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2229 Route des Crêtes, P.O. Box 193, 06904, Sophia Antipolis, France

∗Corresponding author: Wael.Guibene@eurecom.fr

Abstract—Cognitive radio is a smart wireless communication
concept that is able to promote the efficiency of the spectrum
usage by exploiting its free frequency bands, namely spectrum
holes. Detection of spectrum holes is one of the first steps of
implementing a cognitive radio system. Another step towards the
feasibility and a real implementation of a cognitive radio network
is the problem of location awareness. This problem arises when
we do consider a realistic scenario in hybrid overlay/underlay
systems, when these spectrum opportunities permit cognitive
radios to transmit below the primary users tolerance threshold.
In this case, the cognitive radio, have to estimate robustly the
primary users locations in the network in order to adjust its
transmission power function of the estimated location in the
network. Adding to this the fact that in wideband radio one
may not be able to acquire signals at the Nyquist sampling rate
due to the current limitations in Analog-to-Digital Converter
(ADC) technology, we end up with a system that should, at
a sub-Nyquist rate, properly recover the bands over which
the primary users transmit and estimate their location in the
network. In this paper 1, we proposed to analyze all these arisen
problems. During the problem formulation and when analyzing
more deeply the equations related to each question apart, we
will make the link between the formulation of spectrum sensing,
location awareness and the hardware limitation by describing
those problems in a unique compressed sensing formalism. Via
the proposed framework, we made it possible to overcame a
challenging postulate of fixed frequency spectrum allocation by
also estimating the spectrum usage boundaries in a blind way.
Index Terms—collaborative spectrum sensing; compressed

sensing; primary users localization

I. INTRODUCTION

During the last decades, we have witnessed a great progress
and an increasing need for wireless communications systems.
This need for flexibility and more ”mobile” devices led to
needs to afford the spectral resources that shall be able to
satisfy costumers need for mobility. But, as wide as spectrum
seems to be, all those demands made it a scarce resource
and highly misused. Measurements lead by the FCC (Federal
Communication Commission) in the USA have shown that in
some regions and/or at some day intervals up to 70 percent of
the statically allocated spectrum is left idle [2]. Facing this
inefficient usage of spectrum, the FCC recommends deploying

1The research work leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA n249060.

unlicensed users in the wireless networks. These unlicensed
users, also called secondary user (SU), are allowed to use
those idle wireless resources only when the licensed users,
also called primary user (PU), is not using them so they do
not interfere with their transmissions. Cognitive Radio (CR)
as introduced by Mitola [1], is one of those possible devices
that could be deployed as SU equipments and systems in
wireless networks. As originally defined, a CR is a self aware
and ”intelligent” device that can adapt itself to the wireless
environment changes. Such device is able to detect the changes
in Wireless network to which it is connected and adapt its
radio parameters to the new opportunities that are detected.
This constant track of the environment change is called the
”spectrum sensing” function of a cognitive radio device.
Thus, spectrum sensing in CR aims in finding the holes in the
PU transmission which are the best opportunities to be used by
the SU. Many statistical approaches already exist. The easiest
to implement and the reference detector in terms of complexity
is still the Energy Detector (ED). Nevertheless, the ED is
highly sensitive to noise and does not perform well in low
Signal to Noise Ratio (SNR). Other advanced techniques based
on signals modulations and exploiting some of the transmitted
signals inner properties were also developed. For instance, the
detector that exploits the built-in cyclic properties on a given
signal is the cyclostationary Features Detector (CFD). The
CFD do have a great robustness to noise compared to ED but
its high complexity is still a consequent draw back. Some other
techniques, exploiting a wavelet approach to efficient spectrum
sensing of wideband channels were also developed [5].
Recently, compressed sensing/compressive sampling (CS) has
been considered as a promising technique to improve and
implement cognitive radio (CR) systems. The increasing de-
mand for spectrum from various wireless devices and networks
emerges the technical society to use the radio spectrum more
efficiently. In wideband radio one may not be able to acquire
a signal at the Nyquist sampling rate due to the current
limitations in Analog-to-Digital Converter (ADC) technology
[4]. Compressive sensing makes it possible to reconstruct a
sparse signal by taking less samples than Nyquist sampling,
and thus wideband spectrum sensing is doable by CS. An
sparse signal or a compressible signal is a signal that is
essentially dependent on a number of degrees of freedom



