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Abstract—This paper considers the causal cognitive interfer-
ence channel that consists of two full-duplex transmitter-receiver
pairs sharing the same channel, where one transmitter can
causally learn the message of the other transmitter through a
noisy link. This channel models unilateral source cooperation.
The work focuses on the generalized degrees-of-freedom of the
symmetric, i.e. the two interfering links and the two direct links
have the same strength, sum-capacity for the Gaussian noise
channel. It is shown through evaluation of various achievable
schemes that known sum-rate upper-bounds are achievable to
within a constant gap regardless of the strength of the channel
parameters. The achievable schemes are quite simple in the sense
that only superposition coding is used, while it is shown that more
complex schemes using binning can achieve a smaller gap.

I. INTRODUCTION

We consider the Gaussian cognitive overlay system shown

in Fig. 1 consisting of two transmitters PTx and CTx and two

receivers PRx and CRx. PTx and PRx are so-called primary

nodes while CTx and CRx are cognitive nodes. The objectives

of the overlay techniques considered here are to firstly allow

the cognitive nodes to communicate without hindering the

communication of the primary nodes and secondly to enhance

the communication reliability of the primary link. To this end,

we exploit a lossy communication link between PTx and CTx

and we assume that CTx can operate in full-duplex mode on

the same communication channel (i.e. same carrier frequency).

We treat the case of causal transmission at CTx, in the sense

that the knowledge of the primary transmission is only used

for encoding at CTx after some processing delay to allow for

(partial) decoding or compression of the signal observed at

CTx. We shall denote the above described system as Causal

Cognitive Interference Channel (CCIC).

Related Work. The presence of a lossy communication

link between PTx and CTx enables the CTx to cooperate

with the PTx in order to send its message. CTx, in fact,

through this noisy channel overhears the signal sent by the

PTx and gathers information about its activity. This serves

as a basis for unilateral source cooperation, which represents

a special case of generalized feedback or bilateral source

cooperation [1]. Regarding bilateral source cooperation, the

largest known achievable region, to the best of our knowledge,

is the one presented in [1]. Here each source splits the message

into two sub-messages, i.e. common and private, as in the Han-

Kobayashi’s scheme for the non-cooperative IC [2]. Moreover

each of these two messages is further sub-divided into a non-

cooperative and a cooperative part. The former is transmitted

as in the classical IC, the latter is delivered to the destination

by exploiting the cooperation among the two sources. Bilateral

source cooperation has received lots of attention recently.

Host-Madsen [3] first studied outer and inner-bounds for

the sum capacity of the Gaussian IC with either source or

destination bilateral cooperation. Concerning the outer-bound,

the author firstly evaluated the cut-set bound, which is easily

computable, but turns out to be loose. Consequently, the

author tightened the bound by extending to the cooperative

case the bounds originally developed by Kramer [4] for the

classical IC. Prabhakaran and Viswanath [5] extended the idea

in [6, Th.1] and studied an outer-bound for the Gaussian IC

with bilateral source cooperation, by treating the noises as

independent (this assumption is not without loss of generality

for the general cooperative IC). Tuninetti [7] derived a general

outer-bound for the IC with bilateral cooperation by extending

Kramer’s idea [4, Th.1] to general memoryless IC with source

cooperation. Concerning unilateral source cooperation, in [8]

the authors studied both the cases when the collaborating

transmitter works in full-duplex and half-duplex mode. With

regard to the full-duplex mode, they developed two achievable

schemes: one exploits Partial-Decode-Forward relaying and

Gelfand-Pinsker binning and the second extends the first by

adding rate splitting and superposition coding. These two

schemes can be obtained as special cases of [1].

One of the simplest unilateral source cooperation models is

the non-causal cognitive interference channel [9]. This channel

is similar to the classical IC with the difference that CTx

has a full non-causal knowledge of the primary message. For

this channel model the capacity region is exactly known for

some parameter regimes and to within 1 bit otherwise [10].

In this paper we remove this ideal assumption by considering

the more realistic scenario that CTx learns the message of

PTx through a noisy channel. An interesting question we

answer in this work is when causal cooperation achieves the

same generalized Degrees-of-Freedom (gDoF) as non-causal

message knowledge.

