
Automating Privacy Enforcement in Cloud
Platforms

Peng Yu1, Jakub Sendor2, Gabriel Serme3, and Anderson Santana de Oliveira2

1 Université de Technologie de Compiègne, France
peng.yu@etu.utc.fr

2 SAP Research, France
firstname.lastname@sap.com

3 Eurecom, France
serme@eurecom.fr

Abstract. Privacy in cloud computing is a major concern for individ-
uals, governments, service and platform providers. In this context, the
compliance with regards to policies and regulations about personal data
protection is essential, but hard to achieve, as the implementation of pri-
vacy controls is subject to diverse kinds of errors. In this paper we present
how the enforcement of privacy policies can be facilitated by a Plat-
form as a Service. Cloud applications developers can use non-obtrusive
annotations in the code to indicate where personally identifiable infor-
mation is being handled, leveraging the aspect-oriented programming
(AOP) features. Subsequently the evaluation of user defined preferences
is performed by trustful components provided by the platform, liberating
developers from the burden of designing custom mechanisms for privacy
enforcement in their software.

1 Introduction

In order to speed up the deployment of business applications, and to reduce
overall IT capital expenditure, many cloud providers nowadays offer the Platform
as a Service (PaaS) solutions as an alternative to leverage the advantages of cloud
computing. We can mention for instance SAP NetWeaver Cloud, Google App
Engine, or VMware Cloud Foundry, to cite a few. PaaS brings an additional level
of abstraction to the cloud landscape, by emulating a virtual platform on top
of the infrastructure, generally featuring a form of mediation to the underlying
services akin to middleware in traditional communication stacks.

As the consequence of that shift we observe that more and more personally
identifiable information (PII) is being collected and stored in cloud-based sys-
tems. This is becoming an extremely sensitive issue for citizens, governments,
and companies, both using and offering cloud platforms. The existing regulations,
which already established several data protection principles, are being extended
to assign new responsibilities to cloud providers with respect to private data
handling.



The provision of privacy preserving services and tools will be one of the argu-
ments favoring the choice of one PaaS provider over the other when a company
is hesitating where to deploy new cloud application. The proposed reform of the
European data protection regulation points out that privacy-aware applications
must protect personal data by design and by default: “Article 22 takes account
of the debate on a ’principle of accountability’ and describes in detail the obli-
gation of responsibility of the controller to comply with this Regulation and to
demonstrate this compliance, including by way of adoption of internal policies
and mechanisms for ensuring such compliance. Article 23 sets out the obliga-
tions of the controller arising from the principles of data protection by design
and by default. Article 24 on joint controllers clarifies the responsibilities of joint
controllers as regards their internal relationship and towards the data subject4.”

The correct enforcement of privacy and data usage control policies has been
recently subject of several incidents reported about faulty data handling, perhaps
on purpose, see for instance the cases of Facebook5.

Therefore, addressing compliance requirements at the application level is a
competitive advantage for cloud platform providers. In the specific cases where
the cloud platform provider is also considered a joint controller, a privacy-aware
architecture will address the accountability requirement for the PaaS provider
with regards to the next generation of regulations. Such architecture can enable
compliance also for the Software as a Service delivery model, if we assume the
software was built over a privacy-aware platform. On the other hand, this could
be hardly achieved in the context of Infrastructures as a Service, since there
would be no interoperability layer on which the privacy controls can rely on.

In order to achieve this, the PaaS must implement some prominent, possibly
standardized, privacy policy framework (such as EPAL[2], P3P[7]), where pri-
vacy preferences can be declared in a machine-readable form, and later enforced
automatically. In such a setting, the privacy enforcement controls could be eas-
ily incorporated into new deployment landscape accelerating the development
process of compliant applications. Furthermore the cloud platform can offer the
guaranties ensuring the correct implementation of the enforcement components.
This could be offered either via a certification mechanism or an audit of an
existing cloud landscape that would be executed by the governing entities.