which is smaller than the dimension of the signal sampled
at Nyquist rate. In general, signals of practical interest may
be only nearly sparse [4]. And typically the wireless signal
in open networks are sparse in the frequency domain since
depending on location and at some times the percentage of
spectrum occupancy is low due to the idle radios [3], [5].
In CS a signal with a sparse representation in some basis
can be recovered from a small set of nonadaptive linear
measurements [6]. A sensing matrix takes few measurements
of the signal, and the original signal can be reconstructed from
the incomplete and contaminated observations accurately and
sometimes exactly by solving a simple convex optimization
problem [4], [7]. In [8] and [9] conditions on this sensing
matrix are introduced which are sufficient in order to recover
the original signal stably. And remarkably, a random matrix
fulfills the conditions with high probability and performs an
effective sensing [6], [10].
For overlay CR technology, a binary hypothesis is enough
to characterize the spectrum hole , called here white space.
This spectrum hole is either vacant or already occupied by a
PU. But, in hybrid overlay/underlay network, the hypothesis
of binary state is no more enough to characterize the spectrum
opportunities. In this case, the spectrum opportunities are
called gray spectrum areas where the PU is already com-
municating, but there is still an opportunity for the CR to
communicate. The CR has then to satisfy some constraints
on power (secondary transmit power as seen from a primary
receiver have to go below the ceil of PU interference tolerance
level and when talking about transmit power, it is directly
related to the PU positions in the CRN.
In this paper, we will present a joint spectrum sensing and PU
localization algorithm for CRN. We will show how localization
in CRN could be viewed as a CS problem and formulated in
terms of CS equations. This algorithm is presented as a CS
approach to both problems. We will use a modified framework
of the orthogonal matching pursuit algorithm (OMP) that we
feed with some apriori knowledge of the CR spectrum usage
and thus derive a more appropriate OMP algorithm for CS and
the problem of localization.
The rest of the paper is organized as following: in Section

II we will give the system model used through this paper. In
order to make the paper easier to read and to apprehend, in
Section III we start by giving an overview of what will be
done at the level of each CR individually and still in Section
III we will derive the CS algorithm to be deployed. In IV, we
will make the link between location estimation and spectrum
reconstruction. In Section V, we will go through the analysis
of the proposed technique and derive its performances. Finally,
Section VI will conclude about the present work.

II. SYSTEM MODEL

In the considered system model, we will suppose that we
do dispose of Nch available channels in a wideband wireless
network. Over a large geographic area, let Np be the number
of deployed primary users using Np different channels. In
this large area, we disperse Nc cognitive radios that will

operate and detect all these channels and their states. The
measures made by these cognitive terminals will then be sent
to the fusion center. In order to enable CRs transmissions, the
secondary network have to be aware of the availability and the
state of each channel in the sense of hybrid underlay/overlay
scheme. Thus, secondary users have to estimate which chan-
nels are occupied and to identify the PUs transmission powers
and locations.
Adopting the path loss model, we end up with a loss of:

L(f, d) = P0 + 2 lg(f) + 10n lg(d) [dB] (1)

where: P0 is a constant related to antennas gain; f is
the channel frequency; n is the path loss exponent; d is the
distance separating the transmitting and receiving nodes and
lg(.) = log10(.)
In our case, we dispose of Nch channels, thus f would

be assumed the central frequency of each band, i.e f ∈
{f0, f1..., fNch−1}.
Let’s keep in mind that the path loss is related to the

unknown channel and location of the PU. The received signal
power is a combination of the unknown transmit power with
the path loss expressed in Eq(1).
Our task is to infer from the received signal at the cognitive

terminals all these unknown, but valuable, information about
the primary users.
First of all we will describe what is exactly done at the level

of each terminal separately in the section III. Then, starting
from IV, we proceed with this system model.

III. SINGLE NODE SPECTRUM SENSING BASED ON
COMPRESSED SENSING

A. Discrete Spectrum Model
As initiated in [12], the CS algorithms suppose that we do

dispose of B Hz of total bandwidth for the CRN. In discrete
notation, let’s denote by

−→
f the N×1 discrete spectrum vector

containing the sampled values over B.

