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Abstract—This paper investigates the energy-efficiency of well-
known spectrum sensing algorithms that exploit the sensed
signal’s energy, autocorrelation or cyclostationarity features to
estimate the presence or absence of that signal in a given
spectrum. We investigate the trade-off between energy-efficiency,
complexity, and sensing accuracy of those detectors and, their
suitability for energy-efficient WiFi spectrum sensing that enables
interoperability of Long Term Evolution Advanced (LTE-A) and
WiFi systems. Results obtained show significant improvement in
correct detection probability and reduced sensing time using the
low complexity autocorrelation detectors when compared to other
detectors under low signal to noise ratio channel conditions.

I. INTRODUCTION

The surge in demand for bandwidth-intensive applications

hosted on advanced mobile devices from video streaming

to online gaming and social networking services is pushing

operators to redesign their networks for an overall shift from

conventional macro-cell only architectures to heterogeneous

and small-cell topologies, and to seek access to additional

licensed/unlicensed (e.g., TV white-space) spectrum. The ex-

pected growth in the number of deployed small cells that

use cellular technology (e.g., micro, pico, or femto cells) and

licensed spectrum, not to mention the need for advanced inter-

ference mitigation techniques, may eventually increase overall

operational and capital expenditures (OPEX and CAPEX) and

energy consumption of heterogeneous cellular networks [1].

To this end, Mobile Network Operators (MNO) have con-

sidered offloading cellular traffic to small cells through oppor-

tunistic WiFi access points [2], since this solution remains

the most cost-effective alternative to provide high capacity

wireless communication services. More importantly, promising

technical advances in the areas of WiFi/3GPP interoperability,

optimised offloading to WLAN in 3GPP-RAT mobility [3],

and advanced Radio Frequency equipment, are pushing further

the concept of WiFi integration into cellular networks.

In the interoperability of LTE and WiFi: LTE is primarily

used to provide the macrocell coverage and high mobility

where licensed-band performance characteristics are essen-

tial while Wi-Fi will provide an underlay of smaller cells.

Nonetheless, to ensure the expected improvement in user data

rate due to the LTE and WiFi interoperability, it is critical

to sense the two standards over a wide band of spectrum.

Several multi-band sensing studies have been presented in the

cognitive radio (CR) literature [4], [5].

Spectrum sensing techniques are in general divided into

three categories based on how much prior information on the

signal is available at the detection stage [6]. Energy detectors

(ED) [7], compares the received signal energy to a threshold

value that depends on the signal to noise ratio (SNR) in the

channel. ED are low complexity detectors and may offer an

optimal signal detection under the assumption of an accurate

knowledge of the noise statistics. One major drawback of EDs

is their inability to classify the detected signals according to ra-

dio standards (i.e., LTE, WiFi, etc.). On the other hand, feature

detection schemes such as autocorrelation detectors (AD) [8]

and cyclostationary features detectors (CFD) [9] require prior

knowledge about the statistical properties of the sensed signals.

AD and CFD algorithms achieve higher detection probability

than ED in practical communication systems [9] and are

able to classify the detected signal. Finally, matched filter

detectors are suitable for the detection of a particular type

of signals (e.g., DVB-T) of features explicitly known to the

detector (preamble or pilot waveform) [6]. It is desirable that

future mobile terminals will be able to perform multi-band

sensing to find unoccupied bands. This emphasise the need

for low complexity sensing and/or classification schemes with

efficient energy usage that are suitable for implementation in

battery-constrained mobile devices. To this end, several papers

have studied the problem of energy-efficiency of spectrum

sensing methods in CR networks [10], [11], [12]. While [10]

suggests that incorporating some knowledge about the sensed

primary user (PU) signal into the CFD algorithm can reduce

its computational-complexity and improve its detection perfor-

mance compared to ED, [11] proposes an adaptive spectrum

sensing algorithm that dynamically adjusts the sensing period

in order to improve the detector’s energy-efficiency. This al-

gorithm requires the knowledge of two thresholds for different

hypotheses and a sequential sensing policy [11]. In [12], the

authors consider the energy-efficiency of both the spectrum

sensing and spectrum handoff and sensing/throughput tradeoff

for CR networks. In general most of the existing studies

of energy efficiency of spectrum sensing mainly consider a

general model of signals that are assumed to be compact in

time and frequency, under medium to high SNR ratios.

In this paper we investigate the energy-efficiency of three

classical signal sensing methods: the energy detector, auto-

correlation detector, and cyclostationarity detector, and their

suitability for the signal detection in future multi-standard



LTE-A and WiFi signals under low SNR channel conditions,

and without previous assumption of knowledge of sensed

signals. The energy consumption calculations are performed

for the most important step related to WiFi spectrum sensing.

