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Abstract— Asymptotically optimal schemes for both single and
dual-source cases with low-latency are addressed in this research.
Single-source two-way protocol with non-coherent reception is
introduced and its asymptotic behaviour is studied. The protocol
consists of a data phase and a control phase which can go on
up to N rounds. An upper bound on the distortion is derived
for a two-round protocol. It is also extended to the case where
there are two highly correlated analog sources one of which is
uniformly distributed and the other one with a contaminated
uniform distribution in the presence of two-sided feedback. Total
energy used by protocol is fixed and the energy used by each
source in both phases are derived individually. We have shown
that it is possible to achieve the distortion bound of the single-
source with two highly correlated sources in two rounds.

I. INTRODUCTION

The optimization of wireless digital transmission of analog
sources is an area of research that has received attention since
the origins of communication theory. A modern example of
a system using joint source-channel approaches would be the
current WHDI standard on top of OFDM transmission used
for short-range wireless transmission of high-definition video
with sub-1ms latency. This makes use of variable signal levels
in the transformed source signal (audio/video) with unequal
error protection at the physical layer for the different levels of
importance of the source signals. Here the analog information
is not encoded using a source code at all aside from scalar
quantization. The most important remark to stress is that this
approach is used to minimize latency.

Another reason motivating the use of novel joint-source
and channel coding paradigms would be the time scales
corresponding to the source and channel bandwidths. In sensor
networks, for instance, the sources may be characterized by a
few independent samples of an analog phenomenon that needs
to be transmitted very sporadically across a wideband channel.
This would be the case arising, for instance, when we integrate
low-cost/power analog sensors to cellular radio infrastructures.

Finally, transmission of multiple spatially distributed sam-
ples of a slowly time-varying random field is another instance
where joint-source and channel coding can be beneficial. This
is clearly an important remote sensing problem where the
coding aspect needs to be combined with multiple-access
of correlated observations. In [1], a coding strategy based
on separate source and channel coding is introduced for a
network information flow with discrete correlated sources. In
the described model, the authors set the conditions for which
perfect reconstruction of the messages from the encoder nodes
can be achieved.
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Fig. 1. System Model

The single-source model considered here is depicted in Fig.
1. The encoder maps one realization of the source U into
X , (X1, . . . , XN ) where N denotes the dimension of the
channel input. X is then sent across the channel corrupted by
a white Gaussian noise sequence Z, and is received as Y.
The receiver is a mapping function which tries to construct an
estimate Û of U given Y. The fidelity criterion that we wish to
minimize is the MSE distortion defined as D , E[(U − Û)2],
under the mean energy constraint E[||X||2] ≤ E. It is well-
known that the linear encoder (i.e. X =

√
EU ) achieves the

best performance under the mean energy constraint for the
special case N = 1 [2], [3], [4]. An important generalization
the case of multiple sensing nodes with spatially-correlated
information as shown in Fig. 2. In fact, a lower bound on the
distortion over all possible encoders and decoders is easily
derived in [2] using classical information theory, and given by

D ≥ e−2E/N0 (1)

where N0/2 is the variance of the channel noise per dimen-
sion.

Fig. 2. Multisensor Sampling and Transmission of a Random-Field

For an upper-bound on the optimal performance, many
achievable schemes based on separated or joint source-channel
encoders can be found. A simple scheme recently described
in [5] combines a scalar quantizer with an orthogonal modu-
lation and MAP receiver or an MMSE estimator. Here, the
Gaussian (or uniform) source is quantized in b bits which
are mapped onto an appropriate orthogonal modulation before
being transmitted over the channel. The distortion is caused by



the quantization process and the noisy channel. An increase
in the number of quantization bits per source sample has the
effect of reducing the quantization error and simultaneously
increasing the error induced by the channel; decreasing it will
have the opposite effect. Thus, the number of quantization bits
has to be optimized as a function of the energy. It is reasonably
straightforward to show that a scheme such as this achieves a
distortion (for large SNR or reconstruction fidelity) behaving
as e−E/3N0 , both for coherent or non-coherent detection,
which is significantly worse than the lower bound in (1). Such
optimization for a different power constraint can be found in
the literature for example in [6] and [7], where the authors
try to bound the optimal number of quantization bits that
minimizes distortion. Another classical example of a joint-
source channel mapping is the coherent PPM scheme with
ML detection [8, pp. 623], which gives a similar e−E/3N0

behavior.
A comparison in [9] with best-known joint medium-

resolution source-channel codes [10] for high channel to
source bandwidth ratios shows that simple hybrid (yet sep-
arated) joint-source channel techniques can outperform non-
linear mappings.