−→
f = [f1 f2 ... fN ]T (2)

where T is the transpose operation and {f i} are the signal
values uniformly sampled over B by a B/N resolution and
{i} is the subset relate the frequencies locations. It is then
trivial that in noise free context, a frequency i is said to be
vacant or free if |fi|2 = 0.
The N×N normalized discrete Fourier Transform (DFT) ma-
trix, F, gives the relationship between the frequency samples
vector

−→
f and the time domain samples vector −→

t , by the
relation: −→

t = F−1−→f (3)

In [12], CR spectrum usage was summarized in three main
categories:
1) Spectrum bands with fixed boundaries to which the
PUs are always accessing such as local TV and radio
broadcasters.



2) Spectrum bands with fixed boundaries to which the PUs
rarely access like TVWS.

3) Spectrum bands with fixed boundaries which are par-
tially and randomly accessed like cellphone signals,
LTE...

And in these three main CR spectrum usage scenarios,
spectrum boundaries are fixed and apriori known.
This strong assumption of knowledge of boundaries can be
overcame by processing as following:

B. Blind Spectrum Boundaries Estimation

In [13]–[15], Guibene et al, developed a spectrum sensing
technique based on frequency edge location and exploiting
spectrum discontinuities detection. Inspired from the already
developed framework, we derive our edge location algorithm.
First we do suppose that the frequency range available in

the wireless network is B Hz; so B could be expressed as
B = [f0, fK ]. Saying that this wireless network is cognitive,
means that it supports heterogeneous wireless devices that may
adopt different wireless technologies for transmissions over
different bands in the frequency range. A CR at a particular
place and time needs to sense the wireless environment in
order to identify spectrum holes for opportunistic use. Suppose
that the radio signal received by the CR occupies N spectrum
bands, whose frequency locations and PSD levels are to
be detected and identified. These spectrum bands lie within
[f1, fK ] consecutively, with their frequency boundaries located
at f1 < f2 < ... < fK . The n-th band is thus defined by:
Bn : {f ∈ Bn : fn−1 < f < fn, n = 2, 3, ..., K}. The
following basic assumptions are adopted:
1) The frequency boundaries f1 and fK = f1 + B are
known to the CR. Even though the actual received signal
may occupy a larger band, this CR regards [f1, fK ] as
the wide band of interest and seeks white spaces only
within this spectrum range.

2) The number of bands N and the locations f2, ..., fK−1

are unknown to the CR. They remain unchanged within
a time burst, but may vary from burst to burst in the
presence of slow fading.

3) The PSD within each band Bn is smooth and almost flat,
but exhibits discontinuities from its neighboring bands
Bn−1 and Bn+1. As such, irregularities in PSD appear
at and only at the edges of the K bands.

4) The corrupting noise is additive white and zero mean.
The PSD structure of a wide-band signal is illustrated in

Fig. 1
The input signal is the amplitude spectrum of the received

noisy signal. We assume that its mathematical representation
is a piecewise regular signal:

Y (f) =
K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (4)

where: χi[fi−1, fi]: the characteristic function of the inter-
val [fi−1, fi], (pi)i∈[1,K]: an N th order polynomials series,

!
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Fig. 1. K frequency bands with piecewise smooth PSD.

(fi)i∈[1,K] : the discontinuity points resulting from multiply-
ing each piby a χi and n(f) :the additive corrupting noise.
Now, let X(f) the clean version of the received signal given
by:

X(f) = ΣK
i=1χi[fi−1, fi](f)pi(f − fi−1) (5)

And let b, the frequency band, given such as in each interval
Ib = [fi−1, fi] = [ν, ν + b] , ν ≥ 0 maximally one change
point occurs in the interval Ib.
Now denoting Xν(f) = X(f+ν),f ∈ [0, b] for the restriction
of the signal in the interval Ib and redefine the change point
which characterizes the distribution discontinuity relatively to
Ib say fν given by:

yn =

{
fν = 0 if Xν is continuous
0 < fν ≤ b otherwise

Now, in order to emphasis the spectrum discontinuity behavior,
we decide to use the N th derivative of Xν(f), which in the
sense of Distributions Theory is given by:

dN

dfN
Xν(f) = [Xν(f)]

(N) +
N∑

k=1

µN−kδ(f − fν)
(k−1) (6)

where: µk is the jump of the kth order derivative at the unique
assumed change point:fν

µk = X(k)
ν (f+

ν )−X(k)
ν (f−

ν )

with :
{

µk = 0'k=1..N if there is no change point.
µk (= 0'k=1..N if the change point is in Ib.

