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ABSTRACT 

With today’s public data sets containing billions of data items, 

more and more companies are looking to integrate external data 

with their traditional enterprise data to improve business 

intelligence analysis. These distributed data sources however 

exhibit heterogeneous data formats and terminologies and may 

contain noisy data. In this paper, we present a novel framework 

that enables business users to semi-automatically perform data 

integration on potentially noisy tabular data. This framework 

offers an extension to Google Refine with novel schema matching 

algorithms leveraging Freebase rich types. First experiments show 

that using Linked Data to map cell values with instances and 

column headers with types improves significantly the quality of 

the matching results and therefore should lead to more informed 

decisions. 

1. INTRODUCTION 
Companies have traditionally performed business analysis based 

on transactional data stored in legacy relational databases. The 

enterprise data available for decision makers was typically 

relationship management or enterprise resource planning data [2]. 

However social media feeds, weblogs, sensor data, or data 

published by governments or international organizations are 

nowadays becoming increasingly available [3].  

The quality and amount of structured knowledge available make it 

now feasible for companies to mine this huge amount of public 

data and integrate it in their next-generation enterprise 

information management systems. Analyzing this new type of 

data within the context of existing enterprise data should bring 

them new or more accurate business insights and allow better 

recognition of sales and market opportunities [4]. 

These new distributed sources however raise tremendous 

challenges. They have inherently different file formats, access 

protocols or query languages. They possess their own data model 

with different ways of representing and storing the data. Data 

across these sources may be noisy (e.g. duplicate or inconsistent), 

uncertain or be semantically similar yet different [5]. Integration 

and provision of a unified view for these heterogeneous and 

complex data structures therefore require powerful tools to map 

and organize the data.  

In this paper, we present a framework that enables business users 

to semi-automatically combine potentially noisy data residing in 

heterogeneous silos. Semantically related data is identified and 

appropriate mappings are suggested to users. On user acceptance, 

data is aggregated and can be visualized directly or exported to 

Business Intelligence reporting tools. The framework is composed 

of a set of extensions to Google Refine server and a plug-in to its 

user interface [6]. Google Refine was selected for its extensibility 

as well as good cleansing and transformation capabilities [7].  

 

We first map cell values with instances and column headers with 

types from popular data sets from the Linked Open Data Cloud. 

To perform the matching, we use the Auto Mapping Core (also 

called AMC [8]) that combines the results of various similarity 

algorithms. The novelty of our approach resides in our 

exploitation of Linked Data to improve the schema matching 

process. We developed specific algorithms on rich types from 

vector algebra and statistics. The AMC generates a list of high-

quality mappings from these algorithms allowing better data 

integration. 

 

First experiments show that Linked Data increases significantly 

the number of mappings suggested to the user. Schemas can also 

be discovered if column headers are not defined and can be 

improved when they are not named or typed correctly. Finally, 

data reconciliation can be performed regardless of data source 

languages or ambiguity. All these enhancements allow business 

users to get more valuable and higher-quality data and 

consequently to take more informed decisions.  

 

The rest of the paper is organized as follows. Section 2 presents 

some related work. Section 3 describes the framework that we 

have designed for business users to combine data from 

heterogeneous sources. Section 4 validates our approach and 

shows the value of the framework through experiments. Finally, 

Section 5 concludes the paper and discusses future work. 

2. RELATED WORK 
While schema matching has always been an active research area 

in data integration, new challenges are faced today by the 

increasing size, number and complexity of data sources and their 

distribution over the network. Data sets are not always correctly 

typed or labeled and that hinders the matching process. 

In the past, some work has tried to improve existing data schemas 

[9] but literature mainly covers automatic or semi-automatic 

labeling of anonymous data sets through Web extraction. 

Examples include [10] that automatically labels news articles with 

a tree structure analysis or [11] that defines heuristics based on 

distance and alignment of a data value and its label. These 

approaches are however restricting label candidates to Web 

content from which the data was extracted. [12] goes a step 

further by launching speculative queries to standard Web search 

engines to enlarge the set of potential candidate labels. More 

recently, [1] applies machine learning techniques to respectively 

annotate table rows as entities, columns as their types and pairs of 

columns as relationships, referring to the YAGO ontology. The 

work presented aims however at leveraging such annotations to 

assist semantic search queries construction and not at improving 

schema matching.  

