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Abstract We deal with multi-agent Markov Decision Processes (MDP’s) in
which cooperation among players is allowed. We find a cooperative payoff dis-
tribution procedure (MDP-CPDP) that distributes in the course of the game
the payoff that players would earn in the long run game. We show under
which conditions such a MDP-CPDP fulfills a time consistency property, con-
tents greedy players, and strengthen the coalition cohesiveness throughout the
game. Finally we refine the concept of Core for Cooperative MDP’s.

Keywords cooperative Markov decision processes · stochastic games · payoff
distribution procedure · time consistency · greedy players · cooperation
maintenance

1 Introduction

In static cooperative game theory, in which only one static game is played, the
main challenge is to devise a procedure that shares the total reward earned
by the whole community of players among the players themselves, and that
complies with an agreeable definition of “fairness” (e.g. Peleg and Sudhölter
2007). When the interaction among the players is reiterated over time, it is
reasonable to assume that the players demand to be rewarded in the course of
the game, and the issue of designing such an allocation procedure has drawn
much attention in the last few decades, especially in the field of cooperative
differential games. Such games address the realistic situation in which the
interaction among several players (e.g. countries, firms, business partners etc.)
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spans a certain period of time, and the environment in which the players
operate (commonly called “state”) changes according to a differential equation.
A contract signed by all the players dictates how to share a certain payoff
among the participants during the game. Bulk of the literature on cooperative
differential games deals with the design of a payoff distribution procedure
fulfilling a sensible time consistency property, under which no coalition of
players is enticed to breach the agreement at any of the stage of the game (see
Zaccour 2008 and references therein).

A different situation is considered by repeated cooperative games, which
model situations in which the same game is repeatedly played over time and
players can cooperate and form coalitions throughout the duration of the game.
The papers by Oviedo (2000) and by Kranich, Perea, and Peters (2001) are
the two independent pioneering works in this field.

While the theory of competitive Markov Decision Processes (MDP’s), oth-
erwise called non-cooperative stochastic games, has been thoroughly studied
(Filar and Vrieze 1996 for an extensive survey), to the best of the authors’
knowledge, there is very little work on cooperative MDP’s in the literature. Un-
like classic repeated games, in which the same game is played repeatedly over
time, in cooperative MDP’s several different static games follow one another.
Unlike differential games, in our model the static games follow a discrete-time
Markov chain, whose transition probabilities depend on the players’ actions in
each state. Players can decide whether to join the grand coalition or, through-
out the game, to form coalitions. The payoff earned by a coalition is, under
the transferable utility (TU) assumption, shared among its participants. Once
a group of players has withdrawn from the grand coalition, it cannot rejoin it
later on.

Petrosjan (2002), in his pioneering work, proposed a time consistent coop-
erative payoff distribution procedure (CPDP) in cooperative games on finite
trees. In this paper we deal with discount cooperative MDP’s, in which the
payoffs at each stage are multiplied by a discount factor and summed up over
time. Our game model is in fact more general than the one by Petrosjan (2002),
since we allow for cycles on the state space and we do not impose the finiteness
of the game horizon. We also point out that our model is different from the
one proposed by Predtetchinski (2007), since we assume that the utility of
the coalitions is transferable and the probability transitions among the static
games does depend on the players’ actions in each stage.

The paper is organized as follows. Section 2 is a short survey on non-
cooperative and cooperative multi-agent MDP’s. Following the lines of Pet-
rosjan’s work, in Section 3 we propose a stationary stage-wise CPDP for co-
operative discounted MDP’s (MDP-CPDP). In Section 4 we prove that the
MDP-CPDP satisfies what we call the “terminal fairness property”, i.e. the
expected discounted sum of payoff allocations belongs to a cooperative solu-
tion (i.e. Shapley Value, Core, etc.) of the whole discounted game. In Section 5
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we show that the MDP-CPDP fulfills the time consistency property, which is
a crucial one in repeated games theory (e.g. Filar and Petrosjan 2000): it sug-
gests that a payoff distribution procedure should respect the terminal fairness
property in a sub-game starting from any state, at any time step. In Section
6 we show that, under some conditions, for all discount factors small enough,
also the greedy players having a myopic perspective of the game are satisfied
with the MDP-CPDP. In Section 7 we deal with perhaps the most meaningful
attribute for a CPDP, which is the n-tuple step cooperation maintenance prop-
erty. It claims that, at each stage of the game, the long run reward that each
group of players expects to gain by withdrawing from the grand coalition after
n step should be less than what it would earn by sticking to the grand coalition
forever. In some sense, if such a condition is fulfilled for all integers n’s, then
no players are enticed to withdraw from the grand coalition. We find that the
single step cooperation maintenance property, earliest introduced in a deter-
ministic setting by Mazalov and Rettieva (2010), is the strongest one among
all n’s. Furthermore, we give a necessary and sufficient condition, inspired by
the celebrated Bondareva-Shapley Theorem (Bondareva 1963; Shapley 1967),
for the existence of an MDP-CPDP satisfying the n-tuple step cooperation
maintenance property, for any integer n. Inspired by this property, we propose
a refinement of the Core solution concept for cooperative MDP’s, dubbed as
“Cooperation Maintaining solution”. Finally, Section 8 deals with a special
case of our model, entailing that the transition probabilities among the states
do not depend on the players’ strategies.

A lexical remark. We define the “stage” of the game at time t as the random
state that the game finds itself in at time t.

Some notation remarks. The ordering relations <,>, if referred to vectors,
are component-wise, as well as the max and min operators. The entry that
lies in the i-th row and in the j-th column of matrix A is written as Ai,j . An
equivalent notation for the n-by-m matrix A is [Ai,j ]

n,m
i=1,j=1. The i-th element

of column vector a is denoted by ai. The expression val(A) stands for the
value (e.g. Filar and Vrieze 1996) of the matrix A. Let {Ci}i be a collection
of sets; we define the sum set

∑
i Ci as {

∑
i ci : ci ∈ Ci, ∀ i}.

2 Discounted Cooperative Markov Decision Processes

In a multi-agent Markov Decision Process (MDP) Γ with P >1 players there
is a finite set of states S := {s1, s2, . . . , sN}, and for each state s the set of
actions available to the i-th player is denoted by Ai(s), i = 1, . . . , P , and
|Ai(s)| := mi(s). To each (P + 1)-tuple (s, a1, . . . , aP ), with ai ∈ Ai(s), an
immediate reward ri(s, a1, . . . , aP ) for player i = 1, . . . , P and a transition
probability distribution p(.|s, a1, . . . , aP ) on the state space S are assigned.
Hence, in each state s the static game Ωs ≡ (P, Ai(s), ri(s, .)) is played, and
the states succeed one another following a Markov chain controlled by the
players’ actions.
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Let P := {1, . . . , P} be the grand coalition. We assume that any subset of
players Λ ⊆ P can withdraw from the grand coalition and form a coalition at
stage of the game, and all the players are compelled to play throughout the
whole duration of the game. Moreover, once a coalition is formed, it can no
longer rejoin the grand coalition in the future.