The remaining part of this paper is organized as follows. In

Sec. II we give a background review of the spectrum sensing

problem and the relevant formulation and key metrics related

to studied detectors. Sec. III presents energy-efficiency of

studied spectrum sensing approaches. Sec. IV provides the

numerical results obtained. Finally in Sec. V we present our

conclusions and future work.

II. SPECTRUM SENSING APPROACHES

A. Spectrum Sensing Principles

In this system, the received signal at time n, denoted by yn,

can be modeled as:

yn = Ansn + en (1)

where An is the transmission channel gain, sn is the trans-

mitted signal sent from the primary user (PU), and en is an

additive noise.

In order to avoid interferences with the primary (licensed)

system, the CR needs to sense its radio environment whenever

it wants to access available spectrum resources. The goal

of spectrum sensing is to decide between two conventional

hypotheses modeling the spectrum occupancy:

yn =

{
en H0

Ansn + en H1
(2)

The sensed sub-band is assumed to be a white area if it

contains only a noise component, as defined in H0; while,

once there exist PU signals drowned in noise in a specific

band, as defined in H1, we infer that the band is occupied.

The key parameters of all spectrum sensing algorithms are the

false alarm probability PF and the detection probability PD.

PF is the probability that the sensed sub-band is classified as

it contains a PU data while actually it is only a noise signal,

thus PF should be kept as small as possible. On the other

hand, PD is the probability of classifying the sensed sub-band

as a PU data when it is truly present, thus sensing algorithms

tend to maximize PD. To design the optimal detector based on

Neyman-Pearson criterion, the aim is to maximize the overall

PD under a given overall PF . Based on those definitions, PF

is the probability of the spectrum detector sensing a user signal

given the hypothesis H0, and is given by:

PF = P (H1 | H0) = P ( PU is detected | H0) (3)

while PD is the probability of the spectrum detector sensing

a user signal under the hypothesis H1. PD is given by:

PD = 1− PM = 1− P (H0 | H1)

= 1− P ( PU is not detected | H1) (4)

where PM indicates the probability of missed detection.

In order for the detector to decide the presence of absence

of a signal in a given spectrum, a decision threshold that is

determined based on the required PF needs to be known at the

detector. The threshold γ for a given value of PF is determined

by solving the following equation:

PF = P (yn is present | H0) = 1− FH0
(γ) (5)

where FH0 denotes the cumulative distribution function (CDF)

under H0. In this paper, the values of γ are computed for

the three detectors (ED, AD, CFD) using a Monte Carlo

simulation.

B. Energy Detection

The ED is the most common method for spectrum sensing

because of its non-coherent detection and low complexity.

ED simply measures the received energy during a finite time

interval and compares it to a predetermined threshold. The

decision statistic of ED is given by:

ΛED(y) =

N∑
n=1

|yn|2 (6)

where N is the number of samples of the received signal yn.

The computed energy is compared to a predetermined γ, given

in equation (5), to make a decision about the presence/absence

of a user signal. A major drawback of ED that may diminish

their advantage of low implementation complexity is their

sensitivity to changing noise levels.

C. Autocorrelation Detection

AD exploits the fact that many communication signals

contain a built-in redundancy (cyclic prefix, channel coding)

to ensure a robust signal detection even at low SNR channel

conditions [8]. This redundancy is represented by non-zero

autocorrelation peaks at time lags l. The signal autocorrelation

function at time lag l can be estimated from:

r̂l(y) =
1

p− l

p−l−1∑
n=0

yn+l y
∗
n l ≥ 0 (7)

where p is the length of the PU signal in samples. Any

signal except for the white noise case will have non-zero

autocorrelation peaks for l ≥ 0 1. In this purpose, the signal

autocorrelation function in Eq. (7) can be used to detect the

presence or absence of a signal in a given spectrum. Therefore,

the autocorrelation-based decision statistic is given by [13]:

ΛAD(y) =
L∑

l=1

wl
Re {r̂l}

r̂0
(8)

where the number of lags, L, is selected to be an odd number.

The weighting coefficients wl could be computed to achieve

the optimal performance, and are given by:

wl =
L+ 1 + |l|

L+ 1
(9)

1Some autocorrelation peaks values might be close to or exactly zero
depending on the zero crossings.