In two-way systems, for example cellular networks, we
could clearly imagine the use of reliable feedback from the
downlink, with vanishing probability of error (i.e. perfect
feedback). The main drawback is the requirement of energy for
receiver which would impact the overall energy budget of the
sensing node. Although it is difficult to model, protocol latency
becomes an issue for overall energy consumption. Through
two-way communication, stochastic control approaches [11],
[12] can achieve, at least asymptotically, the lower bound on
distortion in (1). This comes at the expense of delay, since, as
in many adaptive systems, the feedback system must converge
to minimize distortion. It is reasonable to assume that both
can be extended to non-coherent detection and even broadband
frequency-selective channels for diversity. However, the under-
lying estimation strategies will quickly become quite involved.
With respect to multiple-source systems, in [13], the authors
derive a threshold SNR ratio through the correlation between
the sources so that below this threshold, minimum distortion
is attained by uncoded transmission in a Gaussian multiple
access channel in the presence of feedback. It was also proved
that the effect of feedback in this case is useless.

The outline of the paper is as follows. In Section II, we
present new results which aim to show the benefit of feedback
regarding optimality, yet with minimal latency through a two-
phase protocol. In Section III, the results are extended to the
case of two correlated analog sources again through a two-
round two-way protocol. This is the first step to a more general
system with many sensors with correlated measurements. In
both cases we analyze the asymptotic performance of the
protocols.

II. ASYMPTOTIC OPTIMALITY OF SIMPLE TWO-WAY
PROTOCOLS WITH NON-COHERENT DETECTION

Let us consider now an adaptation of Yamamoto’s protocol
[14] for transmitting isolated analog samples. This will serve

as a motivating example for the use of feedback with low-
latency achieving asymptotically optimal distortion perfor-
mance. Here we focus on a simple AWGN channel with
one degree of freedom. Yamamoto’s protocol consists of two
phases, a data phase and a control phase. A source sample
quantized to B bits is encoded into one of 2B N -dimensional
messages Sm, with m = 1, 2, · · · , 2B and each message is
transmitted with equal energy

√
ED,1, where ED,1denotes the

energy of the data phase on the first round. Upon reception, the
receiver computes the maximum-likelihood (or MAP if source
is non-uniform) message, m̂(Yd), based on the N -dimensional
observation Yd =

√
ED,1ejΦ1Sm + Z. The random phase

sequence φi is assumed to be i.i.d with uniform distribution
on [0, 2π). The N -dimensional vector noise sequence zi is
complex, circularly symmetric, with zero-mean and autocor-
relation N0IN×N . After the first data phase, the receiver feeds
m̂ back to the encoder via the noiseless feedback link. Let the
corresponding error event be E1 where the subscript indicates
to the first round of the protocol. After the data phase, the
encoder enters the control phase and informs the receiver
whether or not its decision was correct via a signal

√
EC,1Sc of

energy
√
EC,1 if the decision is incorrect and 0 if the decision

was correct. EC,1 here is the notation for the energy of the
control phase in the first round. During the control phase the
receiver observes Yc. Let yc = Yc