Let AΛ(s) :=
∏
i∈ΛAi(s) be the set of actions available to coalition Λ

in state s, for all s ∈ S. A stationary strategy fΛ for the coalition Λ is a
probability distribution on AΛ(s), such that fΛ(a|s) is the probability that the
coalition Λ chooses the action a ∈ AΛ(s) in state s. We define FΛ as the set
of stationary strategies for coalition Λ ⊆ P. Let Λ1,Λ2 two disjoint nonempty
coalitions. Then, FΛ1

∪FΛ2
⊂ FΛ1∪Λ2

. If for every s ∈ S there exists a(s) such
that fΛ(a(s)|s) = 1, then the stationary strategy fΛ is dubbed “pure”.
Let us define the transition probability distribution on the state space S, given
the independent strategies fΛ ∈ FΛ, fP\Λ ∈ FP\Λ, as

p(s′|s, fΛ, fP\Λ) :=
∑

aΛ∈AΛ(s)

∑
aP\Λ∈AP\Λ(s)

p(s′|s, aΛ, aP\Λ) fΛ(aΛ|s) fP\Λ(aP\Λ|s),

for all s, s′ ∈ S. Analogously, let ri(s, fΛ, fP\Λ) be the expected instantaneous
reward for player i in state s. Let

rΛ(s, fΛ, fP\Λ) :=
∑
i∈Λ

ri(s, fΛ, fP\Λ)

be the bounded and deterministic reward gained by the coalition Λ in state s.
We assume that the rewards are geometrically discounted over time, and β ∈
[0; 1) is the discount factor. We define Φ

(β)
Λ (s, .) as the expected β-discounted

long run reward for coalition Λ ⊆ P when the initial state of the game is sk:

Φ
(β)
Λ (s, fΛ, fP\Λ) := E

( ∞∑
t=0

βtrΛ(St, fΛ, fP\Λ)
∣∣S0 = s

)
∀ s ∈ S,

where St is the stage of the game at time t. Hence, we can write the vector

Φ
(β)
Λ (.) := [ΦΛ(s1, .), . . . , ΦΛ(sN , .)]

T as

Φ
(β)
Λ (fΛ, fP\Λ) =

∞∑
t=0

βtPt(fΛ, fP\Λ) rΛ(fΛ, fP\Λ)

=
[
I− βPt(fΛ, fP\Λ)

]−1
rΛ(fΛ, fP\Λ), (1)

where P(fΛ, fP\Λ) is the N -by-N transition probability matrix and rΛ(.) :=

[rΛ(s1, .), . . . , rΛ(sN , .)]
T . Let f

(β)∗
P be the global optimum strategy for the

grand coalition P, i.e.

f
(β)∗
P = argmax

fP∈FP

Φ
(β)
P (fP), ∀β ∈ [0; 1), (2)
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where the maximization is component-wise. For simplicity of notation, we will

denote P∗(β) := P(f
(β)∗
P ), which is the transition probability matrix associ-

ated to the global optimal stationary strategy f
(β)∗
P , whose (i, j) element is

p(sj |si, f (β)∗
P ).

Let Γs be the long run game Γ starting in state s ∈ S. For any β ∈ [0; 1)
and for every state s, we assign to each coalition Λ a value v(β)(Λ, Γs) ∈ R.
Under the transferable utility (TU) condition, the value of a coalition can be
shared in any manner among the members of the coalition itself. Hence, the
set of feasible allocations for coalition Λ ⊆ P in the game Γs is V(β)(Λ, Γs),
where

V(β)(Λ, Γs) :=

{
x ∈ R|Λ| :

∑
i∈Λ

xi ≤ v(β)(Λ, Γs)

}
.

It is widely accepted to assign to the empty coalition a null utility, i.e.

v(β)({∅}, Γs) = 0.

Throughout the paper, if not specified, we always consider nonempty coali-
tions. We consider the value associated to the grand coalition v(β)(P, Γs) to
be the biggest achievable discounted sum of reward in the game Γs:

v(β)(P, Γs) = Φ
(β)
Λ (s, f

(β)∗
P ).

In many applications it makes sense to define the coalition value v(β)(Λ, Γs)
as the maximum total reward that coalition Λ can ensure for itself in the
β-discounted long run game Γs (von Neumann and Morgenstern 1944), i.e.

v(β)(Λ, Γs) := max
fΛ∈FΛ

min
fP\Λ∈FP\Λ

Φ
(β)
Λ (s, fΛ, fP\Λ) (3)

Nevertheless, we will consider the specific value formulation in (3) solely in
Sections 6 and 7.3. Next we provide some useful definitions and preliminary
results.

Definition 1 (Linear combination of games) Let V(∆i, Λ) be the set of
feasible allocations for the coalition Λ ⊆ P in the game ∆i, for i = 1, . . . , N .
The linear combination

∑
i bi∆i is a game in which the set of feasible alloca-

tions for the coalition Λ, V(
∑
i bi∆i, Λ), equals the Minkowski sum

∑
i biV(∆i, Λ).

Proposition 1 Let ∆1, . . . ,∆N be N games with transferable utilities. Let
v(Λ,∆i) be the value of coalition Λ ⊆ P in the game ∆i. Let bi ≥ 0, for all
i = 1, . . . , N . Then,

∑
i bi∆i is a TU game in which the value of the coalition

Λ ⊆ P is

v

(
Λ,

N∑
i=1

bi∆i

)
=
∑
i

biv(Λ,∆i).
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Proof Let

Ṽ(Λ) :=

x ∈ RP :
∑

i:{i}∈Λ

xi ≤
∑
i

biv(Λ,∆i)

 .

We have to prove that, for all Λ ⊆ P, V(
∑
i bi∆i, Λ) =

∑
i biV(∆i, Λ) = Ṽ(Λ).

Let the real |Λ|-tuple c(i) ∈ V(∆i, Λ), for all i. It is straightforward to see that∑
i bic(i) ∈ Ṽ(Λ). Then,

∑
i biV(∆i, Λ) ⊆ Ṽ(Λ). Let us fix the real P -tuple

c̃ ∈ Ṽ(Λ). We define I := {i : bi > 0}. We need to find {c′(i) ∈ V(∆i, Λ)}i∈I
such that

∑
i∈I bic

′(i) = c̃. Let c′j(i) = c̃j/(|I|bi) for all j such that {j} /∈ Λ.
To determine the remaining |I||Λ| elements {c′j(i), ∀ i ∈ I, j : {j} ∈ Λ}, we
introduce the following set of inequalities:{∑

i∈I bic
′
j(i) = c̃j ∀ j : {j} ∈ Λ∑

j:{j}∈Λ c′j(i) ≤ v(Λ,∆i) ∀ i ∈ I (4)

Let us prove that (4) admits a solution. Let εi ≥ 0, for all i ∈ I, be such that∑
i∈I

εi =
∑
i∈I

biv(Λ,∆i)−
∑

j:{j}∈Λ

c̃j ≥ 0 (5)

We write the following linear system{∑
i∈I bic

′
j(i) = c̃j ∀ j : {j} ∈ Λ

bi
∑
j:{j}∈Λ c′j(i) = biv(Λ,∆i)− εi ∀ i ∈ I (6)

Evidently, any solution to (6) is also a solution to (4). Thanks to (5), the sum of
the first |Λ| equations of (6) equals the sum of the remaining |I| equations. By
discarding the last equation of (6) we obtain a linear system with |Λ|+ |I| − 1
linearly independent equations in |Λ||I| > |Λ| + |I| − 1 unknowns. Hence, a

solution to (6) exists and
∑
i biV(∆i, Λ) ⊇ Ṽ (Λ). Then,

∑
i biV(∆i, Λ) = Ṽ(Λ)

and the thesis is proven.

Still, we could consider the long run game Γs as a classic static cooperative
game, solely characterized by the set of players P and the coalition values v(β).
Therefore we can still assign to it a classic solution concept.

Definition 2 (Terminal cooperative solution) Set β ∈ [0; 1). The termi-
nal cooperative solution T(β)(Γs) is a set-valued function which represents a
static cooperative solution (e.g. Shapley value, Core, etc.) of the long run game
Γs starting in state s, i.e.

T(β)(Γs) : {v(β)(Λ, Γs)}Λ⊆P → RP , ∀ s ∈ S.