D. Cyclostationary Features Detection

Digitally modulated features exhibit second order cyclic

properties that can be used to enhance the signal detection

process. In this purpose, a second order Cyclostationarity

Detector (CFD) is used to sense and classify OFDM-based

signals. For example, the authors in [14] use a CFD for

LTE/WiMAX signals detection that exploits the second-order

cyclostationarity features of OFDM signals, based on the

Cyclic Autocorrelation Function (CAF) Rα
y (τ) �= 0 at cyclic

frequency α = 0 and delay τ = DF (DF is the frame

duration) for all OFDM transmission modes. The CAF of the

received signal yn is estimated from Ns samples at the delay

τ and CF α, using the vector: R̂α
y = [Re(Rα

y (τ))Im(Rα
y (τ))]

in order to compute the test statistic given by:

ΛCFD = NsR̂
α
y Σ̂

−1(R̂α
y )

t (10)

where Σ̂ is the estimate of the R̂α
y covariance matrix.

The test statistic ΛCFD is compared to a predefined thresh-

old value λ to make the detection decision. As previously

stated, ΛCFD is function of PF . In our case, and given

the test statistic, a possible definition of PF could be: the

probability of deciding that the tested frequency α is a CF

at the delay τ when it is not a CF. Following this definition,

PF = Pr(ΛCFD ≥ λ|H0). Since the value of ΛCFD follows a

chi-squared distribution [14], [15], the threshold γ is obtained

from chi-squared distribution tables for a given value of PF .

III. ENERGY EFFICIENCY OF SPECTRUM SENSING

In order to evaluate the energy efficiency of the studied

sensing techniques, in the following we address some of their

key characteristics that impact their energy consumption:

A. Complexity

Algorithms complexity are measured in terms of the number

of complex operations that the detection algorithm has to

perform in order to complete the decision statistics on the

spectrum occupancy2.

Assuming that N samples of the sensed signal are available,

and that the length of the signal’s cyclic prefix and the useful

data block are given by Tc, Td, respectively, we can estimate

the complexity of the sensing algorithm using Table I that

shows the number of operations (multiplications, divisions)

required to perform the signal detection [6].

Detector Multiplications (Complex) Divisions
ED N 0
AD 2(N- Td) 1
CFD (2N + 4L) + 0.5Nlog2(N) 0

TABLE I
THEORETICAL COMPLEXITY ANALYSIS [6]

2Note that measuring the complexity of estimating nuisance parameters
(e.g., noise variance) is beyond the scope of this paper.

B. Energy Consumption

The energy efficiency of the considered sensing detectors

ED, AD and CFD is calculated assuming the use of ARMs

Cortex-A8 and Cortex-A9 processor cores. We use the pub-

lished energy consumption figures for the Qualcomm Scorpion

central processing unit (CPU) of these ARM processors that

is featured in the Snapdragon mobile chipset range [10], [18],

[19]. Based on the computation complexity values of the cho-

sen sensing algorithm in Table I, we can then use an embedded

processors power usage to estimate the detector’s energy-

efficiency. For example, If we assume that Scorpion CPU

can achieve this using one Single Instruction Multiple Data

(SIMD) multiplication and one SIMD addition instruction, and

that this is comparable to two Dhrystone instructions, then

using the DMIPS/mW figures from Table II, we can estimate

how much energy is consumed per detection operation.

Benchmark, DMIPS/MHz 2.1
Assumed clock rate 1.0GHz
Total DMIPS 2100
Frequency-flat Single path
Typical power usage 350mW
Energy effciency, DMIPS/mW 6

TABLE II
QUALCOMM SCORPION CPU DETAILS

IV. SIMULATIONS AND RESULTS

The results presented in this section in terms of sensing,

complexity and energy efficiency were derived using WiFi

compliant signals. For more information about the used WiFi

PHY simulation, please refer to [22], [23].

A. Multiband Spectrum Sensing Techniques Evaluation

Fig. 1 compares the detection performance, given in PD vs.

SNR, of the studied sensing techniques, for a WiFi OFDM-

based signal, with PF = 0.0001 and 1ms sensing period. The

ED performance is evaluated assuming a perfect or inaccurate

knowledge or the noise variance at the detector. As expected,

the performance of the ED, with perfect noise variance,

outperforms that achieved using both the AD and the CFD.

However, the fact that the ED performance is highly sensitive

to noise uncertainty, a noise variance inaccuracy even as low as

0.25dB would result in a significant performance. For example,

a loss of almost 7dB in SNR at PD = 80%, when compared

to the perfect noise knowledge case. On the other hand, the

AD performance is better than that of CFD, with almost 4dB

gain in SNR at PD = 80%. These observations agrees with

those obtained in [8] for the single cyclic frequency CFD.