Contributions and Paper Outline. This work character-

izes the symmetric gDoF of the Gaussian CCIC (G-CCIC),

described in Section II. The symmetric sum-capacity is defined

to be the maximum sum-rate that PTx and CTx can achieve in

the symmetric G-CCIC, i.e., a system with equal interfering

links and equal direct links. Our main contribution is twofold

(see Section III). First, for the different parameter regimes,

we identify simple achievable schemes that are gDoF optimal,

from the very general but highly complex scheme of [1]. Then

the sum-capacity gap of these gDoF-optimal schemes is shown



Fig. 1. The 2-user Gaussian Causal Cognitive Interference Channel.

to be bounded by constants in all regimes. These schemes

can be used as guidelines to deploy practical cognitive radio

systems. Interestingly, the schemes only use superposition

coding. It is shown that more complex schemes employing

binning / Dirty Paper Coding (DPC) [11] could be used to

achieve a smaller gap, thereby pointing to a trade-off between

complexity and performance. The proof can be found in

Section IV. Secondly, we explicitly identify the parameter

regimes where causal cognitive radio offers unbounded gain

with respect to the non-cooperative IC and the regimes where

it achieves the same gDoF as non-causal cognition.

II. SYSTEM MODEL AND BACKGROUND

General Memoryless Channel Model. A CCIC con-

sists of two input alphabets (Xp,Xc), three output alpha-

bets (Yf ,Yp,Yc) and a memoryless transition probability

PYf ,Yp,Yc|Xp,Xc
. PTx has a message Wp ∈ [1 : 2NRp ] for

PRx and CTx has a message Wc ∈ [1 : 2NRc ] for CRx,

where N denotes the codeword length and Rp and Rc are the

transmission rates for PTx and CTx, respectively, measured in

bits per channel use (logarithms are in base 2). The messages

Wp and Wc are independent and uniformly distributed on

their respective domains. At time i ∈ [1 : N ] the PTx maps

its message Wp into a channel input symbol Xp,i(Wp) and

CTx maps its message Wc and its past channel observations

into a channel input symbol Xc,i(Wc, Y
i−1
f ). At time N , the

PRx outputs an estimate of its intended message Wp based

on all its channel observations as Ŵp(Y
N
p ), and similarly

CRx provides Ŵc(Y
N
c ). The capacity region is defined as the

convex closure of all non-negative rate pairs (Rp, Rc) such

that maxu∈{c,p} P[Ŵu 6= Wu] → 0 as N → ∞.

Gaussian Noise Channel and gDoF. A single-antenna

full-duplex G-CCIC, shown in Fig. 1, is described by the

input/output relationship


Yf

Yp

Yc


 =



hpf ⋆
hpp hcp

hpc hcc



[
Xp

Xc

]
+



Zf

Zp

Zc


 , (1)

where ⋆ indicates the channel gain that does not affect the ca-

pacity region (because CTx can remove its transmit signal Xc

from its channel output Yf ). The channel gains are complex-

valued constants and therefore known to all terminals. The

channel inputs are subject to the average power constraints

E
[
|Xi|2

]
≤ Pi ∈ R

+, i ∈ {p, c}. We assume without loss of

generality that Zk ∼ CN (0, 1), k ∈ {f, p, c}. In the following

we shall assume that the noises are independent.

An often adopted figure of merit for the Gaussian channel

is gDoF defined as follows. Let S > 0 and parameterize

Pp|hpp|2=Pc|hcc|2 :=S=S
1, Pp|hpf |2 :=C=S

αf ,

Pp|hpc|2 :=Ic=S
αc , Pc|hcp|2 :=Ip = S

αp ,

where αc and αp measure the strength of the interference/cross

links compared to the direct link, and αf that of the coopera-

tion/feedback link. The gDoF of a Gaussian noise channel is

defined as [6], [5]

d := lim
S→+∞

max{Rp +Rc}
2 log(1 + S)

(2)

where the maximization is over all achievable rates (Rc, Rp).
In this work we focus on the interference symmetric G-

CCIC with αc = αp =αi. Interference-asymmetric scenarios,

with either αc=0 or αp=0, are studied in [12].

Known Outer-Bounds. In the literature several outer-

bounds are known for bilateral source cooperation [3], [5], [7].