With the emergence of the Semantic Web, new work in the area 

has tried to exploit Linked Data repositories. The authors of [13] 



present techniques to automatically infer a semantic model on 

tabular data by getting top candidates from Wikitology [14] and 

classifying them with the Google page ranking algorithm. Since 

the authors’ goal is to export the resulting table data as Linked 

Data and not to improve schema matching, some columns can be 

labeled incorrectly, and acronyms and languages are not well 

handled [13]. In the Helix project [15], a tagging mechanism is 

used to add semantic information on tabular data. A sample of 

instances values for each column is taken and a set of tags with 

scores are gathered from online sources such as Freebase [16]. 

Tags are then correlated to infer annotations for the column. The 

mechanism is quite similar to ours but the resulting tags for the 

column are independent of the existing column name and 

sampling might not always provide a representative population of 

the instance values. 

3. PROPOSITION 
Google Refine (formerly Freebase Gridworks) is a tool designed 

to quickly and efficiently process, clean and eventually enrich 

large amounts of data with existing knowledge bases such as 

Freebase. The tool has however some limitations: it was initially 

designed for data cleansing on only one data set at a time, with no 

possibility to compose columns from different data sets. In this 

section, we describe in detail our framework allowing data 

mashup from several sources. We first present our framework 

architecture, then the activity flow and finally our approach to 

schema matching. 

 

3.1 Framework Architecture 
Google Refine makes use of a modular web application 

framework similar to OSGi called Butterfly [17]. The server-side 

written in Java maintains states of the data (undo/redo history, 

long-running processes, etc.) while the client-side implemented in 

Javascript maintains states of the user interface (facets and their 

selections, view pagination, etc.). Communication between the 

client and server is done through REST web services. 

As depicted in Figure 1, our framework leverages Google Refine 

and defines three new Butterfly modules to extend the server’s 

functionality (namely Match, Merge and Aggregate modules) and 

one JavaScript extension to capture user interaction with these 

new data matching capabilities.  

3.2 Activity Flow 
This section presents the sequence of activities and 

interdependencies between these activities when using our 

framework. Figure 2 gives an outline of these activities. 

The data sets to match can be contained in files (e.g. csv, Excel 

spreadsheets, etc.) or defined in Google Refine projects (step 1). 

The inputs for the match module are the source and target files 

and/or projects that contain the data sets. These projects are 

imported into the internal data structure (called schema) of the 

AMC [18] (step 2). The AMC then uses a set of built-in 

algorithms to calculate similarities between the source and target 

schemas on an element basis, i.e. column names in the case of 

spreadsheets or relational databases. The output is a set of 

similarities, each containing a triple consisting of source schema 

element, target element, and similarity between the two. As 

depicted in Figure 3, these results are presented to the user in 

tabular form (step 3) such that s/he can check, correct, and 

potentially complete them (step 4). 

 

 

Figure 2. Activity Flow 

 

Figure 3. Suggestions of Table Matching 

 

Figure 1. Framework Architecture 

 



Once the user has completed the matching of columns, the merge 

information is sent back to Google Refine, which calls the merge 

module. This module creates a new project, which contains a 

union of the two projects where the matched columns of the target 

project are appended to the corresponding source columns (step 

5). As shown in Figure 4, the user can then select the columns that 

s/he wants to merge and visualize by dragging and dropping the 

required columns onto the fields that represent the x and y axes 

(step 6).  

Once the selection has been performed, the aggregation module 

merges the filtered columns and the result can then be visualized 

as shown in Figure 5 (step 7). As aggregation operations can 

quickly become complex, our default aggregation module can be 

replaced by more advanced analytics on tabular data. The 

integration of such a tool is part of future work. 

3.3 Schema Matching  
Schema matching is typically used in business to business 

integration, metamodel matching, as well as Extract, Transform, 

Load (ETL) processes. For non-IT specialists the typical way of 

comparing financial data from two different years or quarters, for 

example, would be to copy and paste the data from one Excel 

spreadsheet into another one, thus creating reduncancies and 

potentially introducing copy-and-paste errors. By using schema 

matching techniques it is possible to support this process semi-

automatically, i.e. to determine which columns are similar and 

propose them to the user for integration. This integration can then 

be done with appropriate business intelligence tools to provide 

visualisations. 