Fig. 2 shows another key performance metric in spectrum

sensing the Receiver Operating Characteristic (ROC). ROC

curves present the detection performance of the sensing algo-

rithm in terms of PD vs. PF . Fig. 2 confirms the same per-

formance trends as those in Fig. 1 with the ED outperforming

the AD and CFD, and the AD outperforming the CFD.

Fig. 3 shows that for a given PF and SNR values the more

samples are sent to the detector (i.e., longer sensing period),
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Fig. 1. Probability of detection (PD) vs. Signal to Noise Ratio (SNR) for a
PF = 10−3, 1ms sensing period, and 0.25dB noise uncertainty for the ED.
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Fig. 2. Receiver Operating Characteristic (ROC) curve at SNR=-18dB and
a sensing period of 5ms

the higher the achieved PD, since the detector has enough time

to estimate the signal’s desired features and this improves the

accuracy of the signal detection.
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Fig. 3. Probability of detection (PD) vs. Sensing period (in seconds) for a
PF = 5%, SNR=-15dB, and a sensed WiFi signal.

B. Addressing Energy Efficiency Tradeoffs

As stated in Sec. III the energy efficiency of the studied

detectors is investigated based on their complexity and the

corresponding energy consumption during the sensing period.

In this purpose, a meaningful metric to assess the detectors

complexity would be the CPU processing time that is required

to complete the signal sensing process. Clearly, the higher

the used CPU time the higher the complexity of the sensing

algorithm and the more energy consumption is required.

Fig. 4, compares the CPU processing time as a function of

the sensing period required by the ED, AD, and CFD. While

the ED and the AD have almost a similar complexity with

overlapping CPU time curves, as expected from Table I, the

CFD has a much higher complexity and use a longer CPU

time before reaching a sensing decision.
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Fig. 4. Sensing period (seconds) vs. CPU time for a PF = 5%, a SNR=-
15dB, and a sensed WiFi signal.

Fig. 5 shows the energy efficiency of the studied detectors

expressed in Joules per computational operation as a function

of the sensing time. From Fig. 5 we observe that the energy

consumption characteristics of the ED, AD, and CFD follow

closely their complexity trend in Fig. 4.
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Fig. 5. Energy efficiency at SNR=-15dB and a PF = 5%

Finally, Figs. 1, 2, and 3 show that the detection perfor-



mance (i.e, PD) is highly dependent or constrained by allowed

sensing period. So the longer the sensing period the better and

higher PD gets but also means a higher energy consumption.

This clearly highlight the need to address possible tradeoffs

between the sensing period and energy consumption and the

accepted PD for the different sensing algorithms. The first

tradeoff is Detection performance versus Sensing period. From

Figs. 4 and 5, it is clear that a possible compromise on the

detection performance is to be considered in order to reduce

the sensing period. This leads to the second tradeoff Sensing
period versus Energy Consumption that also indicates the need

to either accept a higher energy consumption or a lower energy

consumption. In summary, the tradeoffs would depend on the

sensing application, sensing device capabilities (e.g., battery-

life), and the detectors sensing features described in Table III.

Criterion/Detector ED AD CFD
Probability of Detection **** *** ***
False alarm control *** ***** *****
Complexity ***** ***** **
Assumption on PU signals ***** *** ****
Effect of noise variance uncertainty * ***** *****
Distinguish between PU signals * *** *****

TABLE III
SUMMARIZING SENSING TECHNIQUES PROPERTIES [6]

V. CONCLUSIONS AND FUTURE WORK

This paper investigates the energy efficiency of three classi-

cal sensing algorithms and their suitability for implementation

in battery-limited cognitive radio terminals, that require op-

portunistic access to available WiFi spectrum in multi-band

LTE-A and WiFi systems. The study is focused on analyzing

the sensing complexity and energy consumption of the WiFi

spectrum sensing process in order to highlight the possible

tradeoffs between the detection complexity, energy consump-

tion, and detection performance of the sensing algorithms. The

obtained results show that the autocorrelation detectors offer

the best detection performance at a relatively low complexity

and energy consumption levels when compared to the more

complex cyclic feature detectors and the more noise sensitive

energy detectors. This makes the autocorrelation detectors

suitable candidates for implementation in battery-constraint

cognitive radio terminals operating in future multi-band and

multi-standard networks.

In future work we will investigate the energy consumption

of the feature detection algorithms during the more complex

signal classification step that is required to avoid interference

between licensed WiFi users and opportunistic users offloaded

from the LTE-A networks.
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