Here we specialize them for the case of unilateral cooperation

on the complex-valued Gaussian channel with independent

noises. We define E [XpX
∗
c ]=ρ

√
PpPc for some ρ ∈ C such

that |ρ| ≤ 1. The outer-bounds we will use are obtained by

upper bounding each individual mutual information term over

ρ in the bounds in [3], [5], [7]. In particular, the sum-capacity

of the G-CCIC can be characterized to within a constant gap

by the cut-set bound [3] in (4), the bound from [7] in (5) and

the bound from [5] in (6), all given at the top of the next page.

III. GDOF AND CAPACITY TO WITHIN A CONSTANT GAP

Our main result is to show that the sum-capacity upper

bound in (3) is achievable to within a constant gap for the

interference-symmetric G-CCIC. By setting αc = αp = αi,

the upper bounds in (4), (5) and (6) imply

2d ≤ min
{
d
(CS), d(DT), d(PV)

}
, (7a)

where

d
(CS) := 1 + min {max {1, αi} ,max {1, αf}} , (7b)

d
(DT) := [1− αi]

+
+max {1, αi} , (7c)

d
(PV) := max {1− αi, αi}+max {1− αi + αf , αi} . (7d)

The gDoF upper bound in (7a) has been obtained by applying

(2) with the upper bounds in (4), (5) and (6). The details of the

proof are omitted for sake of space and can be found in [12].

Fig. 2 shows the gDoF and the gap for the symmetric

G-CCIC. The whole set of parameters has been partitioned

into multiple sub-regions depending upon different levels

of cooperation (αf ) and interference (αi) strengths. These

regimes are numbered from 1 to 6 and the details appear in

Section IV. Our main result, proved in Section IV, is



(Rp +Rc)
OB ≤ min

{
(Rp +Rc)

(CS)
, (Rp +Rc)

(DT)
, (Rp +Rc)

(PV)
}

(3)

(Rp +Rc)
(CS) ≤ log (1 + S) + min

{
log
(
1 + (

√
S +

√
Ip)

2
)
, log (1 + C + S)

}
, (4)

(Rp +Rc)
(DT) ≤ min

{
log

(
1+max{Ip, S}

1 + Ip

(
1+(

√
S+
√
Ip)

2
))

, log

(
1+C+max{Ic, S}

1+Ic

(
1+(

√
S+
√
Ic)

2
))}

, (5)

(Rp +Rc)
(PV) ≤ log


1 +

(√
S√
Ic

+
√
Ip

)2

+ log (1 + C) + log


1 +

( √
S√
Ip

+

√
Ic√
C

)2

 . (6)

Theorem 1 The sum-capacity upper bound in (3) is achiev-

able to within a constant gap of 7.3 bits per channel use

regardless of the actual value of the channel parameters.

Before concluding this section, we make some comments on

the results we obtained regarding the computation of the gap:

• The gap result of region 6 in Section IV also holds for

a big part of region 4. In particular, it does not apply in the

regime αi ∈ [2/3, 1], αf < 1−αi where the proposed scheme

for region 6 does not achieve the optimal gDoF.

• The largest gap in region 6 is 5 bits. This gap may be

decreased in several ways. For example, one can optimize the

power split between common and private messages instead of

using the one presented in [6]. Alternatively, one can develop

more complex coding schemes. An example of latter method is

represented by the DPC-based achievable scheme that can be

found at the end of Section IV. It can be proved [12] that for

the regime αi < 1 and αf > 1 this DPC-scheme achieves the

optimal gDoF within 2 bits, rather than 3 bits as the proposed

scheme based on superposition coding only.

• The largest gap occurs when the upper bound in (6) is

the tightest. A possible way to reduce the gap would due to

develop a tighter upper bound than the one in (6) used here.

• Cooperation does not improve on the gDoF of the classical

IC when 2
3 ≤ αi ≤ 2 or αi ≥ 2, αf ≤ 1 or 1

2 ≤ αi ≤ 2
3 , αf ≤

2αi − 1. i.e., in these regimes, as far as gDoF is concerned,

there is no need for allowing source cooperation.

• Similarly, cooperation does not improve on the gDoF of

the classical relay channel when 1 ≤ αi ≤ αf , i.e., in this

parameter regime the secondary user acts as a pure relay for

the primary user (Rc = 0). In other words cognitive radio

might not be worth implementing in practical systems.

• Finally, the gDoF of the G-CCIC is equal to that of the

non-causal cognitive IC when 2
3 ≤ αi ≤ 2 or αi ≥ 2, αf ≥

αi − 1 or 0 ≤ αi ≤ 2
3 , αf ≥ min{1 − αi, αi}, i.e., in

these parameter regimes causal cognition attains the ultimate

performance limits of non-causal cognition.