One of the problems in performing the integration is the quality of 

data. The columns may contain data that is noisy or incorrect. 

There may also be no column headers to provide suitable 

information for matching. A number of approaches exploit the 

similarities of headers or similarities of types of column data. We 

propose a new approach that exploits semantic rich typing 

provided by popular datasets from the Linked Data cloud.  

3.3.1 Data Reconciliation 
Reconciliation enables entity resolution, i.e. matching cells with 

corresponding typed entities in case of tabular data. Google 

Refine already supports reconciliation with Freebase but requires 

confirmation from the user. For medium to large data sets, this 

can be very time-consuming. To reconcile data, we therefore first 

identify the columns that are candidates for reconciliation by 

skipping the columns containing numerical values or dates. We 

then use the Freebase search API to query for each cell of the 

source and target columns the list of typed entities candidates. 

Results are cached in order to be retrieved by our similarity 

algorithms.   

3.3.2 Matching Unnamed and Untyped Columns 
The AMC has the ability to combine the results of different 

matching algorithms. Its default built-in matching algorithms 

work on column headers and produce an overall similarity score 

between the compared schema elements. It has been proven that 

combining different algorithms greatly increases the quality of 

matching results [8] [19]. However, when headers are missing or 

ambiguous, the AMC can only exploit domain intersection and 

inclusion algorithms based on column data. We have therefore 

implemented three new similarity algorithms that leverage the rich 

types retrieved from Linked Data in order to enhance the 

matching results of unnamed or untyped columns. They are 

presented below. 

3.3.2.1 Cosine Similarity  
The first algorithm that we implemented is based on vector 

algebra. Let   be the vector of ranked candidate types returned by 

Freebase for each cell value of a column. Then: 

   ∑  

 

   

   ⃗⃗  

where    is the score of the entry and   ⃗⃗  is the type returned by 

Freebase. The vector notation is chosen to indicate that each 

distinct answer determines one dimension in the space of results.  

Figure 4. Data Selection 

 

Figure 5. Data Visualization 

 



Each cell value now has a weighted result set that can be used for 

aggregation to produce a result vector for the whole column. The 

column result   is then given by: 

  ∑  

 

   

 

We now compare the result vector of candidate types from the 

source column with the result vector of candidate types from the 

target column. Let   be the result vector for the target column, 

then the similarity   between the columns pair can be calculated 

using the absolute value of the cosine similarity function:  

  
|     |

‖ ‖  ‖ ‖
 

3.3.2.2 Pearson Product-Moment Correlation 

Coefficient (PPMCC) 
The second algorithm that we implemented is PPMCC, a 

statistical measure of the linear independence between two 

variables       [20]. In our method, x is an array that represents 

the total scores for the source column rich types, y is an array that 

represents the mapped values between the source and the target 

columns. The values present in x but not in y are represented by 

zeros. We have: 

             [{       } {       } {       }  {       }] 

             [{       } {       } {       }  {       }] 

Where            are different rich type values retrieved from 

Freebase,                  are the sum of scores for each 

corresponding r occurrence in the source column, and 

                 are the sum of scores for each corresponding r 

occurrence in the target column.  

The input for PPMC consists of two arrays that represent the 

values from the source and target columns, where the source 

column is the column with the largest set of rich types found. For 

example: 

   [                     ] 

   [                  ] 

Then the sample correlation coefficient (r) is calculated using: 
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Based on a sample paired data       , the sample PPMCC is: 
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Where (
     ̅

  
)    ̅and    are the standard score, sample mean and 

sample standard deviation, respectively. 

3.3.2.3 Spearman’s Rank Correlation Coefficient 
The last algorithm that we implemented to match unnamed and 

untyped columns is Spearman’s rank correlation coefficient [21]. 

It applies a rank transformation on the input data and computes 

PPMCC afterwards on the ranked data. In our experiments we 

used Natural Ranking with default strategies for handling ties and 

NaN values. The ranking algorithm is however configurable and 

can be enhanced by using more sophisticated measures.  

3.3.3 Column Labeling 
We showed in the previous section how to match unnamed and 

untyped columns. Column labeling is however beneficial as the 

results of our previous algorithms can be combined with 

traditional header matching techniques to improve the quality of 

matching. 