Analogously, we define T(β)(
∑
i biΓsi) as the terminal cooperative solution of

the cooperative game with coalition values {v(β)(Λ,
∑
i biΓsi)}Λ⊆P .
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The terminal cooperative solution T(β) can represent any of the classical
cooperative solutions. For example, T ≡ Co represents the Core of the β-
discounted game Γs, that is the set, possibly empty, of the real P -tuples x
satisfying {∑

i∈P xi = v(β)(P, Γs)∑
i∈Λ xi ≥ v(β)(Λ, Γs), ∀Λ ⊂ P.

(7)

A game with nonempty Core is said to be balanced. The strict Core sCo(β)(Γs)
is defined as in (7), but with the strict inequality signs.

The terminal cooperative solution T ≡ Sh(β)(Γs) stands for the Shapley value
of the β-discounted game Γs, i.e. for all i = 1, . . . , P ,

Sh
(β)
i (Γs) =

∑
Λ⊆P/{i}

|Λ|! (P−|Λ|−1)!

P !

[
v(β)(Λ ∪ {i}, Γs)− v(β)(Λ, Γs)

]
.

We finally present a linearity property of the Core and Shapley value.

Proposition 2 Let ∆1, . . . ,∆N be games with transferable utilities with non
empty Cores Co(∆1), . . . ,Co(∆N ), respectively. Let b1, . . . , bN be non negative

coefficients. Then,
∑N
i=1 biCo(∆i) ⊆ Co(

∑N
i=1 bi∆i).

Proof Let x1(i), . . . , xP (i) be an allocation belonging to the Core Co(∆i).
Thanks to the linearity property of coalition values shown in Proposition 1,
we can write

N∑
i=1

∑
k∈P

bixk(i) =

N∑
i=1

biv(P, ∆i) = v

(
P,

N∑
i=1

bi∆i

)
N∑
i=1

∑
k∈Λ

bixk(i) ≥
N∑
i=1

biv(Λ,∆i) = v

(
Λ,

N∑
i=1

bi∆i

)
, ∀Λ ⊂ P.

Hence, the thesis is proven.

Corollary 1 For all β ∈ [0; 1),
∑N
i=1 biSh(β)(Γsi) = Sh(β)(

∑N
i=1 biΓsi), where

bi ≥ 0, ∀ i.

Proof The proof follows straightforward from Proposition 1 and from the lin-
earity property of the Shapley value.

3 Cooperative Payoff Distribution Procedure

In cooperative MDP’s, different static games follow one another in time. If we
conceive the dynamic game as a whole, the payoff allocation issue boils down to
the computation of the terminal cooperative solution T(β)(Γs), and the players

are rewarded a certain amount T
(β)

(Γs) ∈ T(β)(Γs) at the end the game. Of
course, if the length of game is not finite, the players need to be rewarded
throughout the game. Even if the game has a limited duration, though, the
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players may not be willing to wait until its conclusion before receiving a payoff
(e.g. wage earners). Our goal is then to build a connection between static and
dynamic cooperative game theory on Markov Decision Processes, by devising

a procedure which distributes the terminal solution T
(β)

(Γs) throughout the
game, in each of its stages. With respect to static cooperative game theory,
an additional complication here lies in satisfying, or at least being fair with,
all the players at each stage of the game, since coalitions are allowed to form
throughout the game unfolding. Moreover we assume that, once a coalition has
formed, it cannot rejoin the grand coalition later on.

Remark 1 All the results presented in the current section, as well as the ones
in Sections 4, 5, 7, 8 can be easily extended to undiscounted transient MDP’s,
i.e. games for which β = 1 and

∞∑
t=0

∑
s′∈S

pt(s
′|s, fP) <∞, ∀ s ∈ S, fP ∈ FP . (8)

where pt(s
′|s) = p(St = s′|S0 = s) is the probability of being in state s′

at the t-th step, knowing that the starting state was s. In fact the reader
should notice that, mathematically speaking, introducing a discount factor
β ∈ [0; 1) is equivalent to multiplying each transition probability by β, which
automatically ensures the transient condition (8).

Let us now define the concept of cooperative payoff distribution procedure,
which is crucial in this paper.

Definition 3 (CPDP) The cooperative payoff distribution procedure (CPDP)

g(β) := [g
(β)
1 , . . . , g

(β)
P ] is a recursive function that, for each time step t ≥ 0,

associates a real P -tuple g(β)(ht) to the past history ht = [S0, g
(β)(h0), S1, . . . ,

g(β)(ht−1), St] of states succession and stage-wise allocations up to time t.

The following are two alternative interpretations for g
(β)
i :

i) βtg
(β)
i (ht) is the payoff that player i ∈ P gains at the stage t of the game,

when ht is the history of the process;

ii) g
(β)
i (ht) is the payoff that player i obtains at time t when the transition

probabilities are discounted by a factor β, i.e. we consider a new distri-

bution p′(s′|s, f (β)∗
P ) = βp(s′|s, f (β)∗

P ), for all s, s′ ∈ S. Hence, 1 − β is the
stopping probability in each state.

Next we provide a definition of stationary CPDP’s. Let Ht the class of state
and allocation histories up to time t.

Definition 4 (Stationarity) Set β ∈ [0; 1). A CPDP g(β) is stationary when-
ever g(β)(ht) = g(β)(St=s) := g(β)(s), for all t ≥ 0 and ht ∈ Ht.

Hence, a stationary CPDP g(β) : S → RP is a stage-wise payoff distribution
law that does not depend on the whole history, but only on the last observable
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state of the process.

In his pioneering work, Petrosjan (2002) introduced a CPDP for games on finite
trees. Following his lines, we now propose a stationary CPDP for cooperative
MDP’s (MDP-CPDP) with β-discounted criterion, with β ∈ [0; 1) fixed a
priori.

Definition 5 (MDP-CPDP) Set β ∈ [0; 1). Select the a terminal coopera-

tive solution T
(β)

(Γs) ∈ T(β)(Γs), ∀ s ∈ S. The cooperative payoff distribution

procedure γ(β) on MDP (MDP-CPDP) associated to T
(β)

(Γs) is defined as

γ(β)(s,T) :=
∑
s′∈S

[
δs,s′ − β p(s′|s, f (β)∗

P )
]
T

(β)
(Γs′), ∀ s ∈ S. (9)

Throughout the paper, we will not specify the dependence of γ(β) on T
(β)

(Γs)
when this is clear from the context.
In Section 4 it will be clear to the reader that not all the stationary CPDP are
MDP-CPDP, but only those whose expected β-discounted long run summation
is actually a terminal cooperative solution. In the next sections we will study
some appealing properties of the MDP-CPDP, defined as in (9).

4 Terminal Fairness

In this section, we let the terminal cooperative solution T be any of the classic
cooperative solution (Core, Shapley value, Nucleolus, etc.). In the following
we will propose two desirable properties for a CPDP and we prove that the
MDP-CPDP defined in (9) fulfills both of them.

Firstly, we wish to guarantee a natural continuity between static coop-
erative game theory and dynamic payoff allocation. Hence, we require the
expected discounted sum of the stage-wise allocations to equal the terminal
cooperative solution of the game, as formalized in the following.

Property 1 (Terminal fairness) Set β ∈ [0; 1). The CPDP g(β) is said

to be terminal fair w.r.t. the terminal cooperative solution T
(β)

whenever

T
(β)

(Γs) is stage-wisely distributed in the course of the game, i.e.

E
[∑
t≥0

βtg(β)(ht)|S0 = s
]
∈ T(β)(Γs), ∀ s ∈ S.

Now we show that the proposed MDP-CPDP can be defined axiomatically,
as the only stationary allocation that fulfills the terminal fairness property.
Hence, γ(β)(.,T) establishes a bijective relation between a terminal cooperative
solution T and a stage-wise allocation procedure γ(β).
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Theorem 1 The MDP-CPDP γ(β)(s,T) ∈ RP , defined in (9) is the unique

stationary CPDP that satisfies the terminal fairness property w.r.t. T
(β)

, for
all β ∈ [0; 1).

