingredients for a par-
allel and distributed simulation in view of large number of
events. In this context, one of the main challenges is to find
an optimal tradeoff between the communication and data
locality.
In this work, we propose to consider the meta-computing

system, which is composed of several interconnected hetero-
geneous computing nodes as a system of subsystem. The
proposed concept is to maximize the interaction within each
computing node while minimizing the communication over-
head among. To achieve this, we suggest to extend the
master-worker model to support heterogeneous computing
node architecture by introducing a third actor called coordi-
nator . The model is denoted as coordinator-master-worker
(CMW). At the top level, coordinator ensures the time syn-
chronization and the load balancing among the masters. At
the second level, the master locally manages the time syn-
chronization and event scheduling among the workers. At
the third level, the workers are the executing threads per-
forming tasks. From the coordinator point of view, the
master manages one simulation instance, which is why the
master-worker subsystem is refereed as extended logical pro-
cess (ELP). In contrast to existing hierarchical software model,
the CMW model is based on the hardware and software co-
design methodology, where event generation and scheduling
processes are natively parallel and compliant wih the SIMD
architecture of GPUs. In addition, there is no vector-state
exchange between the coordinator and masters, and each
master ensures the simulation correctness independently, thereby
the coordinator is not considered as a top-level master as it
neither assigns tasks nor controls data.

Comparative evaluations prove that the CMW model pro-
vides a significant gain in term of speedup compared to a
MW on the same hardware platform. In particular, the gain
is more significant when targeting large to extra-large scale
simulation. The results have been shown that the speedup
up to 3000 times can be achieved compared to a sequen-
tial execution and up to 6 times compared to a mono-GPU
MW-based simulation. The analysis of the hardware activi-
ties rate have shown that the CMW is capable of maximizing
the hardware usage.

Acknowledgment
The research leading to these results has received funding
from the European Research Council under the European
Community Seventh Framework Programme (FP7/2007- 2013)
n
o 248993 (LOLA) and n

o 257616 (CONECT).

7. REFERENCES
[1] B. Aaby, K. Perumalla, and S. Seal. Efficient

simulation of agent-based models on multi-gpu and
multi-core clusters. In Proceedings of the 3rd
International ICST Conference on Simulation Tools



and Techniques, page 29. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2010.

[2] A. Abdelrazek, M. Kaschub, C. Blankenhorn, and
M. Necker. A novel architecture using nvidia cuda to
speed up simulation of multi-path fast fading
channels. In Vehicular Technology Conference, 2009.
VTC Spring 2009. IEEE 69th, pages 1–5. IEEE, 2009.

[3] J. April, F. Glover, J. Kelly, and M. Laguna. Practical
introduction to simulation optimization. In Simulation
Conference, 2003. Proceedings of the 2003 Winter,
volume 1, pages 71–78. IEEE, 2003.

[4] S. Bai and D. Nicol. Acceleration of wireless channel
simulation using gpus. In Wireless Conference (EW),
2010 European, pages 841–848. IEEE, 2010.

[5] B. Bilel and N. Navid. Cunetsim: A gpu based
simulation testbed for large scale mobile networks. In
Communications and Information Technology
(ICCIT), 2012 International Conference on, pages
374–378. IEEE, 2012.

[6] B. Bilel, N. Navid, K. Raymond, and B. Christian.
Openairinterface large-scale wireless emulation
platform and methodology. In Proceedings of the 6th
ACM workshop on Performance monitoring and
measurement of heterogeneous wireless and wired
networks, pages 109–112. ACM, 2011.

[7] M. S. M. B. Bilel Ben Romdhanne, Navid Nikaein.
Hybrid cpu-gpu distributed framework for large scale
mobile networks simulation. In 16th IEEE/ACM
DS-RT :The International Symposium on Distributed
Simulation and Real Time Applications. Ieee/ACM,
2012.

[8] K. Borries, G. Judd, D. Stancil, and P. Steenkiste.
Fpga-based channel simulator for a wireless network
emulator. In Vehicular Technology Conference, 2009.
VTC Spring 2009. IEEE 69th, pages 1–5. IEEE, 2009.