In this paper we present work towards the implementation of privacy-aware
services in a PaaS. We aim to empower the cloud platform with capabilities
to automatically enforce the privacy policy that is result of the end-user con-
sent over the application provider privacy policy. End-user policies and service
provider terms of use are defined in a state of the art privacy and usage control
language [3]. In order to leverage the provided implementation of privacy-aware
services, cloud application developers need to introduce simple annotations to
the code, prior to its deployment in the cloud. These indicate where PII is being
handled, towards automating privacy enforcement and enabling compliance by

4 http://ec.europa.eu/justice/data-protection/document/review2012/com_

2012_11_en.pdf
5 http://mashable.com/2011/10/21/facebook-deleted-data-fine/

http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://mashable.com/2011/10/21/facebook-deleted-data-fine/


design and by default. The idea is outlined in Figure 1, and consists of design-
time steps (declaring policies, annotation of the code and deployment in the
cloud); and run-time steps (including policy matching, privacy control and obli-
gation execution).

Fig. 1: Privacy aware PaaS components

The enforcement mechanisms are provided by the platform with the help
of a new approach for aspect-oriented programming where aspects can be ma-
nipulated at the process and at the platform levels [8]. That approach gives a
possibility to maintain a more flexible configuration of the enforcement mech-
anisms. The mechanisms interpret end-user preferences regarding handling of
the PII, presented in form of opt-in or opt-out choices among available privacy
policies of a cloud application, and later perform the required actions (filtering,
blocking, deletion, etc). We experimented on a Java-based Platform as a Service,
SAP NetWeaver Cloud, to demonstrate how privacy preferences can be handled
automatically thanks to the use of simple Java annotation library provided in
our prototype. The platform provider can make in this way an important step
towards providing built-in compliance with the personal data protection regula-
tions transparently, as we describe in the next sections.

The remainder of the paper is organized as follows: in Section 2 we present our
use case and we give a brief overview of the privacy policy language we adopt
in this work, in Section 3 we introduce the technical architecture allowing to
enforce privacy on multiple PaaS layers, Section 4 brings a discussion on related
works and Section 5 presents future perspectives and concludes the paper.



2 Privacy-Aware Applications in the Cloud

In this section we present our use case involving multiple stakeholders accessing
users’ PII in the cloud, as well as some background on privacy policy language
that we used.

2.1 Use case

In our use case we consider a loyalty program offered by a supermarket chain,
accessible via a mobile shopping application that communicates with back-end
application deployed on the PaaS cloud offering. The supermarket’s goal is to
collect the information about consumers’ shopping behavior that results in the
creation of a consumer profile. This profile could then be used to provide con-
sumers more precise offers and bargains. Supermarket’s business partners may
also want to access this information in order to propose personalized offers to
the mobile shopping application users themselves.

The back-end application for the supermarket loyalty program is developed
using Java programming language and uses the cloud persistency service to store
application data. The interface to access the persistency service is based on Java
Persistence API (JPA)6, which is nowadays one of the most common ways of
accessing a relational database from Java code.

The supermarket employees can access detailed results of database queries
regarding the consumers’ shopping history and also create personalized offers,
via a web-based portal. Moreover, the cloud application exposes web services
through which third parties interact with the back-end system to consume col-
lected data: both for their own business analysis, but also to contact directly the
consumers for marketing purposes.

The interface for the consumers makes it possible to indicate privacy prefer-
ences with respect to the category of products (health care, food, drinks, etc) that
one wants to share his shopping habits about. The consumer can also indicate
whether he permits the supermarket to share personally identifiable information
with its business partners, among other usages. This choices are then reflected
by the private data access control mechanism that we will describe in Section 3.

2.2 Background: Privacy Policy Language

The users of the mobile shopping application are asked to provide various kinds of
personal information, starting from basic contact information (addresses, phone,
email) to more complex data such as shopping history or lifestyle preferences.
Service providers describe how users’ data are handled using a privacy policy,
which is explicitly presented to users during the data collection phase.

In this paper we adopt the PrimeLife7 Policy Language (PPL) [3], which
extends XACML with privacy-related constraints for access and data usage.