HSc and assume a detector
of the form

e = I
(
|yc|2 > λEC,1

)
(2)

where I(·) is the indicator function and λ is a threshold to be
optimized and included within the interval [0, 1). Let the error
events be denoted by Ec→e,1 and Ee→c,1 as described and
analyzed in [14]. Ee→c,1 corresponds to an uncorrectable error
since it acknowledges an error as correct decoding. On the
other hand, Ec→e,1 represents a misdetected acknowledged er-
ror declaring correct decoding as incorrect. This on-off signal-
ing guarantees that with probability Pr(Ec1)(1−Pr(Ec→e,1))
the transmitter will not expend more than ED,1 joules, which
should be close to one. If the receiver correctly decodes the
control signal and it signals that the data phase was correct,
with probability Pr(Ec1)(1− Pr(Ec→e,1)), the protocol halts,
otherwise another identical round is initiated by the receiver.
The retransmission probability is Pr(E1)(1 − Pr(Ee→c,1)).
After each data phase, the receiver computes the ML or MAP
message m̂i(Y1, · · · ,Yi) based on all observations up to
round i with error event Ei.

The same control phase is repeated and the protocol is
terminated after N rounds. The resulting average distortion of
the protocol is investigated in the following subsection for two
rounds together with the probability of error and the average
energy used by protocol.

A. Two-rounds

The mean squared-error distortion for a uniform source U
on (−1, 1) is given as

D (E , N0, N, λ) =
2−2B

3
(1− Pe) +

2

3
Pe. (3)



The above given expression of distortion is obtained through

D = Dq(1− Pe) +DePe (4)

and can be bounded further as

D ≤ Dq +DePe (5)

where Pe is the total probability of error, Dq represents
the distortion caused by the quantization process and De

corresponds to the MSE distortion for the case where an error
was made.

In the following, we will consider the case where the proto-
col is repeated up to two rounds, i.e. N = 2. The probability
of error and the average energy used by the protocol are given
by

Pe = Pr(E1) Pr(Ee→c,1) + Pr(E1)(1− Pr(Ee→c,1)) Pr(E2|E1)

+ (1− Pr(E1)) Pr(Ec→e,1) Pr(E2|Ec1)

≤ Pr(E1) Pr(Ee→c,1) + Pr(E2) (6)

E = ED,1 + Pr(E1)EC,1 + (Pr(E1)(1− Pr(Ee→c,1))+

(1− Pr(E1)) Pr(Ec→e,1))ED,2, (7)

respectively. ED,2 here denotes the required energy for retrans-
mission, which is the energy to be used in the data phase of
the second round. Clearly if Pr(Ee→c,1) and Pr(Ec→e,1) are
small then the protocol achieves marginally more than ED,1
joules per source symbol. The probability of an uncorrectable
error is obtained as

Pr(Ee→c,1) = Pr
(
|
√
EC,1 + zc|2 ≤ λEC,1

)
= 1−Q1

(√
2EC,1
N0

,

√
2λEC,1
N0

)
, (8)

where Q1(α, β) is the first-order Marcum-Q function and zc =
SHc Z is a circularly-symmetric Gaussian zero-mean random
variable with variance N0. Furthermore, we have the recent
bound on the Q1(α, β) for α > β from [15, eq. 12] which is
very useful for bounding (8) as follows

Pr(Ee→c,1) ≤
arcsin

(√
λ
)

π

[
exp

(
−
(

1 + λ+ 2
√
λ
) EC,1
N0

)
− exp

(
−
(

1 + λ+ 2
√
λ
) EC,1
N0

)]

≤
arcsin

(√
λ
)

π
exp

(
−
(

1−
√
λ
)2 EC,1

N0

)
.

(9)

The probability of a misdetected acknowledged error is ob-
tained as

Pr(Ec→e,1) = Pr
(
|zc|2 > λEC,1

)
= e−

λEC,1
N0 . (10)

Lastly, bounds on the error probabilities of both rounds are
derived using [16, p. 686] and given by

Pr(E1) ≤ 2B−1e−
ED,1
2N0 , (11)

Pr(E2) ≤ 2B−3

(
4 +
ED,1 + ED,2

N0

)
e−
ED,1+ED,2

2N0 . (12)

B. Asymptotic Performance

In this part, we will make use of the expressions of the error
probabilities and the average energy derived in the previous
subsection, to bound the distortion (3) and to observe its
asymptotic performance. Applying (5) to (3) and combining
it with (6), (9), (11) and (12), the distortion is bounded as