[Xν(f)](N) is the regular derivative part of the N th derivative
of the signal.
The spectrum sensing problem is now casted as a change point
fν detection problem. In a matter of reducing the complexity
of the frequency direct resolution, the equations are transposed
to the operational domain, using the Laplace transform:

L(Xν(f)
(N)) = sNX̂ν(s)−

∑N−1
m=0 s

N−m−1 dm

dfmXν(f)'f=0

= e−sfν (µN−1 + sµN−2 + ..+ sN−1µ0) (7)

Given the fact that the initial conditions and the jumps of the
derivatives of Xν(f) are unknown parameters to the problem,
in a first time we are going to annihilate the jump values
µ0,µ1,...,µN−1 then the initial conditions as fully detailed



in [14]. After some calculations detailed in [14], we finally
obtain:

N−1∑

k=0

(Nk ).fN−k
ν .(sN X̂ν(s))

(N+k) = 0 (8)

In the actual context, the noisy observation of the amplitude
spectrum Y (f) is taken instead of Xν(f). As taking derivative
in the operational domain is equivalent to high-pass filtering in
frequency domain, which may help amplifying the noise effect.
It is suggested to divide the whole equation 11 by s l which
in the frequency domain will be equivalent to an integration
if l > 2N , we thus obtain:

N−1∑

k=0

(Nk ).fN−k
ν .

(sN X̂ν(s))(N+k)

sl
= 0 (9)

Since there is no unknown variables anymore, the equations
are now transformed back to the frequency domain, we obtain
the polynomial to be solved on each sensed sub-band:

N−1∑

k=0

(Nk ).fN−k
ν .L−1[

(sN X̂ν(s))(N+k)

sl
] = 0 (10)

And denoting:

ϕk+1 = L−1[
(sN X̂ν(s))(N+k)

sl
] =

∫ +∞

0
hk+1(f).X(ν−f).df

(11)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! 0 < f < b

0 otherwise
In [11], it was shown that edge detection and estimation is

analyzed based on forming multiscale point-wise products of
smoothed gradient estimators. This approach is intended to en-
hance multiscale peaks due to edges, while suppressing noise.
Adopting this technique to our spectrum sensing problem
and restricting to dyadic scales, we construct the multiscale
product of N+1 filters (corresponding to Continuous Wavelet
Transform in [11]), given by:

Df = ‖
N∏

k=0

ϕk+1(fν)‖ (12)

Thus, the changes points, or also called frequency bound-
aries obey to equation 15 or equivalently equation 12.
So now on, the only assumptions are the ones we introduced

from [14], [15] and not the ones describes in [12] (describes
by the previous three use cases) which gives to the algorithm
lighter assumption and gives it some blind processing proper-
ties. So finally, we adopt the following assumptions:

• Only the two boundaries of the whole band of interest
are known

• The total number of used sub-bands is unknown and to
be determined

• The PSD of the signals is almost flat in the used sub-
bands

• Noise is white gaussian with zero mean
Then, spectrum usage categories is still valid at the CR level

but after estimating the boundaries.

C. Spectrum Sensing based on Compressive Sampling
In the CS framework, we do consider the sampling of N×1

signal −→x = Ψ−→s , where −→s is an N × 1 sparse source vector
with L non-zero components si, so L << N andΨ is an N×
N dictionary matrix. In literature [16], [17] it was shown that
M samples of −→x can recover the whole vector, by projecting
−→x by an M ×N observation matrix, say Φ. This matrix has
to satisfy two conditions: L < M < N and the rows of the
sensing matrix Φ should be incoherent with the columns of
Ψ. Finally we obtain theM ×1 measurement vector −→y given
by:

−→y = Φ −→x = ΦΨ −→s (13)
−→s can be fully reconstructed by adopting the basis pursuit
algorithm as shown in [18]. Its reconstruction is subject to a
convex optimization problem as shown in Eq(14):

−̂→s = argmin−→s
||−→s ||l1 subject to ΦΨ−→s = −→y (14)

where lp is the p-norm for p ! 1 given by:

||−→s ||l1 = (
∑

|si|p)
1
p

Another way to reconstruct the signal could be the matching
pursuit algorithm (MP) derivatives as will be shown in next
paragraph.
Through a deeper look into equations Eq(5) and Eq(13),

one can intuitively say that the time domain vector −→t can be
viewed as −→x and the inverse DFT matrix F could be seen as
the matrix substituting the dictionary matrix Ψ and

