

Vehicular Wireless Networks: What should the future hold?

Jérôme Härri IEEE WiVEC 2011 – Panel Session San Francisco, USA, September 5th 2011

Evolution Phases in Vehicular Networks

20/11/2011 -

Jérôme Härri IEEE WiVEC 2011 - Panel

- p 2

FP7 Drive CAR-2-X

Major European Field Operation Test

- Spans multiple national FOTs
- 32 partners, 10 support partners and 18.9 million Euro budget

Objectives:

- Laying the foundation for rolling out cooperative systems i Europe.
- Testing ~22 use cases in traffic safety/efficiency and comf in real deployments
- ETSI-compliant
 - Contribute or implement ETSI ITS standards

Challenges:

- Interoperability of hardware and Software
- Data availability and data quality
- Scalability of technical testing
- …

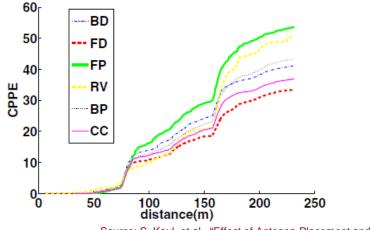
- National FOTs
 - French SCORE@F: http://blog.inria.fr/scoref/
 - German SIM-TD: <u>http://www.simtd.org/</u>

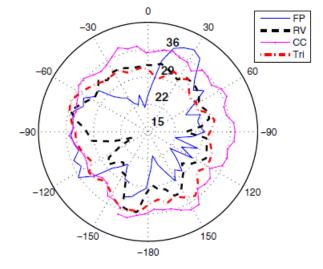
The world of Vehicular Wireless Networks

Not sounding too dramatic:

Have we asked ourselves the right questions?

What will come next ?


20/11/2011 -

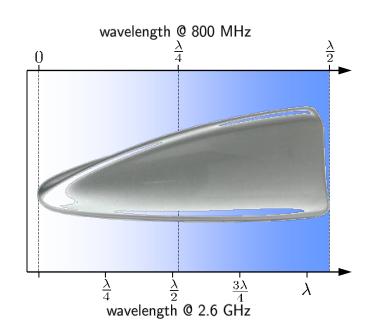

Multiple Antenna Techniques and Testing

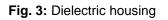
Impact of Antenna Placement on vehicles:

Unidirectional Radiation:

Cumulative percentage packet error:

Source: S. Kaul et al., "Effect of Antenna Placement and Diversity on Vehicular Network Communications", ICC 2010




Multiple Antenna Techniques and Testing

The antenna challenge

- Multi-standard & multi-mode functionality
- Integration of multiple antennas with limited form factors
- Integrated into a dielectric housing

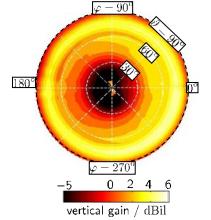


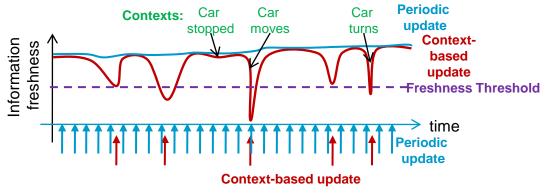
Fig. 2: Antenna with dielectric housing

 -270°

0 2 4 6

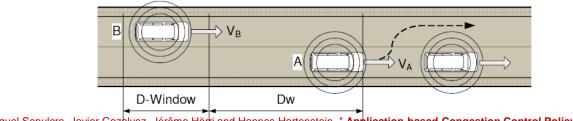
Source: Oliver Klemp, BMW R&D, Munich, Germany, Oliver.Klemp@bmw.de

20/11/2011 -


Jérôme Härri IEEE WiVEC 2011 - Panel

Application(s)-centric: Information Relevance

Information relevance communication

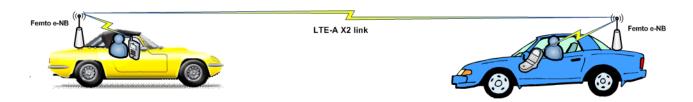

- Information does not have the same worth/relevance in space or time
- Not adapted to application requirements
- > Channel Congestion: cannot provide maximal freshness and coverage everywhere
 - But could adjust transmit profiles to provide it where and when needed

Example: Cooperative Application-based TX Rate control

[Source: Fatma Hrizi, Jérôme Härri, Christian Bonnet, " Every Bit Counts: Tracking and Predicting Awareness"]

Example: Cooperative Application-based TX Power control

[Source: Miguel Sepulcre, Javier Gozalvez, Jérôme Härri and Hannes Hartenstein, " Application-based Congestion Control Policy for the Communication Channel in VANETs"]