D (E , N0, 2, λ) ≤ K1e−2B ln 2 +K2eB ln 2−
ED,1
2N0
−(1−

√
λ)

2 EC,1
N0

+K3eB ln 2−
ED,1+ED,2

2N0 , (13)

where K1 and K2 are O(1), while K3 is O(ED,1 + ED,2). By
equating coefficients in the three exponentials of (13) we have
that EC,1 =

ED,2
2(1+λ−2

√
λ)

. In order for Pr(E1) to be very close
to zero so that E can be made arbitrarily close to ED,1, we
define ED,2 = (2 − µ)ED,1 where µ is an arbitrary constant
satisfying µ ∈ (0, 2). Finally, we obtain the bound on the
distortion at the end of the second round as given by

D (E , N0, 2) ≤ KDe−
ED,1(1+µ/3)

N0 (14)

with KD ∼ O(ED,1). It is worth mentioning, the asymptotic
of the bound (15) in [17] is achieved here only in two rounds.

III. THE DUAL-SOURCE CASE

As in [14] and its non-coherent version studied earlier in
Section II, the protocol comprises a data phase and a control
phase, which can be repeated up to two rounds. The total
energy to be used by protocol is fixed and we will denote the
energy used in data phase in the ith round by the jth source
by ED,i,j , where i, j = 1, 2. In the same way, EC,i,j denotes
the energy used in the control phase in the ith round by the
jth source. The quantized source sample of the jth source is
encoded into 2Bj messages with dimension N . For simplicity,
we will assume that Bj’s are equal to the same value B. In
the data phase, the first source sends its message m1(U1) to
the receiver with energy ED,1,1. The receiver detects m̂1 and
feeds it back. And the second source sends m2(m̂1, U2) with
energy ED,1,2. This encoding rule allows the second source to
exploit the correlation of its sample with that of its peer and
the energy used is chosen according to the likelihood of the
estimate fed back from the receiver. After the estimation and
feedback of m̂2, data phase of the first round ends and the
encoders enter the control phase to inform the receiver about
the correctness of its decision, as in the single source case.
To do that, each source sends ACK/NACK regarding its own
message to the decoder. According to the control signals, either
the protocol halts or goes on one more round. For the second
data phase, the destination instructs the sources to retransmit
and re-detect its message. The first source U1 is defined to be
uniformly distributed over (−

√
3,
√

3) and the second source
U2 is defined as U2 = ρU1 +

√
1− ρ2U ′2 based on U1 and

an auxiliary random variable U ′2 which is also uniform on
(−
√

3,
√

3). Depending on the value of ρ, the distribution of
the second source U2 can be either a triangular distribution or
a contaminated uniform distribution. In the case of a very high
correlation, i.e. ρ is very close to 1, the effect of the auxiliary
random variable U ′2 will be very small. On the contrary,
for a low correlation between U1 and U2, U ′2 will have a



significant effect so the second source will have a triangular
distribution as a sum of two uniform random variables. We will
focus on the case of a very high correlation between the two
sources. So, here we have one uniform and one almost uniform
source having covariance equal to the correlation coefficient
ρ between them. Extending the output signal based on the
N dimensional observation to this case, output signal of the
jth source is Yd =

√
ED,1,jejΦjΨmj + Zj . We assume the

random phases Φj to be distributed uniformly on [0, 2π), the
channel noise Zj to have zero mean and equal autocorrelation
N0IN×N for j = 1, 2 and Ψmj are the N -dimensional
messages, with m = 1, 2, · · · , 2B and j = 1, 2.