6 http://docs.oracle.com/javaee/5/tutorial/doc/bnbpz.html
7 www.primelife.eu

http://docs.oracle.com/javaee/5/tutorial/doc/bnbpz.html
www.primelife.eu


Fig. 2: Excerpt of a PPL policy rule

PPL policy is then used by the application to record its privacy policy. It states
how the collected data will be used, by whom, and how it could be shared. On
the other hand, the end-user also selects among the possible choices as to the
conditions of the data usages, that are derived from privacy policies specific to the
application. This user opt-in/opt-out choice is managed by the application and
as such is not part of the generic enforcement mechanism developed by us. Before
disclosing personal information, the user can match his preferences against the
privacy policy of the service provider with the help of a policy matching engine.
The result of the matching process is an agreed policy, which is then translated
into the set of simple rules that are stored together with users’ data inside the
cloud platform’s database servers.

In summary a PPL policy defines the following structures [3]:

– Access Control Elements: inherited from the XACML attribute-based access
control mechanism to describe a shared resource (in our case PII) in general,
as well as entities (subjects) that can obtain access to the data.

– Data Handling Preferences: expressing the purpose of data usage (for in-
stance marketing, research, payment, delivery, etc.) but also downstream
usage (understood here as sharing data with third parties, e.g. advertising
companies), supporting a multi-level nested policy describing the data han-
dling conditions that are applicable for any third party retrieving the data
from a given service.

– Obligations: specify the actions that should be carried out with respect to
the collected data, e.g. notification to the user whenever his data is shared
with a third party, or deletion of the credit card number after the payment
transaction is finished, etc. Obligations in PPL can be executed at any mo-
ment throughout whole lifetime of the collected data and can affect future
data sharing transactions, e.g. with third parties.

An excerpt of a policy is shown in Figure 2. It shows part of a policy rule, stat-
ing the consent to use the data collected for three distinct purposes (described
using P3P purpose ontology), but forbids downstream usage.

Consumer opt-in/opt-out choice is linked with PPL policy rule via XACML
conditions that we adopted for this purpose. We have reused EnvironmentAt-
tributeDesignator elements syntax to refer to the actual recorded consumer
choice in the application data model, as shown in Figure 3. The location is



Fig. 3: Excerpt of a PPL policy condition

provided as the AttributeId value and can be read as TABLE NAME:COLUMN NAME

of the database table where this choice is stored (CONSUMER CONSENT) as well
as a foreign key to the product category table (CATEGORY ID) that is used to
join products table. This information is used when enforcement mechanism is
put in place to take consumer consent into account whenever information about
consumer’s shopping history (for certain product categories) is requested. This
policy definition of how user consent is linked to the rest of the application data
model is left in charge to the application developer as he is the one possessing
full knowledge of the application domain.

3 Privacy Enhanced Application Programming

We have designed a framework able to modify, at the deployment time, the ar-
chitectural elements (such as databases, web service frameworks, identity man-
agement, access control, etc) enriching it with the further components in order to
enforce user privacy preferences. In this landscape the new applications deployed
on the modified platform can benefit from privacy-aware data handling.

3.1 Programming Model

The privacy-aware components are integrated seamlessly with cloud application
at the deployment time, so that the enforcement of privacy constraints is done
afterwards automatically. They mediate access to the data sources, enforcing pri-
vacy constraints. In this case we are taking full benefit of the uniform database
access in the PaaS landscape that is exposed via standard Java database inter-
faces such as JDBC (Java Database Connectivity) or JPA.

Usually the application code handling privacy related data is scattered and
tangled over the application, being difficult to handle and to maintain if any
changes in the privacy policy are introduced. As we observed in the existing
applications the operations, which are performed on the private user data to
ensure that privacy policies are enforced, are typically cross-cutting concerns in
aspect-oriented programming paradigm. Inspired by this, we designed a process



Fig. 4: JPA entity class annotation indicating persistency of private information

for the application developer that contributes to simplifying a way the data
protection compliance could be achieved. It consists of adding meta-information
to the application code via Java annotation mechanism in the JPA entity classes.
Entity class in JPA terms is the one that is mapped into a database structure
(usually a table, but also more complex type of mappings exist, e.g. to map object
inheritance hierarchy) and enables the objects of that class to be persisted in a
database. We provide also a second type of annotations, for the methods that
make use of a private data, to indicate the purpose of the data usage.