−→
f is no

more than the sparse vector −→s .
With this new formalism, if we can properly design a

measurement matrix Φ satisfying then incoherence constraint
with F−1, than we would be able to use the CS formalism as
a spectrum sensing technique and sub-Nyquist sampling rate
could be recovered by CS algorithms as well. Given the work
lead in [19], the use of M ×N Gaussian random matrix as a
measurement matrix Φ would guarantee good reconstruction
performance. Back now to the spectrum sensing model, which
in noise free environment is formulated as following:

−→y = Φ
−→
f (15)

and as results
−→
f reconstruction is solution of:

−̂→
f = argmin−→

f
||−→f ||l1 subject to Φ

−→
f = −→y (16)

and in a general additive white gaussian noise environment
(AWGN), the sensing model becomes:

−→y = Φ
−→
f +−→w (17)

and as results
−→
f reconstruction is solution of:

−̂→
f = argmin−→

f

1

2
||−→y −Φ

−→
f ||l2 + γ||

−→
f ||l1 (18)

where −→w is anM×1 noise vector with a normal distribution
and γ is determined by the noise level.



D. Matching Pursuit Varieties for Compressed Sensing
1) Basis Pursuit based Reconstruction Algorithms: In order

to stick to the three knowledge categories of spectrum usage
we previously introduced, we need to reformulate the use of l 1
norm in Eq (18). In [20], mixed norm l 1/l2 denoising operator
uses the frequency boundaries as apriori known.

−→
f is then

subdivided according to the estimated {b i} into K blocks as
following:

−→
f = [f1...fb1︸ ︷︷ ︸

−→
f1T

... fbK−1+1, ...fbK︸ ︷︷ ︸
−→
fKT

]T

−→
f = [

−→
f1T

−→
f2T ....

−→
fKT ]T

(19)

In [20], the authors then reformulate the mixed noise denoising
operator to a new convex optimization formalism with known
boundary information:

−̂→
f = argmin−→

f
(||
−→
f1||l2 + ...+ ||

−→
fK ||l2)

subject to :||−→y −Φ
−→
f ||l2 ≤ η

(20)

where η is dependent of the noise variance.
2) Modified Blind Orthogonal Matching Pursuit Algorithm:

The original OMP (orthogonal matching pursuit) algorithm is
a greedy algorithm based on the basis pursuit algorithm that
reconstructs iteratively the original signal by the search of non
zero indices and performs least square estimation of the values
on the non zero indices.
The estimated frequency boundaries, {ν i, i ∈ [0..K]}, do

actually separate the spectrum in K consecutive sub-bands.
Keeping in mind, that in one hand B is actually divided
into K sub-bands and the fact that the frequency indices we
were using is of length N , this means that the indices set
we are using in frequency domain is actually divided into
K consecutive subsets. Let {bi} denote these indices in each
frequency boundary, i.e, ν0 " 1, ν1 occurs at the frequency
index b1 and so on until νK " N .
Let’s denote these subsets by :

u1 = 1, 2, .., b1
u2 = b1 + 1, b1 + 2, .., b2
...
uK = bK−1 + 1, bK−1 + 2, .., N

(21)

Now, let’s define three category sets {Sn}, according to the
following condition:

Sn = {ui | n = 1, 2, 3}
Ω = ∪Sn (Si ∩ Sj = Ø, for i (= j)

(22)

According to the measurement results of spectrum utiliza-
tion, we assume as in [12] that :

#{−→f }
N

≤ 10%

where #{
−→
f } is the number of non-zero values in

−→
f

Algorithm 1 Proposed Matching Pursuit Algorithm
Require: An M ×N matrix Θ = Φ

An M × 1 sample vector −→y
Minimum iterations number m
Error tolerance η

1: Estimate from the wideband observation the boundaries
as stated in III-B and then preselect the sets as in Eq (21)
and (22)

2: Initialize: −−→res0 = −→y , Λ0 = S1, Θ1 = ΘS1 , itera-
tion index: t = 1

3: Solve the least-squares problem in Equation:
−→xt = argmin−→x

(||Θt
−→x −−→y ||2) (23)

4: Compute the new residual given by:

−−→rest =
−→y −Θt

−→xt (24)

5: Increment: t ←− t+ 1
6: Find λt satisfying:

λt = arg max
j=1...N

|〈−−−−→rest−1, θj〉| (25)

where θj is the jth column vector of Θt and < ., . > is
the inner vector product operator.