We denote the error events for the first round and the
jthsource with E1,j . Let e1,j and c1,j denote erroneous and
correct decoding in the first round on Uj , respectively. Ec→e,1
and Ee→c,1 are used to denote a misdetected acknowledged
error and an uncorrectable error, respectively. The probability
of the error is bounded by

Pe = Pr(E1,1) Pr(Ee→c,1,1) + Pr(E1,2) Pr(Ee→c,1,2)

+ (Pr(E1,1, E1,2)(1− Pr(Ee→c,1,1))(1− Pr(Ee→c,1,2))

+ Pr(E1,1, E
c
1,2)(1− Pr(Ee→c,1,1))

+ Pr(Ec1,1, E1,2)(1− Pr(Ee→c,1,2))) Pr(E2|E1)

+ (Pr(Ec1,1, E
c
1,2) Pr(Ec→e,1,1) Pr(Ec→e,1,2)

+ Pr(E1,1, E
c
1,2) Pr(Ec→e,1,2)

+ Pr(Ec1,1, E1,2) Pr(Ec→e,1,1)) Pr(E2|Ec1)

≤ Pr(E1,1, E1,2) Pr(Ee→c,1,) + Pr(E2) (15)

where the probability of an uncorrectable error in the first
round is taken as the sum of the probability of errors of each
source and given by

Pr(Ee→c,1) = Pr(Ee→c,1,1) + Pr(Ee→c,1,2). (16)

The total probability of misdetected acknowledged error in the
first round is obtained in the same way as

Pr(Ec→e,1) = Pr(Ec→e,1,1) + Pr(Ec→e,1,2). (17)

The average energy used by the protocol is given by the
following equality

E = ED,1,1 + E(ED,1,2(m̂1, U2)) + EC,1,1 Pr(E1,1)

+ EC,1,2 Pr(E1,2) + ED,2[Pr(E1,1)(1− Pr(Ee→c,1,1))

+ Pr(E1,2)(1− Pr(Ee→c,1,2)) + (1− Pr(E1,1))

Pr(Ec→e,1,1) + (1− Pr(E1,2)) Pr(Ec→e,1,2)] (18)

which can be bounded as

E ≤ ED,1 + Pr(E1,1, E1,2)EC,1 + ED,2[Pr(E1,1, E1,2)

(1− Pr(Ee→c,1)) + (1− Pr(E1,1, E1,2)) Pr(Ec→e,1)]
(19)

where E(ED,1,2(m̂1, U2)) is the expected energy to be used in
the data phase of the first round by the second source. The total
energy for a certain phase and round is obtained by taking the
sum over the both sources. The energy in the control phase of
the ith round is defined as EC,i =

∑2
j=1 EC,i,j and the total en-

ergy in the data phase of the first round is ED,1 =
∑2
i=1 ED,1,j .

We have the same form of detector described in (2) for the jth

source as ej = I
(
|yc,j |2 > λjEC,1,j

)
with yc,j = Yc,j

HΨc,j

λ1 and λ2 are threshold values to be optimized and included
within the interval [0, 1). For simplification, we will assume
λ1 and λ2 to be equal to the same value λ. The probability of
error of an uncorrectable error Ee→c for Uj is given by

Pr(Ee→c,1,j) = Pr(|
√
EC,1,j + zc,j |2 ≤ λEC,1,j)

= 1−Q1(

√
EC,1,j
N0/2

,

√
λEC,1,j
N0/2

). (20)

Using the bound on the Q1(α, β) given in [18, eq:4], the
probability of error of an uncorrectable error can be bounded
as

Pr(Ee→c,1,j) ≤ 1/2 exp(− (
√
λ− 1)2EC,1,j

N0
). (21)

And the probability of error of a misdetected acknowledged
error Ec→efor Uj is Pr(Ec→e,1,j) ≤ exp{−λEC,1,jN0

}. The joint
probability of E1,1, E1,2 and the probability of error of the
second round E2 is bounded as in (11) and (12) using [16, p.
686] and given by

Pr(E1,1, E1,2)

≤

⌈
2B
√

1− ρ2

3

⌉
2B−3 exp

{
−ED,1

2N0

}(
4 +
ED,1
N0

)

+

⌈
2B
√

1− ρ2

3

⌉
2−1

(
exp

{
−ED,1,1

2N0

}
+ exp

{
−ED,1,2

2N0

})
(22)

At the end of the second round, the protocol is terminated
with distortion bounded as

D(E , N0, 2, λ) ≤ 2−2B(1 + ρ2)(1− Pe) + 4Pe. (24)