Proof We know that, for all i ∈ P,
E[
∑
t≥0 β

tγ
(β)
i (St)|S0 = s1]

...

E[
∑
t≥0 β

tγ
(β)
i (St)|S0 = sN ]

 =
[
I− βP∗(β)

]−1


γ

(β)
i (s1)

...

γ
(β)
i (sN )

 .
If we substitute (9) in the equation above, we find that γ

(β)
i defined in (9)

satisfies the relation:

E
[∑
t≥0

βtγ(β)(St)|S0 = s
]

= T
(β)

(Γs), ∀ s ∈ S, i ∈ P.

Since the matrix
∑
t≥0[βP∗(β)]t = [I− βP∗(β)]−1 is invertible, then such γ(β)

is also unique. Hence, the thesis is proven.

In each state s of the game, the grand coalition receives a total payoff

rP(s, f
(β)∗
P ). In principle, only a portion of it could be shared among the play-

ers, and accordingly the remaining part is allocated in the following stages
of the game. We point out that this procedure would require the presence of
an external “regulator” agent, managing the payoff stream. In this work we
want to rule out this possibility, thus we demand that, in each state s, the

whole amount rP(s, f
(β)∗
P ) is shared among the players. We call this property

stage-wise efficiency. In order to ensure such a property surely, we also have
to ensure that the instantaneous rewards are deterministic. This is straight-

forward to obtain, since f
(β)∗
P can be found in the class of pure policies.

Property 2 (Stage-wise efficiency) Set β ∈ [0; 1). The CPDP g(β) is stage-

wise efficient whenever
∑
i∈P g

(β)
i (s) =

∑
i∈P ri(s, f

(β)∗
P ) for all s ∈ S, where

f
(β)∗
P is the global optimum pure stationary strategy.

Theorem 2 The MDP-CPDP γ(β), defined in (9), fulfills the stage-wise effi-
ciency property, for all β ∈ [0; 1).

Proof The global optimum strategy f
(β)∗
P is pure, since the optimization prob-

lem (2) that it solves can be formulated as a Markov Decision Process (Put-

erman 1994). Hence, ri(s, f
(β)∗
P ) is also deterministic, for all i ∈ P. Let us sum

(9) over all possible i ∈ P, for all s ∈ S, and we obtain:

v(β)(P, Γs) =
∑
i∈P

γ
(β)
i (s) + β

∑
s′∈S

p(s′|s, f (β)∗
P ) v(β)(P, Γs′).

Since the following is also valid for all s ∈ S from the definition of v(β):

v(β)(P, Γs) =
∑
i∈P

ri(s, f
(β)∗
P ) + β

∑
s′∈S

p(s′|s, f (β)∗
P ) v(β)(P, Γs′),

then,
∑
i∈P γ

(β)
i (s) =

∑
i∈P ri(s, f

(β)∗
P ), surely.
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It is straightforward to verify that the MDP-CPDP γ(β) defined in (9) also
fulfills a terminal efficiency property, i.e.∑

i∈P
E
[∑
t≥0

βtγ
(β)
i (St|S0 = s)

]
= v(β)(P, Γs), ∀ s ∈ S.

5 Time Consistency

Time consistency is a well known concept in dynamic cooperative theory (Filar
and Petrosjan 2000, Zaccour 2008, and references therein). It captures the
idea that the stage-wise allocation must respect the terminal fairness property
even from a later starting time of the game, for any possible trajectory of
the game up to that instant. In other words, players are never enticed to
renegotiate the agreement on CPDP at any intermediate time step, because
even if they did, assuming that cooperation has prevailed from the initial date
until that instant, then the payoff distribution procedure would remain the
same. Let us adopt the convention h−1 = ∅. The time consistency property
can be formalized as follows.

Property 3 (Time consistency) Set β ∈ [0; 1). A CPDP g(β) is time con-
sistent w.r.t. a terminal cooperative solution T(β) whenever, for all t ≥ 0 and
for all possible allocation/state histories ht ∈ Ht,

E

[ ∞∑
k=t

βkg(β)(Sk,hk−1)
∣∣∣ht] ∈ βtT(β)(Γs̄), (10)

where s̄ is the state at time t of history ht.

Note that the time consistency property boils down to the terminal fairness
property when t = 0. In particular, if we choose T ≡ Co, then the time
consistency properties entails that, if a coalition forms at time t, then the
expected long run payoff that it receives from time t onwards is not larger
than the one it would earn by cooperating, for any t. Formally, for all t ≥ 0,

∑
i∈Λ

E

[ ∞∑
k=t

βkg
(β)
i (Sk,hk−1)

∣∣∣ht] ≥ βtv(β)(Λ, Γs̄), ∀Λ ⊂ P, ht ∈ Ht.

In other words, when T ≡ Co, the time consistency property clears up any
coalition’s dilemma “Shall we stick to the grand coalition forever or withdraw
now?” in favor of the first alternative. We will extend further this concept in
Section 7.

Next we extend the definition of time consistency by suggesting that, at
any instant t, the expected payoff obtained by the players from time t + n
onwards should belong to the terminal solution associated to the stage of the
game at time t+ n.
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Property 4 (n-tuple step time consistency) Set β ∈ [0; 1) and let n ∈
N0. A CPDP g(β) is n-tuple step time consistent w.r.t. a terminal cooperative
solution T(β) whenever, for all t ≥ 0, ht ∈ Ht,

E

[ ∞∑
k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht] ∈ βt+nT(β)

(∑
s′∈S

pn(s′|St= s̄, f
(β)∗
P )Γs′

)
,

where pn is the n-step transition probability and s̄ is the state at time t of
history ht.

The reader should notice that Property 4 reduces to Property 3 when n = 0.
Now we are ready to show that the MDP-CPDP fulfills the n-tuple step time
consistency property for any value of n. The proof follows from the stationarity
of the allocation, the terminal fairness property, and two linearity properties
of the Core and of the Shapley value, respectively.

Theorem 3 Let T represent the Shapley Value, or the Core if we suppose that
Co(β)(Γs) is nonempty for any s ∈ S. The stationary MDP-CPDP γ(β)(.,T)
is time consistent w.r.t. T(β) for all β ∈ [0; 1). Moreover, it satisfies the n-tuple
step time consistency property for all n ∈ N0 and β ∈ [0; 1).

Proof Since γ(β) is stationary, we can rewrite (10) as

E

[ ∞∑
k=0

βkγ(β)(St+k)
∣∣∣St = s̄

]
∈ T(β)(Γs̄). (11)

Thanks to Theorem 1, (11) holds, hence γ(β) is time consistent. It is easy to
verify that

E

[ ∞∑
k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht] = βt+n

∑
s′∈S

pn(s′|St= s̄, f
(β)∗
P )T(β)(Γs′).

Therefore, from Proposition 2 we claim that, if T ≡ Co, then

E

[ ∞∑
k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht] ∈ βt+nCo(β)

(∑
s′∈S

pn(s′|St= s̄, f
(β)∗
P )Γs′

)
.

Moreover, for Corollary 1 we claim that, if T ≡ Sh, then

E

[ ∞∑
k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht] = βt+nSh(β)

(∑
s′∈S

pn(s′|St= s̄, f
(β)∗
P )Γs′

)
.

Thus (11) is verified for T ≡ Co and T ≡ Sh, and the thesis is proven.
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6 Greedy Players Satisfaction

In this section we allow for the presence of greedy players, i.e. players having
a myopic perspective of the game and who only look to receive the highest
reward in the static game played in the current state. From an allocation
procedure design point of view, the most conservative approach is to expect
that all the players might manifest a greedy behavior, and to construct a CPDP
that contents all of them. The most natural way to formalize this property is
requiring that the payoff allocation in each state belongs to the Core of its
respective static game.