The modifications to the code are non-intrusive, in the sense that the appli-
cation business functions flow will stay exactly the same as before, except for the
data set it will operate on, that will be obtained from database by adhering to
the privacy policy. The changes are as transparent as possible from the applica-
tion point-of-view as new platform components propose the same set of API as
in the traditional platforms (in our case this API is JPA) and additional func-
tionality is obtained via non-obtrusive code annotations that in principle could
be easily removed in case described features are not required or not available.

This approach adds value with respect to legacy applications while allowing
privacy management when needed. Another advantage is that the cloud service
provider can easily move to another cloud platform without being locked into
the certain vendor, apart from the fact that the guarantees given by the platform
about private data handling could not be the same.

The platform we used to develop our prototype offers the enterprise level
technologies available for Java in terms of web services and data persistency
(JEE, JPA). In most of the examples we present along the paper we assume
that the application developer will likely use a framework such as the JPA to
abstract the database access layer.

In our approach developers are required to add annotations to certain con-
structs, such as @PII annotation in the JPA entity class (Figure 4). This anno-
tation indicates that the class comprises one or more fields having private data
(that usually are represented in database as columns) or that all fields are to be
considered as PII (thus whole database table row needs to be either filtered or
kept during the privacy enforcement, as JPA entity is by default mapped to a
database row).

In the business code that is handling the private data we propose to use
two other annotations to indicate class and method that processes PII sets.
An example of annotated code is shown in Figure 5. In this figure the method
annotation holds the information that the shopping history list items will be
processed for marketing purpose.



Fig. 5: Annotating private data usage class with PII meta-information

In summary our library provides three different annotations:

@PII: It is a flag to indicate personally identifiable information inside a JPA
entity class definition. Such information is usually stored in a database as a
table or a column. In Figure 4 this annotation involves the scope of the class
declaration, see lines 2 and 3.

@PiiAccessClass: This annotation should be put in the class to indicate where
it contains access methods to personal data (see line 5 in Figure 5). We
assume that PII access method performs queries to the database that are
requesting private user data.

@Info: This annotation is applied to PII access method, to describe the purpose
or set of purposes of the query performed in that method (see lines 9 and 10
in Figure 5).

We expect the application developers to use this annotations to mark each
usage of personal data as well as to indicate correct purposes. Ultimately they
seek compliance to regulations, therefore we trust them to correctly indicate via
the annotations the intended usage of the data. One can envisage that automated
code scanners and manual reviews can take place during an audit procedure in
order to check whether the annotations are rightfully used.

3.2 Implementation

In this section we detail the components of our prototype architecture. Techni-
cally our code components are packaged as several OSGi (Open Services Gateway
initiative framework8) bundles. A bundle is a component which interacts with
the applications running in the cloud platform. Some of them are to be directly
deployed inside the PaaS cloud landscape and managed by the cloud provider
while the other are part of the library to be used by the cloud application de-
velopers. Cloud providers can easily install or uninstall bundles using the OSGi
framework without causing side effects to applications themselves (e.g. no ap-
plication restart is required if some of the bundles are stopped). In the context
of our scenario, we have three main bundles managed by the cloud provider

8 http://www.osgi.org

http://www.osgi.org


Fig. 6: Enforcement components

(JDBC Wrapper, Annotation Detector and SQL Filter) and one additional bun-
dle (Policy Handler) that is providing a translation from an application privacy
policy file written in the PPL language into an internal representation stored
in the Constraints Database. The diagram in Figure 6 presents the architecture
of the system, which we are going to describe in more details in the following
subsections.

JDBC Wrapper The Wrapper intercepts all queries issued by the cloud ap-
plication directly or by the third parties which want to consume the collected
data containing shopping history of the fidelity program participants. This com-
ponent is provided on the platform as an alternative to the default JDBC driver
in order to enforce consumers’ privacy preferences. Actually the wrapper makes
use of the default driver to eventually send the modified SQL calls to database.