To obtain (23), we used the same approach as in the single
source case and generalized (4) for two sources. By combining
(15), (21),(22), (23) and (24), we have the following bound
on distortion

D(E , N0, 2, λ) ≤ K1e
−2B ln 2+ln(1+ρ2)

+

(
K2

√
1− ρ2

3
eB ln 2 +K3ε(ρ)

)
e(B−1) ln 2−

ED,1+EC,1(
√
λ−1)2

2N0

+

(
K4

√
1− ρ2

3
eB ln 2 +K5ε(ρ)

)
e2 ln 2−

ED,1+2EC,1(
√
λ−1)2

4N0

+

(
K6

√
1− ρ2

3
eB ln 2 +K7ε(ρ)

)
e(B−3) ln 2−

ED,1+ED,2
2N0

+

(
K8

√
1− ρ2

3
eB ln 2 +K9ε(ρ)

)
e−
ED,1+2ED,2

4N0 (25)

where K1,K4,K5 are O(1), K2,K3 are O(ED,1),
K6,K7,K8,K9 are O(ED,1 + ED,2) with ε(ρ) ∈ [0, 1)
which arose from the ceiling functions in (22) and (23). To
simplify the calculations the energy used by a source on a
particular phase is assumed to be half of the energy on the
corresponding round, for example ED,1 = 2ED,1,1 = 2ED,1,2.



Pr(E2) ≤

⌈
2B
√

1− ρ2

3

⌉
2−3

(
exp

{
−ED,1 + 2ED,2,2

4N0

}(
4 +
ED,1 + 2ED,2,2

2N0

)
+ exp

{
−ED,1 + 2ED,2,1

4N0

}(
4 +
ED,1 + 2ED,2,1

2N0

))

+

⌈
2B
√

1− ρ2

3

⌉
2B−5 exp

{
−ED,1 + ED,2

2N0

}(
7.5 +

ED,1 + ED,2
N0

)
(23)

For a very weak correlation between U1 and U2 the terms
with ε(ρ) in (25) become insignificant, so the bound on
distortion for this case is obtained as

Dlow(E , N0, 2) ≤ KDlow,1

√
1− ρ4

6
e−
ED,1−µ/2

2N0

+KDlow,2(1 + ρ2)1/3(
1− ρ2

3
)1/2e−

ED,1−2µ/3

2N0 . (26)

with EC,1 =
ED,2

(1−
√
λ)2

and ED,2 = (1 − µ)ED,1 where µ

is a non-negative and a non-zero arbitrary constant. This
relationship is obtained through equating coefficients of the
exponentials in (25). On the other hand, with a high correlation

between the sources through (22), i.e. when
√

1−ρ2
3 < θ2−B

the distortion (25) becomes

Dhigh(E , N0, 2) ≤ KDhigh,1(1 + ρ2)1/3e−
ED,1−(2µ)/3

N0

+KDhigh,2(1 + ρ2)e−
5ED,1−2µ

4N0 (27)

with EC,1 =
ED,2

(1−
√
λ)2

and ED,2 = (2− µ)ED,1 where µ is an
arbitrary constant satisfying µ ∈ (0, 2). The average energy E
of the protocol can be made arbitrarily close to ED,1 with a
vanishing Pr(E1,1, E1,2), guaranteed by the interval in which
ε(ρ) is defined.

The two extremes considered here show the effect of
correlation on the reconstruction fidelity at the receiver. The
high correlation case yields the exponential behaviour of the
single-source case and benefits from energy accumulation, or
the collaboration of the two sources. Low-correlation results
insignificantly reduced energy-efficiency. In a large network
scenario, nodes with highly-correlated samples (in the above
sense) would collaborate through joint detection at the receiver
in order to optimize the energy efficiency of the network.

IV. CONCLUSIONS

We introduced a low-latency two-way protocol achieving
asymptotically optimal distortion for a single-source using dig-
ital transmission over a wideband channel with non-coherent
detection. Its extension to the two-source case with corre-
lation is studied for both low and high correlation levels
again with analog sources in the presence of feedback. We
have shown that with highly correlated sources, the same
asymptotic performance of a single-source can be achieved in
terms of distortion. Although not shown here, lower bounds
on the achievable distortion can be derived in the multiple-
sensor case which exhibit the same asymptotic behaviour. Our
ongoing work focuses on practical larger-scale algorithms for
exploiting correlation for energy-efficiency in sensor networks.