IV. PROOF

We define the gap as GAP = (Rp +Rc)
(OB) −

(Rp +Rc)
(IB)

. We analyze different regimes:

Region 1: for αi > 2 and αf ≤ 1 the tightest upper bound

gives d ≤ 1. The classical IC in very strong interference with

only common messages gives (Rp +Rc)
(IB) = 2 log (1 + S),

which using (2) implies d ≥ 1. This shows the achievability

Fig. 2. Optimal gDoF and constant gap for the symmetric G-CCIC in the
different regimes of (αi, αf ).

of the gDoF upper bound. From (4) by using C ≤ S

GAP ≤ log (1 + C + S)− log (1 + S) ≤ 1 bit.

Region 2: for αi > 2 and αf > 1 the tightest upper bound

gives d≤ 1
2 min{αi, 1+αf}. By using [1, Theorem IV.1] with

T1=T2=U1=V2=∅, V1 = X1, U2 = X2, and by identifying

Node1 with PTx, Node2 with CTx, Node3 with PRx and

Node4 with CRx, the following sum-rate is achievable

(Rp +Rc)
(IB)

= max
PQPX1|QPX2|Q

min{I(Yp;Q,Xc, Xp),

I(Yc;Q,Xc, Xp), I(Yf ;Xp|Xc, Q) + I(Yc;Xc|Xp, Q)}.

In Gaussian noise, we choose Q,Uc, Up to be i.i.d. N (0, 1)
and define Xj =

√
Pj(βjQ+ γjUj) : |βj |2 + |γj |2 ≤ 1, j ∈

{p, c}. By assuming ∠hcc−∠hpc=∠hcp−∠hpp, an achievable

sum-rate is

(Rp +Rc)
(IB) = max

(|βc|,|βp|)∈[0,1]2
min

{

log
(
1 + C(1− |βp|2)

)
+ log

(
1 + S(1− |βc|2)

)
,

log
(
1 + S + I + 2

√
SI |βp||βc|

)}

≥
{

log(1 + C) + log(1 + S) if C(1 + S) ≤ I,
log (1 + S + I) if C(1 + S) > I.

The pair (βp, βc) = (0, 0) represents the optimal choice

when C(1 + S) ≤ I . The sum-rate corresponding to C(1 +



S) > I has been found by equating the two arguments

of the maxmin and by expressing βp as a function of βc.

It can be demonstrated that a possibly suboptimal value is

βc = 0 that leads to the expression of the sum-rate when

C(1 + S) > I holds. By using (2), the derived achievable

sum-rate implies d ≥ 1
2 min{1 + αf , αi} since αi > 1. For

the case S < C ≤ I/(1 + S) using (4) we obtain

GAP ≤ log (1 + C + S)− log(1 + C) ≤ 1bit,

while for C > I/(1 + S) using (5) with S ≤ I we obtain

GAP ≤ log
(
1 + S + I + 2

√
SI
)
− log (1 + S + I) ≤ 1 bit,

since 2
√
SI ≤ 1 + S + I ⇐⇒ 0 ≤ 1 + (

√
S −

√
I)2.

Region 3: for αi ∈ [1, 2] the tightest upper bound gives

d ≤ 1
2αi. The classical IC in strong interference with only

common messages gives (Rp+Rc)
(IB)

= log (1+S+I),
which using (2) implies d ≥ 1

2αi since αi > 1. From (5)

by using S≤I

GAP ≤ log
(
1 + S + I + 2

√
SI
)
− log (1 + S + I) ≤ 1 bit,

since 2
√
SI ≤ 1 + S + I ⇐⇒ 0 ≤ 1 + (

√
S −

√
I)2.

Region 4: for αi ∈ [2/3, 1) the tightest upper bound gives

d ≤ 1− αi

2 . The classical IC with common and private mes-

sages and with the power split of [6] gives (Rp +Rc)
(IB)

=
log (1 + S + I) + log

(
2 + S

I

)
− 2, which using (2) implies

d ≥ 2−αi

2 since αi < 1. From (5) by using I ≤ S

GAP ≤ log

(
1 +

2
√
SI

1 + S + I

)
+ log

(
I(1 + S)

S(1 + I)

)
+ 2 ≤ 3,

since 2
√
SI ≤ 1 + S + I ⇐⇒ 0 ≤ 1 + (

√
S −

√
I)2.