LTE-Advanced for Vehicular Networks

- LTE-Advanced specifies extensions of the basic architecture to support
 - Relay Stations
 - Femto e-NBs

Both are expected to become part of vehicles

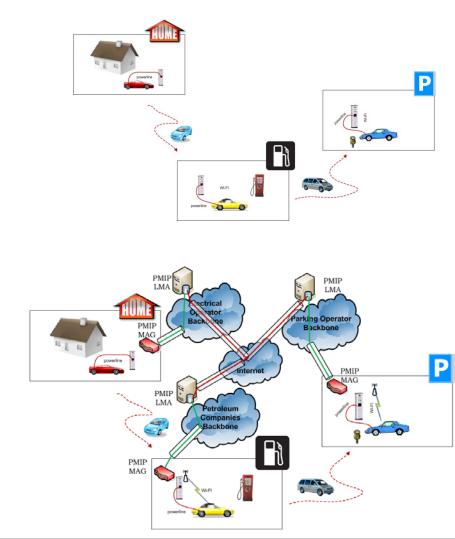
The LTE-A X2 link provides a data link between Relay Stations

How will 802.11p and LTE-A RS/Femto coexist?

- Will share similar issues
 - Mobility, connectivity, scheduling, interferences

Electro-Mobility and Smart Grids

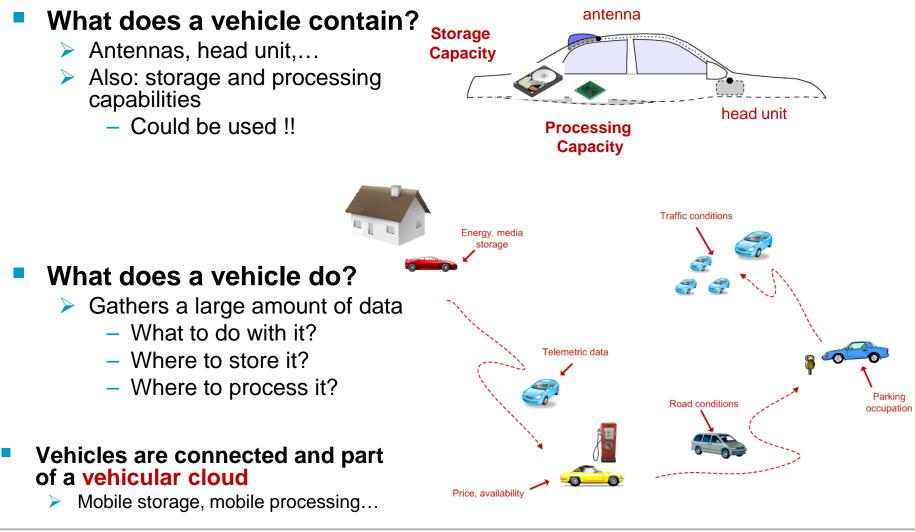
Distributing the Charging station


- In Points of Interests
- As function of mobility

Designing the communication networks

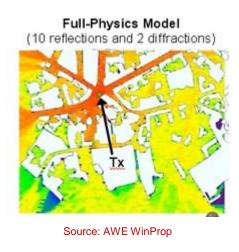
- > At the charging stations
 - Multiple interfaces
- Between charging stations

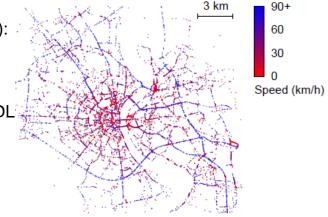
Objective Function of electromobility


- Optimization of Energy
 - quick- load vs. long charge
 - Shortest path vs. least energy demanding path
 - Selling energy vs. using it

- p 9

Urban Sensing and Vehicular Clouds


Large Calibrated Vehicular Scenarios


Evaluation of applications and protocols require reference scenarios

- Need to be
 - Large scale topologies
 - Calibrated mobility and validated environment
 - Capable of various context
 - In space & in time
 - Widely accepted by the community

Current developments

- City of Zurich (MMTS traces)
 - Mesoscopic urban mobility
- City of Karlsruhe, Germany (support: PTV, City of Karlsruhe, KIT):
 - Calibrated mobility and propagation of part of the city center
- City of Braunschweig, Germany (support: city of Braunschweig, DL University of Hannover)
- City of Cologne, Germany (support: INSA Lyon)
 - Calibrated 400km2 micro and macro mobility

Source: Sandesh Uppoor, Marco Fiore, " Vehicular mobility in large-scale urban environments ", ACM Mobicom 2011, Poster Session

- p 11

This...

Fully automated car

- Awareness provided by
 - Sensors and radars
- Google map-based navigation

1600 km automatic driving... 1 single accident !

20/11/2011 -