V. ACKNOWLEDGMENTS

Eurecom’s research is partially supported by its industrial
partners: BMW, Cisco Systems, Monaco Telecom, Orange,
SFR, ST Ericsson, SAP, Swisscom and Symantech The re-
search leading to these results has received funding from the
European Commission under the Seventh Framework Pro-
gramme (FP7/2007-2013)/ ERC grant agreement no. 248993
(LOLA).

REFERENCES

[1] J. Barros and S. D. Servetto, “Network information flow with correlated
sources,” IEEE Transactions on Information Theory, vol. 52, pp. 155–
170, 2006.

[2] T. Goblick, “Theoretical limitations on the transmission of data from
analog sources,” IEEE Transactions on Information Theory, vol. 11, pp.
558–567, October 1965.

[3] P. Elias, “Networks of gaussian channels with applications to feedback
systems,” IEEE Transactions on Information Theory, vol. 13, pp. 493–
501, July 1967.

[4] M. Gastpar, “To code or not to code,” Ph.D. dissertation, EPFL, Dec.
2002.

[5] F. Abdallah and R. Knopp, “Source-channel coding for very-low band-
width sources,” in Information Theory Workshop, 2008. ITW ’08. IEEE,
May 2008, pp. 184 –188.

[6] B. Hochwald and K. Zeger, “Tradeoff between source and channel
coding,” IEEE Transactions on Information Theory, vol. 43, pp. 1412–
1424, Sept. 1997.

[7] B. Hochwald, “Tradeoff between source and channel coding on a
gaussian channel,” IEEE Transactions on Information Theory, vol. 44,
pp. 3044–3055, Nov. 1998.

[8] J. Wozencraft and I. M. Jacobs, Principles of Communication Engineer-
ing. Wiley, New York, 1965.

[9] F. Abdallah, “Source-channel coding techniques applied to wireless
networks,” Ph.D. dissertation, University of Nice-Sophia Antipolis, Dec.
2008.

[10] V. Vaishampayan and I. Costa, “Curves on a sphere, shift-map dynamics,
and error control for continuous alphabet sources,” IEEE Transactions
on Information Theory, vol. 49, pp. 1658–1672, July 2003.

[11] J. Schalkwijk and L. Bluestein, “Transmission of analog waveforms
through channels with feedback (corresp.),” Information Theory, IEEE
Transactions on, vol. 13, no. 4, pp. 617 – 619, Oct. 1967.

[12] J. Omura, “Optimum linear transmission of analog data for channels
with feedback,” IEEE Transactions on Information Theory, vol. 14, pp.
38–43, January 1968.

[13] A. Lapidoth and S. Tinguely, “Sending a bivariate gaussian source over a
gaussian mac with feedback,” IEEE Transactions on Information Theory,
vol. 52, pp. 1852–1864, 2010.

[14] H. Yamamoto and K. Itoh, “Asymptotic performance of a modified
Schalkwijk-Barron scheme for channels with noiseless feedback,” IEEE
Transactions on Information Theory, vol. 25, pp. 729–733, November
1979.

[15] P. Kam and R. Li, “Simple tight exponential bounds on the first-order
Marcum q-function via the geometric approach,” in Proc. Internation
Symposium on Information Theory, July 2006, pp. 1085–1089.

[16] J. Proakis, Digital Communications. McGraw-Hill, Third Ed., 1995.
[17] J. Schalkwijk and L. Bluestein, “Transmission of analog waveforms

through channels with feedback,” IEEE Transcations on Information
Theory, vol. 13, pp. 617–619, October 1967.

[18] M. Simon and M.-S. Alouini, “Exponential-type bounds on the gener-
alized marcum q-function with application to error probability analysis
over fading channels,” IEEE Trans. on Communications, vol. 48, no. 3,
pp. 359 –366, march 2000.