Region 5: αi ∈ [1/2, 2/3) and αf ≤ 2αi− 1 in which case

the tightest upper bound gives d ≤ αi. The classical IC with

common and private messages and with the power split of [6]

gives (Rp +Rc)
(IB)

= 2 log
(
1 + I + S

I

)
− 2, which using

(2) implies d ≥ max{αi, [1−αi]
+} = αi since αi ∈ [1/2, 1].

From (6)

GAP ≤ 2 log


1 +

(√
S√
I
+
√
I

)2

+∆+

− 2 log

(
1 + I +

S

I

)
+ 2 ≤ 4 + ∆ < 7.322 bits,

∆ := max
C∈[1,I2/S]

log

(1 + C)

(
1 +

(√
S√
I
+

√
I√
C

)2)

1 +
(√

S√
I
+
√
I
)2 ≤ log(10).

The upper bound on ∆ is derived as follow: as a function of

C, ∆ is a parabola with a minimum in C, so its maximum

is attained either for C = 1 or for C = I2/S. It can be

demonstrated that ∆ is maximum for C = I2/S and here

∆ = log(10) holds.

Region 6: αi < 2/3 and αf > [2αi − 1]+. We split this

region in different sub-regions: Subregion 6a: 1 < αi + αf ;

here the tightest upper bound gives d ≤ 1 − αi

2 . Subregion

6b: 1 ≥ αf + αi and αf ≥ αi; here the tightest upper bound

gives d ≤ 1− αi

2 . Subregion 6c: 1 > αf + αi, αi < 1/2 and

αf < αi; here the tightest upper bound gives d ≤ 1−αi+
αf

2 .

Subregion 6d: 1 ≥ αf +αi, αf < αi and αi ∈ [1/2, 1]; here

the tightest upper bound gives d ≤ 1+αf

2 .

By using [1, Theorem 4.1] with Q = U1 = V2 = ∅ and by

applying Fourier-Motzkin elimination on the resulting region

in [1, Theorem 4.1] we get the following achievable sum-rate,

(Rp +Rc)
(IB)

= maxmin{
min{[1, eq.(8a)], [1, eq.(8b)]}+ [1, eq.(8d)] (8a)

[1, eq.(8e)], [1, eq.(8f)], [1, eq.(8g)], (8b)

min{[1, eq.(8a)], [1, eq.(8b)]}+ [1, eq.(8ℓ)]

2

}
, (8c)

where the maximization is over all joint input distributions

PV1,T1,X1,U2,T2,X2
= PV1,T1,X1

PU2,T2,X2
.

In Gaussian noise, we choose V1, T1, U2, T2 to be i.i.d.

N (0, 1) and by identifying Node1 with PTx, Node2 with CTx,

Node3 with PRx and Node4 with CRx we let

Xj =
√
Pj(βjUj + γjTj) : |βj |2 + |γj |2 ≤ 1, j ∈ {p, c}.

In the following, inspired by the scheme of [6] for the classical

IC in weak interference, we set (1−|βc|2)I = (1−|βp|2)I = 1.

We do not report here the equations characterizing the achiev-

able region for sake of space. It can be shown, [12, Appendix

G], that the sum-rate in (8) is equal to the term in (8b). Since

[1, eq.(8f)] is equal to [1, eq.(8e)] by symmetry, the sum-rate

is given by

(Rp +Rc)
(IB)

= min {[1, eq.(8e)], [1, eq.(8g)]}

= min

{
log

(
2I + S

2I

)
+ log

(
S + I + 1

2

)
,

log

(
2I + S

2I

)
+log

(
1 + C

I + C

)
+log

(
S + I2 + I

2

)}
.

For future use we note that the second term in the above

min is the smallest if S ≥ C(I + 1). Using (2) the derived

achievable rate in αi ≤ 1 implies that

d≥





1−αi/2 for 1 < αi+αf ,
1−αi/2 for 1 ≥ αi+αf , αf ≥ αi,
1−αi+αf/2 for 1 ≥ αi+αf , αf < αi, αi < 1/2,
(1+αf)/2 for 1≥αi+αf , αf <αi, αi∈ [1/2, 1].