7: Increase the index set Λt = Λt−1
⋃
{λt}

if {λt ∈ ui ⊂ S2}
then Λt = Λt−1

⋃
{ui}

end
8: Set the atom to: Θt = ΘΛt

9: Solve the least square problem in Equation (23) and get
the new estimate of −→x .

10: Calculate the new residual using Equation (24)
11: if {t < m or ||−−→rest||2 > η}
then return to step (5)
end

12: Finally:
−̂→
f ←− −→xt and its non zero indices are listed in

Λt

13: return An estimate N × 1 vector
−→
f of the ideal signal

An index set Λt containing t elements from {1..N}
An M × 1 residual vector −−→rest

The iteration operation gives us the freedom to consider the
three already defined categories separately. Since, by construc-
tion, S1 do have at least a non zero value, the initialization
output, Λ0, could be set to S1. This particular initialization
guarantees us always counting the occupied indices. Then,
during the rest of the iterations, if we do find an index λ t,
satisfying: λt ∈ ui ⊂ S2, all elements in ui will be added in
Λt. This would enable us counting only the {u i} subset. The
other case is λt ∈ ui ⊂ S3, in which only λt is added to Λt

as in formal OMP.

The modified blind orthogonal matching pursuit is fully
describes by Algorithm 1.



IV. JOINT SPECTRUM SENSING AND PRIMARY USERS
LOCALIZATION BASED ON COMPRESSIVE SAMPLING FOR

COGNITIVE RADIO NETWORKS
A. Spectrum Reconstruction
For discrete signals, the time domain samples −→t are used to

construct the spectrum in frequency domain as shown before
in Eq(5). Thus we obtained:

−→
f = F−→t (26)

And as sufficiently detailed in Section III, on the level
of each node, this problem as formulated in a context of
wide-band and involving sparse signals can be casted as a
CS problem and spectrum can be reconstructed and spectrum
sensing task is thus achieved by all terminals.

B. Primary Users Location Reconstruction
Once spectrum reconstructed and spectrum sensing

achieved, more information can be derived while looking
deeper into channels occupied by primary users.
Let’s assume that in a certain wide area, PUs are located

at coordinates (xpm, ypn); where xpm ∈ {0,∆xp, ...(M −
1)∆xp} are M possible x axis positions (abscissæ) of the
PUs 2; ypm ∈ {0,∆yp, ...(N − 1)∆yp} are N possible
y axis positions (ordinates) of the PUs; ∆xp and ∆yp are
respectively the resolutions over x and y axis. Here, we do
impose and suppose to the PU coordinates to be in discrete
M×N dictionary (which, actually, is always true !). It is good
to remind at this level that the exact positions of the Np PUs
{(xpi, ypi) ; i ∈ [1..Np]} are unknown to our problem.
The Nc CRs positions in the network are located at po-

sitions: {(ai, bi) ; i ∈ [1..Nc]} (on which we do not impose
being in a finite set, even if they necessarily are).
For the kth CR, sensing the ith channel, the contribution

of the PU located at the (xpm, ypn) position on the received
PSD is:

Rk,i(m,n) = P (m,n, i)× 10L(fi,d(m,n,k))/10

d(m,n, k) =
√
(xpm − ak)2 + (ypn − bk)2

(27)

where P (m,n, i) is the power transmitted by a PU using the
ith channel, located at (xpm, ypn); fi is the center frequency
of the ith channel; d(m,n, k) represents the distance between
the kth CR and the the PU located at (xpm, ypn).
The total received power over all the existing PUs, i.e over

the M ×N possible positions of the PUs, can be formulated
as following:

Yk,i =
∑

m

∑
n Rk,i(m,n)

Yk,i =
∑

m

∑
n 10

L(fi,d(m,n,k))/10 × P (m,n, i)

Yk,i =
−→
L T (k, i)

−→
P (i)

(28)

2When we say xpm ∈ {0,∆xp, ...(M−1)∆xp}, that does not mean that
there are M PUs, but it means that Np primary users abscissæ (for ordinates
as well) do actually have a finite ”dictionary”

where
−→
P (i) is the vector containing the transmission power

of the over all M ×N grid over the ith channel; and
−→
L (k, i)

is the path loss vector computed according to Eq(1) from all
PU possible positions at the level of the kth CR, on the ith

channel.