JDBC Wrapper bundle implements the usual interfaces for the JDBC driver
and overrides specific methods important to the Java Persistence API, necessary
to track the itinerary of SQL queries. As a matter of fact, it is wrapping all
JDBC methods that are querying the database, intercepting SQL statements
and enriching them with proper conditions that adhere to privacy policy (e.g.
by stating in the WHERE clause conditions that refer to the consumer consent
table). In order to identify the purpose of each query, its recipient and the
tables referred, we retrieve the call stack within the current thread thanks to the
annotations described in the previous section. We look for the PII access class,
then we look for the method that sends the request to get the further parameters
that help properly enforce privacy control.



Annotation Detector First task of this component is to scan Java classes at
the deployment time and look for the JPA entities that are containing privacy-
related annotation in its definition (@PII). List of such classes is then stored
inside the server session context. Information about entities considered as PII
is used to determine which database calls need to be modified in order to help
preserve consumer privacy preferences.

In the second run the annotation detector scans the application bytecode in
order to gather information concerning the operation that the application intends
to perform on the data, annotated with @PiiAccessClass and @Info annotation.
It is important to recall that the annotations are not a “programmatic” approach
to indicate purpose, as they are independent from the code, which can evolve on
its own. The assumption is that developers want to reach compliance, thus the
purpose is correctly indicated, in contrast to [4], where it is assumed that end-
users themselves indicate the purposes of the queries they perform. The cloud
platform provider can instrument the annotation detector with a configuration
file where the required annotations are declared. The detector can recognize
custom annotations and stores information about related entity class in the
runtime for future use.

SQL Filter This component allows us to rewrite original queries issued to the
database by replacing the requested data set with a projection of that data set
that takes into account consumers’ privacy choices. SQL Filter modifies only
the FROM part of a query, implementing an adapted version of the algorithm
for disclosure control described in [12], also similar to the approaches described
in [1], [13], and [16].

The query transformation process makes the use of the pre-processed deci-
sions generated by the Policy Handler that concerns each possible combination
of the triple purpose, recipient and PII table.

The transformation of the SQL query happens at the runtime. Consumer’s
privacy preferences are enforced thanks to the additional join conditions in the
query, relating data subject consent, product category and filtering rules. The
output is a transformed SQL query that takes into account all stated privacy
constraints and is still compatible with the originally issued SQL query (it means
that the result set contains exactly the same type of data, e.g. number of columns
and their types). From a business use-case perspective, it was always possible to
visualize relevant data, e.g. shopping history information, etc, without disclos-
ing personal data when user didn’t give his consent. The process is illustrated
in Figure 7. It depicts the process of query modification when application is ac-
cessing data from the SHOPPING HISTORY table (top-left corner of this
figure). Original query (bottom-left) is transformed so that it takes into account
the information derived from privacy policy that was put by the Policy Handler
in the CONSUMER CONSENT table (top-center). This table stores the as-
sociation between the consumers and the different product categories with which
these consumers opt to reveal their shopping history. Modified query (bottom-
right) yields the data set of the same structure as original query but without



disclosing the information that consumers declined to share, as it can be seen in
the RESULT table (top-right).

Fig. 7: SQL transformation example

The negotiated privacy policies are stored under the form of constraints to-
gether with the data in the database component provided by the cloud infrastruc-
ture. Whenever a query is launched by the application, we use the information
collected by the annotation detector in order to modify queries on the fly, thus
using the constraints to filter out the data that is not allowed to appear in the
query results.

This approach is interesting because the behavior of the application itself
is not modified. The impact on the performance of the system is minor, as
the policy enforcement is actually pushed into a database query and also the
complexity of this query transformation algorithm is low, as shown in previous
works [12]. The work in [1] brings some performance evaluation for the same kind
of transformations. We advocate that the ability to implement privacy controls
is more important than these performance questions when dealing with private
data in cloud computing.

4 Related Works

There are many similarities between our approach and the work described in [13].
It proposes a holistic approach for systematic privacy enforcement for enterprises.
First, we also build on the state of the art access control languages for privacy,
but here with an up-to-date approach, adapted for the cloud. Second, we leverage
on the latest frameworks for web application and service development to provide
automated privacy enforcement relying on their underlying identity management
solutions. We also have similarities on the way privacy is enforced, controlling
access at the database level, which is also done in [1].