Property 5 (Greedy players satisfaction) Set β ∈ [0; 1). For all s ∈ S,
the CPDP g(β)(s) belongs to Core of the stage-wise game Ωs, i.e. g(β)(s) ∈
Co(Ωs).

By demanding that MDP-CPDP should fulfill Property 5, we seek to ac-
commodate two apparently contrasting needs. On the one hand, we are trying
to allocate a payoff which is globally optimum and in some sense “fair” in
the long run game. On the other hand, we need to satisfy potential greedy
players, hence the allocation needs to be globally optimum and stable in each
static game Ω. The theory of MDP’s claims that, in general, our goal cannot
be reached for any value of β ∈ [0; 1), since the myopic strategy for the grand
coalition P is not in general global optimum when β is sufficiently close to 1.
Nevertheless, by letting the discount factor β be sufficiently close to 0, we will
show a sufficient condition under which Property 5 holds. For this purpose, in
the current section we consider the Shapley value as terminal fair solution, i.e.
T ≡ Sh.
Let us assume in the current section that the static game in state s, Ωs, is a
cooperative TU game, for all s ∈ S. Moreover, in this section we suppose that
the coalition values v(β)(Λ, Γs), v

(β)(Λ,Ωs) are the β-discounted values of the
two player zero-sum game of coalition Λ against P\Λ in the games Γs and Ωs
respectively. This classic formulation was originally devised by von Neumann
and Morgenstern (1944). Of course, v(0)(Λ, Γs) = v(Λ,Ωs).

Condition 1 (max-min coalition values) The coalition value v(β)(Λ, Γs)
is computed as the max-min expression in (3), for all Λ ⊆ P, s ∈ S. The
analogous expression holds for v(Λ,Ωs).

Lemma 1 There exists a pure strategy f∗P ∈ FP and β∗ > 0 such that f∗P is
optimal for all β ∈ [0;β∗).

Proof The global optimization problem is a Markov Decision Process (MDP)

having Φ
(β)
P as discounted reward. Take a strictly decreasing sequence {βk}

such that limk→∞ βk = 0. Since both the actions and the states have a finite
cardinality, then there exists a pure strategy f∗P and an infinite subsequence
of {βk}, namely {βnk}, with nk < nk+1 ∀ k, such that f∗P is optimal for all the
discount factors {βnk}. Fix a pure strategy fP ∈ FP . Then

y(βnk )(s, fP) := Φ
(βnk )

P (s, f∗P)− Φ(βnk )

P (s, fP) ≥ 0, ∀ k ∈ N. (12)
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It is easy to see that y(β) is a continuous rational function in β ∈ (0; 1). Then,
either it is identically zero for all β ∈ (0; 1) or y(β) = 0 in a finite number of
points in the interval (0; 1). Hence, for (12), there exists β∗(s, fP) > 0 such
that y(β)(s, fP) ≥ 0, for all β ∈ (0;β∗(s, fP)). Take β∗ = mins,fP β

∗(s, fP) > 0.

Since Φ
(β)
P (s, f∗P) is also right-continuous in β at β = 0, then f∗P is also optimal

for β = 0. Hence the thesis is proven.

Let us define Θs as the affine space:

Θs :

{
x ∈ RP :

∑
i∈P

xi =
∑
i∈P

ri(s, f
∗
P)

}
, (13)

where f∗P is the global optimal strategy for all discount factors sufficiently close
to 0, i.e.

∃β∗ > 0 : f∗P = argmax
fP∈FP

Φ
(β)
P (fP) ∀β ∈ [0;β∗). (14)

Corollary 2 For any s ∈ S, γ(β)(s) belongs to the affine space Θs, for all β
sufficiently close to 0.

Proof The proof follows straightforward from Theorem 2 and from Lemma 1.

Next we present a useful result.

Lemma 2 Let T ≡ Sh. Under Condition 1, limβ↓0 γ
(β)(s) = Sh(0)(Γs) ≡

Sh(Ωs).

Proof Let us rewrite (9) as

γ(β)(s,Sh) =
∑
s′∈S

[
δs,s′ − β p(s′|s, f (β)∗

P )
]

Sh(β)(Γs′), ∀ s ∈ S.

It is sufficient to prove that limβ↓0 Sh(β)(Γs) = Sh(0)(Γs), ∀ s ∈ S. Since each

component of the vector Sh(β)(Γs) is a linear combination of the discounted
values {v(β)(Λ, Γs)}Λ⊆P , then we only need to show that

lim
β↓0

v(β)(Λ, Γs) = v(0)(Λ, Γs) = v(Λ,Ωs), ∀ s ∈ S, Λ ⊆ P.

Firstly, let us recall the relation (Filar and Vrieze 1996)

| val(B)− val(C)| ≤ max
i,j
|Bi,j −Ci,j | (15)

where B,C are matrices with the same size. We know from Filar and Vrieze
(1996) that

v(β)(Λ, Γs) = val

([∑
i∈Λ

ri(s, aΛ, aP\Λ) + . . .

+β
∑
s′∈S

p(s′|s, aΛ, aP\Λ) v(β)(Λ, Γs′)
]mΛ(s),mP\Λ(s)

aΛ=1,aP\Λ=1

)
, (16)
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where aΛ ∈ AΛ(s) and aP\Λ ∈ AP\Λ(s). Thus, from (15,16) we can say that,
for all Λ ⊆ P,

|v(β)(Λ, Γs)− v(0)(Λ, Γs)| ≤ max
aΛ,aP\Λ

∣∣∣β ∑
s′∈S

p(s′|s, aΛ, aP\Λ) v(β)(Λ, Γs′)
∣∣∣

≤ β

1− β
M

where M = maxs,aΛ,aP\Λ |rΛ(s, aΛ, aP\Λ)|. Fix ε > 0. Set δ = ε/(M+ε). Then,

for all β ∈ [0; δ) we have |v(β)(Λ, Γs) − v(0)(Λ, Γs)| < ε. Hence, v(β)(Λ, Γs) is
right-continuous in β at β = 0 for all s ∈ S, Λ ⊆ P.

Let us formulate an additional condition, on the strict convexity of static
games, which holds only in the current section.

Condition 2 (Stage-wise strict convexity) The static games {Ωs}s∈S are
strictly convex, i.e. v(Λ1 ∪ Λ2, Ωs) + v(Λ1 ∩ Λ2, Ωs) > v(Λ1, Ωs) + v(Λ2, Ωs),
for all Λ1, Λ2 ⊆ P, s ∈ S.

We know from Shapley (1971) that, if Condition 2 holds, then the Core of Ωs
is (P − 1)-dimensional for any s ∈ S, i.e. the affine hull of Co(Ωs) coincides
with Θs in (13). Note that, in general, the affine hull of Co(Ωs) could be a
proper subset of Θs.

Corollary 3 Suppose that the stage-wise strict convexity Condition 2 holds.
Then, for all s ∈ S,

i) the Shapley value of Ωs lies in the relative interior of Co(Ωs);
ii) the interior of Co(Ωs) relative to Θs coincides with the strict Core sCo(Ωs).

Proof For the proof of i), see Shapley (1971). The proof of ii) is straightfor-
ward.

Finally, we are ready to show under which conditions the MDP-CPDP fulfills
the greedy players satisfaction property.

Theorem 4 Under Conditions 1 and 2, the greedy players satisfaction prop-
erty is verified by γ(β)(Sh(β)) for all discount factors β sufficiently close to
0.