[9] L. Chen, J. Huang, and J. Zhang. A latency-hiding
algorithm for abms on parallel/distributed computing
environment. In Principles of Advanced and
Distributed Simulation (PADS), 2012
ACM/IEEE/SCS 26th Workshop on, pages 187–189.
IEEE, 2012.

[10] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey.
Openmp programming on intel r xeon phi tm
coprocessors: An early performance comparison. 2012.

[11] R. Fujimoto. Lookahead in parallel discrete event
simulation. Technical report, DTIC Document, 1988.

[12] R. Fujimoto, K. Perumalla, A. Park, H. Wu,
M. Ammar, and G. Riley. Large-scale network
simulation: how big? how fast? In Modeling, Analysis
and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003. 11th IEEE/ACM
International Symposium on, pages 116–123. IEEE,
2003.

[13] S. Green. Particle simulation using cuda. NVIDIA
Whitepaper, December 2010, 2010.

[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
portable parallel programming with the message
passing interface, volume 1. MIT press, 1999.

[15] G. Kunz. Parallel discrete event simulation. Modeling
and Tools for Network Simulation, pages 121–131,
2010.

[16] N. Ladas. Programming the gpu using opencl
introductory tutorial.

[17] J. Liu. Parallel Discrete-Event Simulation. Wiley
Online Library, 2009.

[18] Q. Liu and G. Wainer. Multicore acceleration of
discrete event system specification systems.
Simulation, 88(7):801–831, 2012.

[19] A. Park and R. Fujimoto. Efficient master/worker
parallel discrete event simulation. In Principles of
Advanced and Distributed Simulation, 2009. PADS’09.
ACM/IEEE/SCS 23rd Workshop on, pages 145–152.
IEEE, 2009.

[20] A. J. Park and R. M. Fujimoto. Efficient
master/worker parallel discrete event simulation on
metacomputing systems. IEEE Transactions on
Parallel and Distributed Systems, 23:873–880, 2012.

[21] H. Park and P. Fishwick. A gpu-based application
framework supporting fast discrete-event simulation.
Simulation, 86(10):613–628, 2010.

[22] H. Park and P. Fishwick. An analysis of queuing
network simulation using gpu-based hardware
acceleration. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 21(3):18, 2011.

[23] D. Patterson. The top 10 innovations in the new
nvidia fermi architecture, and the top 3 next
challenges. NVIDIA Whitepaper, 2009.

[24] S. Pennycook, S. Hammond, S. Jarvis, and
G. Mudalige. Performance analysis of a hybrid
mpi/cuda implementation of the naslu benchmark.
ACM SIGMETRICS Performance Evaluation Review,
38(4):23–29, 2011.

[25] K. Perumalla. Parallel and distributed simulation:
traditional techniques and recent advances. In
Proceedings of the 38th conference on Winter
simulation, pages 84–95. Winter Simulation
Conference, 2006.

[26] K. Perumalla. Switching to high gear: Opportunities
for grand-scale real-time parallel simulations. In
Proceedings of the 2009 13th IEEE/ACM
International Symposium on Distributed Simulation
and Real Time Applications, pages 3–10. IEEE
Computer Society, 2009.

[27] R. Rabenseifner, G. Hager, and G. Jost. Hybrid
mpi/openmp parallel programming on clusters of
multi-core smp nodes. In Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro
International Conference on, pages 427–436. IEEE,
2009.

[28] R. Righter and J. Walrand. Distributed simulation of
discrete event systems. Proceedings of the IEEE,
77(1):99–113, 1989.

[29] N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee,
D. Kim, and P. Dubey. Fast sort on cpus, gpus and
intel mic architectures. Technical report, Technical
report, Intel, 2010.

[30] T. Wenjie, Y. Yiping, and Z. Feng. A hierarchical
parallel discrete event simulation kernel for multicore
platform. Cluster Computing, pages 1–9, 2012.