−→
L (k, i) = 10

−→
L dB(k,i)/10

and :
−→
L dB(k, i) = [L(fi, d(0, 0, k)), L(fi, d(1, 0, k)),
..L(fi, d(m,n, k)), ..L(fi, d(M,N, k))]T

(29)

Let’s denote by
−→
Y k = [Yk,1..Yk,Nch ]

T , the received signal
power vector at the level of the k th CR over the Nch available
channels. This according to Eq(28), and adopting the previous
notation can be expressed as:

−→
Yk = Lk

−→
P (30)

where
−→
P is the vector containing the transmission power of the

M ×N grid of PU locations over the Nch available channels
of the NC deployed CRs:

−→
P k = [

−→
P T (i1),

−→
P T (i2), ..,

−→
P T (iNC )]

T (31)

The matrix Lk, is the fading gain matrix grouping at the level
of the kth CR the loss path contributions of the M ×N PU
positions. The jth row of Lk is:

Lk(j) = [
−→
0 ,

−→
0 , ...,

−→
L T (k, j),

−→
0 , ..,

−→
0 ] (32)

Combining all the equations describing the NC CR system,
we do obtain: −→

Y = L
−→
P (33)

Where
−→
Y = [

−→
Y1

T , ...,
−−→
YNC

T ]T and L = [L1, ...,LNC ]
The equation we ended with in Eq(33), reminds us of the

CS formalism we introduced previously: as
−→
P is an unknown

but sparse vector because over the M × N area we’ve been
considering, only NP PUs are deployed in this area.
Since the two stages, spectrum sensing and localization,

seem to be attached to the same CS framework we’ve intro-
duced before, it is easy then to combine both of them in only
one process.

V. SIMULATIONS AND RESULTS
In this section we propose to investigate the performances

of the proposed technique in terms of spectrum sensing and
PUs location.
In order to cover the whole aspects of the proposed work,

three parts will be simulated: first of all, the boundaries
estimation, then the compressed sensing alone and finally the
over all system simulation.
First of all, we consider a frequency band in the range

of [50, 250]MHz, in order to compare the compressive
sensing using the algebraic method and the wavelet ap-
proach introduced in [11]. The signal is fully described
in [11]. During the observed burst of transmissions in
the network, there 6 bands, with frequency boundaries at



nν
6
n=0 = [50, 120, 170, 200, 220, 224, 250]MHz. In figure

2, we show how accurate the proposed blind boundaries
algorithm is and how sensitive it is to PSD level change. Com-
paring with the wavelet approach, in the algebraic detection
technique change points are detected only in one shot, while in
the wavelets approach, many detections have to be conducted
and fused to make a final decision.
We propose then the following scenario: PUs do dispose

of 10 channels that they will randomly select in the range of
50+[1, 2.., 10]MHz. We propose deploying 2 primary users in
a 15×15 (M = N = 15) unit area with a resolution of∆xp =
∆yp = 0.1 having randomly generated power transmits. In this
area we also deploy 5 CRs that will achieve the sensing and
the localization task.Figures 3 and 4 do report the MSE of the
spectrum reconstruction and PU positions reconstruction using
the suggested technique. These figures report how efficient the
recovery of the sparse spectrum and position model is.
Finally, we suggest the over all system power recovery and

spectrum recovery from the sparse observation. Figures 5 and
5 show an example of the spectrum and power reconstruction
at -10dB for a 2 PU and 5 CRs scenario using the proposed
technique.

VI. CONCLUSION

This paper presents a first look towards a combined spec-
trum sensing and localization task. These two tasks are funda-
mental in order to really enable cognition in wireless networks.
With the combination of the two tasks, we also considered a
realistic data acquisition constraint, which is sparsity due to the
ADC technology limits. In order to make the algorithm and the
over all system a real stand-alone one and blindly operating,
we suggested removing the apriori knowledge of the channels
and spectrum use by blindly and accurately estimating the
frequencies boundaries. Simulation results of the proposed
technique show promising and interesting results.
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