Proof Fix s ∈ S. We know from Corollary 3 that Sh(Ωs) lies in the relative
interior of Co(Ωs). The affine hull of Co(Ωs) coincides with the hyperplane
Θs for Condition 2. Moreover, from Corollary 2 we know that, for all s ∈ S,
γ(β)(s) belongs to the affine space Θs for all β ∈ [0, β∗), where β∗ is defined
as in (14). Hence, for Lemma 2 we can say that for all ε > 0 there exists
δs ∈ (0, β∗) such that

∀β ∈ [0; δs), γ
(β)(s) ∈ [Bδs ∩Θs] ⊆ Co(Ωs),

where Bδs is the ball belonging to RP having radius of δs. Take δ = mins∈S δs.
The thesis is proven.

Hence, under Condition 2, for all β ∈ [0; δ), all the greedy players are
content with payoff allocation procedure, since the MDP-CPDP belongs to
the Core of each static game Ωs, for all s ∈ S.
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7 Cooperation Maintenance

The (single step) cooperation maintenance property was first introduced by
Mazalov and Rettieva (2010), who employed it in a deterministic fish war
setting. Such a property is very desirable, since it helps to preserve the co-
operation agreement throughout the game. Indeed it suggests that the long
run payoff that each coalition expects to earn by deviating in the next stage
of the game should be not smaller than the payoff that the coalition receives
by deviating in the current stage. In this section we will adapt and apply
this property to our cooperative MDP model. For simplicity, we restrict the
following definitions to stationary CPDP’s.

Property 6 (Single step cooperation maintenance) Set β ∈ [0; 1). The
stationary CPDP g(β) satisfies, in any state s ∈ S and for each coalition
Λ ⊂ P,

∑
i∈Λ

g
(β)
i (s) + βv(β)

(
Λ,
∑
s′∈S

p(s′|s, f (β)∗
P )Γs′

)
≥ v(β)(Λ, Γs). (17)

In other words, Property 6 claims that each coalition has always an in-
centive to postpone the moment in which it will withdraw from the grand
coalition, under the condition that, once a coalition Λ ⊂ P is formed, it can
no longer rejoin the grand coalition in the future. By induction, we can say
that the cooperation maintenance property enforces the grand coalition agree-
ment throughout the game.
We point out that the transition probabilities in (17) are invariant with respect
to a change of strategy by Λ, which can only withdraw at the following time
step.

7.1 n-tuple step cooperation maintenance

Intuitively, Property 6 sorts out a coalition’s dilemma “Shall we withdraw from
the grand coalition in one time step or now?” in favor of the first option, at
any stage of the game. It is natural to extend this property to a setting in
which a coalition investigates the benefit of withdrawing in a later stage of
the game. In other words, if a coalition faces the dilemma “Shall we withdraw
from the grand coalition in n time steps or now?”, we suggest that a CPDP
should always persuade the coalition to defer the decision of defecting, for any
integer n.

Property 7 (n-tuple step cooperation maintenance) Set β ∈ [0; 1). Let
n ∈ N0. The stationary CPDP g(β) satisfies the n-tuple step cooperation main-
tenance property whenever, for any initial state s ∈ S and for each coalition
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Λ ⊂ P,

n−1∑
t=0

βtpt(s
′|s,f (β)∗

P )
∑
i∈Λ

g
(β)
i (s′) + . . .

βnv(β)

(
Λ,
∑
s′∈S

pn(s′|s, f (β)∗
P )Γs′

)
≥ v(β)(Λ, Γs).

Next we show a necessary and sufficient condition for the existence of an MDP-
CPDP γ(β) satisfying the n-tuple step cooperation maintenance property, for
n ≥ 1. Before this, a notation remark. We denote v(β)(Λ, Γ ) as

v(β)(Λ, Γ ) :=
[
v(β)(Λ, Γs1), . . . , v(β)(Λ, ΓsN )

]T
, ∀Λ ⊆ P.

Theorem 5 Let n ∈ N0, β ∈ [0; 1). The set of MDP-CPDP’s satisfying the
n-tuple step cooperation maintenance property is nonempty if and only if the
vectors [

I−
[
βP∗(β)

]n]
v(β)(Λ, Γ ) := ṽ(β,n)(Λ, Γ ), Λ ⊆ P (18)

are component-wisely balanced, i.e. for every function α : 2P /{∅} → [0; 1] such
that:

∀ i ∈ P :
∑
Λ⊆P:
Λ3i

α(Λ) = 1,

the following condition holds:∑
Λ⊆P

α(Λ)ṽ
(β,n)
k (Λ, Γ ) ≤ ṽ

(β,n)
k (P, Γ ), 1 ≤ k ≤ N,

where ṽ
(β,n)
k (Λ, Γ ) is the k-th component of ṽ(β,n)(Λ, Γ ).

Proof Let us rewrite (9) as:

γ
(β)
i (T) =

[
I− βP∗(β)

]
T

(β)

i , ∀ i ∈ P (19)

where γ
(β)
i (.) = [γ

(β)
i (s1, .), . . . , γ

(β)
i (sN , .)]

T and T
(β)

i = [T
(β)

i (Γs1), . . . ,T
(β)

i (ΓsN )]T .
Thanks to Proposition 1, by applying twice the well known formula for matrix
geometric series:

n−1∑
k=0

[
βP∗(β)

]k
=
[
I− βP∗(β)

]−1 [
I−

[
βP∗(β)

]n]
,

we can reformulate Property 7 as
[
I−

[
βP∗(β)

]n]∑
i∈Λ T

(β)

i ≥
[
I−

[
βP∗(β)

]n]
v(β)(Λ, Γ ), ∀Λ ⊂ P∑

i∈P T
(β)

i = v(β)(P, Γ ).
(20)
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Since the matrix I− [βP∗(β)]n is invertible for any n ∈ N, then we can equiv-
alently rewrite (20) as

∑
i∈Λ T̃

(β,n)

i ≥ ṽ(β,n)(Λ, Γ ), ∀Λ ⊂ P∑
i∈P T̃

(β,n)

i = ṽ(β,n)(P, Γ )
(21)

where

T̃
(β,n)

i =
[
I−

[
βP∗(β)

]n]
T

(β)

i .

Since the relations in the systems of inequalities in (21) are component-wise, for
the Bondareva-Shapley Theorem (Bondareva 1963; Shapley 1967) the thesis
is proven.

The reader should notice that, in the limit for n→∞, the result of Theo-
rem 5 coincides (component-wisely) with the Bondareva-Shapley Theorem for
static cooperative games.

Next we show an intuitive result which reinforces the importance of the
single step cooperation maintenance property. If an MDP-CPDP satisfies the
n-tuple step property for n = 1, then it also fulfills it for all integers n. In this
case, for any coalition, the worst decision between defecting at the current
stage and at any future stage happens to be the former one.

Theorem 6 Let β ∈ [0; 1). If the MDP-CPDP γ(β)(.,T) satisfies the single
step cooperation maintenance property, then it satisfies the n-tuple step coop-
eration maintenance property, for all n > 1.

Proof Since γ(β)(.,T) satisfies the single step cooperation maintenance prop-
erty, then we can writeβP∗(β)

[∑
i∈Λ T

(β)

i − v(β)(Λ, Γ )
]
≥
∑
i∈Λ T

(β)

i − v(β)(Λ, Γ ), ∀Λ ⊂ P∑
i∈P T

(β)

i = v(β)(P, Γ ).

(22)
By iteratively left multiplying by the nonnegative matrix βP∗(β) both sides of
the first expression in (22), then we obtain for each coalition Λ ⊂ P:

∑
i∈Λ

T
(β)

i − v(β)(Λ, Γ ) ≤ βP∗(β)

[∑
i∈Λ

T
(β)

i − v(β)(Λ, Γ )

]
≤

[
βP∗(β)

]2 [∑
i∈Λ

T
(β)

i − v(β)(Λ, Γ )

]
≤ . . .