Although the query transformation algorithm is not the main focus of our
work, the previous art on the topic [6,16,4] present advanced approaches for
privacy preserving database query over which we can build the next versions of
our algorithm. Here we implemented an efficient approach for practical access
control purposes, but we envisage to enrich the approach with anonymization in
the future.

On the other hand, we work in the context of the cloud, where a provider
hosts applications developed by other parties, which can in their turn communi-
cate with services hosted in other domains. This imposes constraints outside of
the control of a single service provider. We went further in the automation, by
providing a reliable framework to the application developer in order to transfer
the complexity of dealing with privacy preferences to the platform provider. Our
annotation mechanism provides ease of adoption without creating dependencies
with respect to the deployment platform. More precisely, no lock in is introduced
by our solution. However, changes in the database schema that involves PII data
require an application to be redeployed in the plataform in order to process the
eventually new annotations.

The work in [11] presents an approach based on privacy proxies to handle
privacy relevant interactions between data subjects and data collectors. Proxies
are implemented as SOAP based services, centralizing all PII. The solution is
interesting, but it is not clear how to adapt the proxy to specific data models
corresponding to particular applications in a straightforward way.

Our work is aligned with the principles defended in [15], in particular we
facilitate many of the tasks the service designers must take into consideration
when creating new cloud-based applications. In [14], a user-centric approach is
taken to manage private data in the cloud. Control is split between client and
server, which requires cooperation by the server, otherwise obfuscated data must
be used by default. This is a different point of view from our work, where we
embed the complexity of the privacy enforcement in the platform itself.

Automated security policy management for cloud platforms is discussed in
[10]. Using a model driven approach, cloud applications would subscribe to a
policy configuration service able to enforce policies at run-time, enabling com-
pliance. The approach is sound but lacks of fine-grained management for privacy
policies, as it is not clear how to deal with personal data collection and usage
control.

In [9], cryptographic co-processors are employed to ensure confidentiality of
private data protection. The solution is able to enforce rather low level policies
using cryptography as an essential mechanism, without explicit support to design
new privacy compliant applications. Several works exist on privacy protection in
Web 2.0 and peer-to-peer environments, such as in [18], where an access control
mechanism is adopted for social networks. Some of these ideas can be reused in
the context of cloud applications, but our approach differentiates from this line
of work in the sense we empower the cloud applications developers with ready
to use mechanisms provided directly by the cloud platform.



In [5], aspect-oriented programming is used as well to enforce privacy mecha-
nisms when performing access control in applications. The work adopts a similar
approach to ours, but privacy mechanisms are created in a per-application basis.
In our approach, by targeting the platform as a service directly, we are able to
facilitate enforcement in multiple applications.

5 Conclusion and Future Works

We presented a solution to simplify the process of enabling personal data pro-
tection in Java web applications deployed on Platform as a Service solution.
We augment cloud applications with meta-data annotations and private data-
handling policies which are enforced by the platform almost transparently from
the developer perspective (the major overhead is only in placing the right anno-
tations in the code).

The cloud consumer applications indicate how and where personally iden-
tifiable information is being handled. We adapt the platform components with
privacy enforcement mechanisms able to correctly handle the data consumption,
in accordance with an agreed privacy policy between the data subject and the
cloud consumer.

The advantages of our approach can be summarized as follows: the imple-
mentation details of the privacy controls are hidden to the cloud application
developer; compatibility with legacy applications, since the annotations do not
interfere with the existing code; cloud applications can gracefully move to other
platform providers that implement privacy-aware platforms in different ways.
Sensible changes in the database schema, specifically those modifying PII, re-
quire the application to be redeployed in the cloud, possibly with new annota-
tions.

Some future directions include the orchestration of other components such as
event monitors, service buses, trusted platform modules, etc, in order to provide
real-time information to users about the operations performed on their personal
data. We plan to generalize our approach to enforce other kinds of policies, such
as service level agreements, separation of duty, etc.