The gDoF upper bound is achievable in αi ≤ 2/3. We analyze

separately the different subregimes. For the regimes where d ≤
1−αi/2 we use the upper bound in (5) with S ≥ I , otherwise

we use the upper bound in (6).

Subregion 6a:

GAP≤2+log

(
1+S

2I+S
· I

1+I

)
+log

(
1+S+I+2

√
SI

S + I + 1

)

≤ 3 bits,

since I
1+I ≤ 1, 1+S

2I+S ≤ max{1, 1
2I } = 1 because I > 1,

2
√
SI ≤ 1 + S + I ⇐⇒ 0 ≤ 1 + (

√
S −

√
I)2 and I < S.



Subregion 6b:

GAP ≤ 2 + log

(
1 + S

1 + I

)
+ log

(
1 + S + I + 2

√
SI
)
+

− log (2I + S) + log (I)− log

(
1 + I

2I

)
− log

(
S + I2 + I

)

= 3 + log

(
1 + S

2I + S

)
+ 2 log

(
I

1 + I

)
+

+ log

(
1 + S + I + 2

√
SI

S + I2 + I

)
≤ 4 bits,

since 1 + S + I < S + I2 + I and 2
√
SI < S + I2 + I .

Subregion 6c:

GAP ≤ 2 + log
(
I + S + I2 + 2I

√
S
)
+

+log
(
IC + SC + I2 + 2I

√
SC
)
+log (I + C)+

− log (IC)− log (2I + S)− log
(
S + I2 + I

)

≤ 3 + log

(
1 +

2I
√
S

S + I2 + I

)
+ log

(
1 +

2I
√
SI

2I2 + SI

)
≤ 5,

since 2I
√
S < S + I2 + I and 2I < 2I2 + SI .

Subregion 6d: GAP ≤ 5 bits, by following exactly the

same steps as done for the subregion 6c.

A DPC-based achievable scheme. From [1, Theorem IV.1]

with Q = V1 = U1 = T1 = S2 = Z2 = V2 = U2 = ∅, Z1 =
X1, by identifying Node1 with PTx, Node2 with CTx, Node3

with PRx and Node4 with CRx, and by renaming S1 = Q,

we have

(Rp +Rc)
(IB)

= max
PQPXp|QPT2,Xc|Q

min{I(Xp;Yf |Q, T2, Xc),

I(Q,Xp;Yp)}+ I(T2;Yc)− I(T2;Q).

In Gaussian noise, we choose Q,Uc, Up to be i.i.d. N (0, 1)
and define

Xj =
√
Pj(βjQ+ γjUc) : |βj |2 + |γj |2 ≤ 1, j ∈ {c, p},

and T2 = Uc + λcQ with λc as in [11] so as to “cancel” Q
from Yc, that is, so that I(T2;Yc)− I(T2;Q) = I(T2;Yc|Q).
Then, by assuming ∠hcc−∠hpc = ∠hcp−∠hpp, an achievable

sum-rate is

(Rp +Rc)
(IB) = max

(|βc|,|βp|)∈[0,1]2
log

(
1 +

(1 − |βc|2)S
1 + (1− |βp|2)I

)
+

min

{
log
(
1+C(1−|βp|2)

)
,log

(
1+ S+I+ 2|βc||βp|

√
SI

1+(1−|βc|2)I

)}
.

Gap for αi < 1 and αf > 1 with DPC. By using the

upper bound in (5) under the condition S ≥ I and the above

DPC-based achievable rate, we obtain the following gap

GAP ≤ log

(
1 +

2
√
SI

1 + S + 2I

)
+ log

(
1 +

S

C

)
≤ 2 bits

using 0 ≤ I and S ≤ C.

V. CONCLUSIONS

In this work we studied the CCIC, a network with two

source-destination pairs sharing the same channel. In contrast

to the classical IC, one transmitter, the CTx, exploits informa-

tion about the other transmitter, the PTx, from its own channel

observations; in contrast to the classical cognitive IC, the CTx

learns the message of the PTx in a causal way. We used known

outer bounds for bilateral source cooperation by adapting them

to the case of unilateral cooperation. Our main contribution

consisted in showing that for the interference-symmetric case

the sum-capacity of the Gaussian CCIC can be achieved to

within a constant gap. Interestingly, the achievable schemes

only use superposition coding. It is shown that more complex

schemes employing DPC may be used to achieve smaller gaps.
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