Hence, the thesis is proven.
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7.2 Cooperation Maintaining solution

In the following we prove that if an MDP-CPDP γ(β) fulfills the single step
cooperation maintenance property, then the discounted sum of allocations for
each player, when s is the initial state, belongs to the Core of the game Γs,

i.e. T
(β)

(Γs) ∈ Co(β)(Γs), for all s ∈ S.

Corollary 4 Set β ∈ [0; 1). If an MDP-CPDP γ(β)(.,T) satisfies the single
step cooperation maintenance property, then

E

∑
t≥0

βtγ(β)(St)
∣∣S0 = s

 ∈ Co(β)(Γs), ∀ s ∈ S. (23)

Proof Since γ(β) satisfies Property 6, then (20) is verified, with n = 1. By
left multiplying each set of inequalities in (20) by the nonnegative matrix
(I− βP∗(β))−1, we obtain the following expressions:{∑

i∈Λ T
(β)

i ≤ v(β)(Λ, Γ ), ∀Λ ⊂ P,∑
i∈P T

(β)

i = v(β)(P, Γ ).
(24)

Thanks to Theorem 1, we can say that the relations in (24) are equivalent to
(23), hence the thesis is proven.

Interestingly, Corollary 4 suggests that the cooperation maintenance prop-
erty might be considered as a refinement of the concept of the Core of a long
run game. In Section 7.2.1 we will show that it is actually a proper refinement.
Therefore, it is worth coining a new terminal cooperative solution for cooper-
ative MDP’s, that we dub Cooperation Maintaining solution, grounded on the
cooperation maintenance property.

Definition 6 (Cooperation Maintaining solution) Let β ∈ [0; 1). The

Cooperation Maintaining solution Cm(β)(Γ ) is the set of long run allocations
{xi ∈ RN}i=1,...,P such that{[

I− βP∗(β)
]∑

i∈Λ xi ≥
[
I− βP∗(β)

]
v(β)(Λ, Γ ), ∀Λ ⊂ P∑

i∈P x
(β)
i = v(β)(P, Γ ).

We point out that a classic terminal cooperative solution, such as Core,
Shapley value etc., can be defined just for a specific a long run game Γs, for
some s ∈ S, by computing the coalition values v(β)(., Γs). Therefore, a classic
terminal solution is a vector in RP . Instead, the Cooperation Maintaining
solution involves the computation of all coalition values v(β)(., Γs), for all s ∈
S, and a solution point is a collection of P vectors belonging to RN . Of course,
a Cooperation Maintaining solution point can be expressed as a collection
of N vectors in RP , and either of the two definitions can be used, at one’s
convenience.

By collecting the results of this section, we enumerate the properties of the
Cooperation Maintaining solution in the following Corollaries.
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Corollary 5 The Cooperation Maintaining solution Cm(β)(Γ ) is a nonempty

set if and only if the modified coalition values {ṽ(β,1)
k (Λ, Γ )}Λ⊆P , defined as

in (18), are balanced, for k = 1, . . . , N .

Corollary 6 Let us assume that Cm(β)(Γ ) is nonempty. Then ∪s∈ST
(β)

(Γs) ∈
Cm(β)(Γ ) if and only if the MDP-CPDP γ(β)(.,T) satisfies the n-tuple step
cooperation maintenance property, for all n ∈ N.

Corollary 7 For all β ∈ [0, 1), Cm(β)(Γ ) ⊆ ∪s∈SCo(β)(Γs).

7.2.1 The Cooperation Maintaining solution is a proper refinement of the
Core

It is natural to ask whether the converse of Corollary 7 is true, i.e. whether triv-
ially Cm(β)(Γ ) ≡ ∪s∈SCo(β)(Γs) or the Cooperation maintaining concept is

a proper refinement of the Core. In this section we will show that Cm(β)(Γ ) 6=
∪s∈SCo(β)(Γs), by finding an allocation T

(β)
such that T

(β)
(Γs) ∈ Co(β)(Γs)

for all s ∈ S, but ∪s∈ST
(β)

(Γs) /∈ Cm(β)(Γs). Hence, the Cooperation main-
taining solution is a proper refinement of the Core solution concept for coop-
erative MDP’s.

Let us devise the counterexample. We consider a cooperative MDP with
two players (P = 2), four states (N = 4), and with perfect information, i.e.
in each state at most one player has more than one action available. Player
1 controls states (s1, s2), and the remaining states (s3, s4) are controlled by
player 2. Let the discount factor β = 0.8. The immediate rewards for each
player and the transition probabilities for each state/action pair are shown in
Table 7.2.1.

(s, a) r1 r2 p(s1|s, a) p(s2|s, a) p(s3|s, a) p(s4|s, a)

pl. 1

(s1,a1) 1 3 0.1 0.4 0.1 0.4
(s1,a2) 2 1 0.4 0.1 0.1 0.3
(s1,a3) 1 0 0.4 0.2 0.4 0.1
(s2,a4) 2 1 0.1 0 0.4 0.4
(s2,a5) 3 1 0.2 0.2 0.2 0.5
(s2,a6) 4 3 0.2 0 0.2 0.3

pl. 2

(s3,a7) 5 1 0.3 0.6 0.4 0.1
(s3,a8) 1 3 0.3 0.4 0.2 0
(s3,a9) 2 6 0.3 0.3 0.1 0
(s4,a10) 0 1 0.5 0 0.1 0.1
(s4,a11) 2 2 0.1 0.3 0.5 0.2
(s4,a12) 3 0 0.1 0.5 0.3 0.6

Table 1 Immediate rewards and transition probabilities for each player, state, and strategy.
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In this case, the vector values of the coalitions {1}, {2} and P = {1, 2},
rounded off to the second decimal, are

v(0.8)({1}) ≈


8.73
10.03
7.34
7.16

 , v(0.8)({2}) ≈


9.57
8.65
10.93
11.23

 , v(0.8)({1, 2}) ≈


33.08
30.78
33.77
30.83

 .

where for simplicity of notation we write v(β)(.) instead of v(β)(., Γ ). Since
the coalition values are component-wisely superadditive by construction, then
Co(0.8)(Γs) for the two-player case always exists, for all s ∈ S. Let us select:

T
(0.8)

1 = v(0.8)({1}) +


0.7 0 0 0
0 0.4 0 0
0 0 0.2 0
0 0 0 1

[v(0.8)({1, 2})− [v(0.8)({1}) + v(0.8)({2})]
]

T
(0.8)

2 = v(0.8)({2}) +


0.3 0 0 0
0 0.6 0 0
0 0 0.8 0
0 0 0 0

[v(0.8)({1, 2})− [v(0.8)({1}) + v(0.8)({2})]
]
.

Thus, we obtain

T
(0.8)

1 ≈
[
19.07 14.87 10.44 19.60

]T
T

(0.8)

2 ≈
[
14.01 15.91 23.32 11.23

]T
.

We find that:

T̃
(0.8)

1 (s2) ≈ 2.92 < ṽ
(0.8,1)
2 ({1}) ≈ 3.65

T̃
(0.8)

1 (s3) ≈ −0.75 < ṽ
(0.8,1)
3 ({1}) ≈ 0.51

T̃
(0.8)

2 (s1) ≈ 0.48 < ṽ
(0.8,1)
1 ({2}) ≈ 1.61

T̃
(0.8)

2 (s4) ≈ 0.90 < ṽ
(0.8,1)
4 ({2}) ≈ 3.00.