An important improvement of this work is the integration of advanced k-
anonymization [17] process at the database access level. Such solution would be
more adapted to business applications than access control, since the end-users
could obtain more meaningful information, without fully disclosing the identities
of the data subjects.

6 Acknowledgements

This work was supported by the CESSA Project - Compositional Evolution of
Secure Software with Aspects - grant number 09-SEGI-002-01 - from the French
National Research Agency (ANR). Many thanks to Theodoor Scholte for his
valuable comments on a previous version of this paper.



References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Implementing p3p using database
technology. In: Data Engineering, 2003. Proceedings. 19th International Conference
on. pp. 595 – 606 (march 2003)

2. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (epal). Research report 3485 (2003)

3. Bussard, L., Neven, G., Preiss, F.S.: Matching privacy policies and preferences:
Access control, obligatons, authorisations, and downstream usage. In: Camenisch,
J., Fischer-Hbner, S., Rannenberg, K. (eds.) Privacy and Identity Management for
Life, pp. 117–134. Springer Berlin Heidelberg (2011)

4. Byun, J.W., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: Proceedings of the tenth ACM symposium on Access control
models and technologies. pp. 102–110. SACMAT ’05, ACM, New York, NY, USA
(2005)

5. Chen, K., Wang, D.W.: An aspect-oriented approach to privacy-aware access con-
trol. In: Machine Learning and Cybernetics, 2007 International Conference on.
vol. 5, pp. 3016 –3021 (aug 2007)

6. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In:
Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. pp. 155–166. PODS ’99, ACM, New York, NY,
USA (1999)

7. Cranor, L.: P3p: making privacy policies more useful. Security Privacy, IEEE 1(6),
50 – 55 (nov-dec 2003)

8. Idrees, M.S., Serme, G., Roudier, Y., de Oliveira, A.S., Grall, H., Südholt, M.:
Evolving security requirements in multi-layered service-oriented-architectures. In:
Garćıa-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., di Vimercati, S.D.C.
(eds.) DPM/SETOP. Lecture Notes in Computer Science, vol. 7122, pp. 190–205.
Springer (2011)

9. Itani, W., Kayssi, A.I., Chehab, A.: Privacy as a service: Privacy-aware data storage
and processing in cloud computing architectures. In: DASC. pp. 711–716. IEEE
(2009)

10. Lang, U.: Openpmf scaas: Authorization as a service for cloud & soa applications.
In: CloudCom. pp. 634–643. IEEE (2010)

11. Langheinrich, M.: A privacy awareness system for ubiquitous computing environ-
ments. In: Borriello, G., Holmquist, L. (eds.) UbiComp 2002: Ubiquitous Comput-
ing, Lecture Notes in Computer Science, vol. 2498, pp. 315–320. Springer Berlin /
Heidelberg (2002)

12. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.J.:
Limiting disclosure in hippocratic databases. In: Nascimento, M.A., Özsu, M.T.,
Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB. pp. 108–
119. Morgan Kaufmann (2004)

13. Mont, M.C., Thyne, R.: A systemic approach to automate privacy policy enforce-
ment in enterprises. In: Danezis, G., Golle, P. (eds.) Privacy Enhancing Technolo-
gies. Lecture Notes in Computer Science, vol. 4258, pp. 118–134. Springer (2006)

14. Mowbray, M., Pearson, S.: A client-based privacy manager for cloud computing.
In: Bosch, J., Clarke, S. (eds.) COMSWARE. p. 5. ACM (2009)

15. Pearson, S., Charlesworth, A.: Accountability as a way forward for privacy protec-
tion in the cloud. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom. Lecture
Notes in Computer Science, vol. 5931, pp. 131–144. Springer (2009)



16. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. pp. 551–562. SIGMOD ’04, ACM,
New York, NY, USA (2004)

17. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
on Uncertainty Fuzziness and Knowledgebased Systems 10(5), 557–570 (2002)

18. Tootoonchian, A., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: better privacy for
social networks. In: Liebeherr, J., Ventre, G., Biersack, E.W., Keshav, S. (eds.)
CoNEXT. pp. 169–180. ACM (2009)


	Automating Privacy Enforcement in Cloud Platforms