Therefore, the converse of Corollary 7 is not true, Cm(β)(Γ ) 6= ∪s∈SCo(β)(Γs),
and the Cooperation Maintaining solution is a proper refinement of the Core.
On the other hand, it is interesting to observe that in this example, by ran-

domly generating vectors T
(0.8)

(Γs) ∈ Co(0.8)(Γs), in about the 99.45% of the

cases T
(0.8)

(Γs) ∈ Cm(0.8)(Γs) as well, for all s ∈ S.
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7.3 Strictly convex static games

In the same spirit of Section 6, we now show that the sole strict convexity
Condition 2 on the static games ensures the existence of an MDP-CPDP sat-
isfying the cooperation maintenance property for all discount factors β small
enough. As in Section 6, we assume that Condition 1 holds, i.e. the coalition
values are computed ‘a la von Neumann and Morgenstern.

Theorem 7 Suppose that Conditions 1,2 hold. Then, γ(β)(.,Sh) satisfies the
single step cooperation maintenance property for all β close enough to 0.

Proof Thanks to the linearity property of coalition values (see Proposition 1)
we can reformulate Property 6 as∑
i∈Λ

γ
(β)
i (s,Sh) ≥

∑
s′∈S

[
δs,s′ − βp(s′|s, f (β)∗

P )
]
v(β)(Λ, Γs′), ∀Λ ⊂ P, s ∈ S.

From (9), considering T ≡ Sh,∑
i∈Λ

γ
(β)
i (s,Sh) =

∑
s′∈S

[
δs,s′ − βp(s′|s, f (β)∗

P )
]∑
i∈Λ

Sh
(β)
i (Γs′).

By hypothesis, for all s ∈ S the Shapley value Sh(Ωs) = Sh(0)(Γs) belongs
to the strict Core sCo(Ωs) for all β sufficiently close to 0. Hence, by right
continuity of the Shapley value and of coalition values in β = 0 (see proof of
Lemma 2), we conclude that, for all β sufficiently close to 0,

∑
s′∈S

[
δs,s′ − βp(s′|s, f∗P)

] [∑
i∈Λ

Sh
(β)
i (Γs′)− v(β)(Λ, Γs′)

]
≥ 0, ∀ s ∈ S,

where f∗P is the optimal strategy for grand coalition for all β sufficiently small,
as in (14). Hence, the thesis is proven.

8 Transition probabilities not depending on the actions

In this final section we deal with a special case of our model, entailing that
the Markov process among the states is endogenous, i.e. players’ strategies do
not influence the transition probabilities among the states. This is formalized
as follows.

Condition 3 The probabilities of transition among the states do not depend
on the players’ actions, i.e. p(s′|s, a1, . . . , aP ) = p(s′|s), for all ai ∈ Ai(s) and
for each s, s′ ∈ S.

As in Sections 6 and 7.3, we consider the static games {Ωs}s to possess
transferable utilities {v(Λ,Ωs)}s∈S,Λ⊆P . Nevertheless, we no longer impose
the max-min Condition 1 on the coalition values. This model is equivalent to
the one of Predtetchinski (2007), except for the TU assumption.



23

Now we show that, under Condition 3, the allocation problem simplifies con-
siderably. In fact, the balancedness of each static game is a sufficient condition
to ensure the existence of an MDP-CPDP satisfying Properties 5, 6, and 7.

Theorem 8 Suppose that the static games {Ωs}s∈S are balanced. Then, for
all β ∈ [0; 1), there exists an MDP-CPDP γ(β)(.,T) such that the following
properties are jointly met:

i) T
(β)

(Γs) ∈ Co(β)(Γs), for all s ∈ S;
ii) γ(β)(.,T) fulfills the greedy player satisfaction property;

iii) ∪s∈ST
(β)

(Γs) ∈ Cm(β)(Γ ), i.e. γ(β)(.,T) fulfills the n-tuple step coopera-
tion maintenance property, for n ∈ N.

Proof From the hypothesis, there exists {γ(β)
i ∈ RN}i=1,...,P such that{∑

i∈Λ γ
(β)
i ≥ v(Λ,Ω) ∀Λ ⊂ P∑

i∈P γ
(β)
i = v(P, Ω).

(25)

From the linearity property of coalition values (see Proposition 1) we claim
that

v(β)(Λ, Γ ) =
[
I− βP

]−1
v(Λ,Ω) ∀Λ ⊆ P, (26)

where v(Λ,Ω) := [v(Λ,Ωs1), . . . , v(Λ,ΩsN )]
T

. Thus, by left multiplying the
expressions in (25) by the nonnegative matrix (I− βP)−1 we obtain{∑

i∈Λ Ti ≥ v(β)(Λ, Γ ) ∀Λ ⊂ P∑
i∈P Ti = v(β)(P, Γ )

Hence, i) and ii) are proven by the construction of γ(β)(.,T). By plugging (26)
in (25), we can write{∑

i∈Λ γ
(β)
i ≥

[
I− βP

]
v(β)(Λ, Γ ) ∀Λ ⊂ P∑

i∈P γ
(β)
i =

[
I− βP

]
v(β)(P, Γ ).

which coincides with the definition of the single step cooperation maintenance
property. For Theorem 6, iii) is proven. Thus the thesis follows.

Not surprisingly, Condition 3 simplifies considerably the allocation proce-
dure issue at hand. Indeed, it is sufficient to prove the balancedness of the static
games to ensure both the cooperation maintenance property and the greedy
players satisfaction property. We recall that, in the general case in which the
transition probabilities do depend on the players’ actions, the hypothesis of
stage-wise balancedness does not even imply property ii) of Theorem 8 for β
sufficiently high, as pointed out in Section 6.
Moreover, Theorem 8 suggests that, under Condition 3 and if the static games
are balanced, it is convenient to devise a stage-wise allocation in a bottom-up
fashion, i.e. by first allocating γ(β)(s) ∈ Co(Ωs) in each state s, and then com-

puting the terminal solution T
(β)

, which turns out to belong to Co(β)(Γs), in
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all states.

We also remark that the converse of property i) of Theorem 8 is not true.

Indeed, it is possible to find a terminal cooperative solution T
(β)

belonging to
the Core of the long run games Γs, for all s ∈ S, whose associated MDP-CPDP
γ(β)(.,T) lies outside the Core of at least one static games Ωs.

We conclude by providing a result for the Shapley value allocation proce-
dure. The proof follows straightforward from Corollary 1 and equation (26).

Corollary 8 Let β ∈ [0; 1). Let T
(β)

(Γs) ∈ RP be a terminal cooperative
solution, for all s ∈ S. Under Condition 3, γ(β)(s,T) = Sh(Ωs), for all s ∈ S,

if and only if T
(β)

(Γs) = Sh(β)(Γs), for all s ∈ S.

9 Conclusions

This paper deals with Cooperative Markov Decision Processes, in which sub-
coalition of players may form throughout the game. Thus it is crucial to enforce
at the beginning of the game an agreement that no player has interest to breach
at any time step. Hence we proposed a payoff allocation procedure, called
MDP-CPDP, distributing a cooperative solution, associated with the long run
game, in each state of the MDP. Such an MDP-CPDP is the only stationary
allocation fulfilling a terminal fairness property, it is stage-wise efficient, and
it is time consistent, i.e. the agreement stipulated at the beginning of the
game holds throughout the game. We found sufficient conditions under which
the MDP-CPDP also contents greedy players, having a myopic perspective of
the game, for all discount factors sufficiently small. We studied a cooperation
maintenance property, which is crucial since it enforces the cohesiveness of
the grand coalition throughout the game. This property allowed us to define a
new cooperative solution, dubbed Cooperation Maintaining solution, which is
a refinement of the concept of Core for MDP’s. We finally considered a simpler
model with an endogenous Markov chain, in which the MDP-CPDP satisfies
all the cited properties under more relaxed constraints.
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