Rich types retrieved from Freebase are independent from each 

other. We need to find a method that will determine normalized 

score for each type in the set by balancing the proportion of high 

scores with the lower ones. We used Wilson score interval for a 

Bernoulli parameter that is presented in the following equation: 
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Here  ̂ is the average score for each rich type, n is the total 

number of scores and    ⁄  is the score level; in our case it is 1.96 

to reflect a score level of 0.95. 

4. FIRST EXPERIMENTS 
We present in this section early results from experiments we 

conducted using the different methods described above. To 

appreciate the value of our approach, please consider the two 

simple Excel spreadsheets in Table 1 and Table 2: 

 

Table 1. Source Table 

 

Table 2. Target Table 

Most of the column headers in the source table exist and 

adequately present the data. The language is English, and airports 

are represented by their IATA code. The target table presents 

another set of data which has been produced by combining 

multiple queries from different data sources. As you can see, the 

country column is labeled in French while the values are written 

in different languages (Italian, Spanish, German, French and 

Arabic). The organization column is code-labeled and companies 

are either represented by their full name or by their NASDAQ 

code. 

  

Airport Code Organization Cost

LHR England Microsoft 123.2

LGA United States Apple 232.12

HUU Peru Orange 321.7

DBO Australia IBM 354.64

BGY Italy Accenture 243.8

Airport Pays OR_lbl Cost

LaGuardia Estados Unidos MS 201.41

Heathrow Angleterre Yahoo 90.5

Queen Alia الأردن Samsung 198

Prestwick Scozia GOOG 211.27

Beauvais Frankreich HP 55.99



Running AMC with its default matchers returns the matching 

results shown in Table 3. 

 

Table 3. Similarity Scores Using the AMC Default Matching 

Algorithms 

The AMC has perfectly matched the two columns labeled “Cost” 

using name and data type similarity calculations. Moreover, it has 

computed a similarity of approximately 71% between the “Airport 

Code” and “Airport” columns. However, there is no alignment 

found between the other columns since their headers are not 

related to each other, although the actual values are similar.  

The Cosine Similarity algorithm combined with the AMC default 

matchers produces the results shown in Table 4. 

 

 

Table 4. Enhanced Similarity Scores Adding the Cosine 

Similarity Method 

We notice that the similarity score for the “Airport” column has 

increased slightly, and that the “Country” column is aligned to the 

blank header. This shows that our approach allows performing 

schema matching on columns with no headers. 

The similarity score is an average of the applied algorithms 

(AMC’s native and Cosine). The relatively high similarity score 

of “Country” column is explained by the fact that the native AMC 

matching algorithm has skipped that column as it does not have a 

valid header, and the results are solely those of the Cosine 

matcher. Likewise, the Cosine matcher skips checking the “Cost” 

columns as they contain numeric values, so only the AMC’s 

native matcher results are taken into account. Finally, the 

“Organization” column is still not mapped as similarities under a 

threshold of 50% are ignored. 

The second matching algorithm (PPMCC) combined with the 

previous algorithm yields the results presented in Table 5. 

 

Table 5. Enhanced Similarity Scores Adding the PPMCC 

Method 

We now notice enhanced similarity scores and higher number of 

mappings. Mainly, the “Oganization” column from the source 

table has being aligned to the correct corresponding column 

“OR_lbl”.  

The third matching algorithm (Spearman’s matcher) combined 

with the two previous ones generates the final results in Table 6. 

 

Table 6. Similarity Scores Using the Combination of 

Algorithms 

The similarity results have slightly decreased when plugging 

Spearman’s matcher. Several experiments have shown that this 

method does not work well with noisy data sets. For instance, the 

similarity results returned by Cosine, Pearson’s and Spearman’s 

matchers for the {Airport, Airport Code} pair is much higher: 

83%, 87% and 13% respectively.  

In a second set of experiments, we compare our previous results 

with less noisy data sets. Consider the tables 7 and 8. 

 

 

 

 

Running the AMC on these tables will fail as their column 

headers strictly do not match. Combining Cosine and Pearson’s 

methods with the AMC’s native matchers’ results in: 

 

 

Table 9. Enhanced Similarity Scores Adding the Cosine and 

Pearson’s Method 

Adding Pearson’s method was found to enhance the results when 

dealing with relatively clean data sets. For the above example the 

result obtained is: 

 

 

Table 10. Similarity Scores Using the Combination of 

Algorithms 

For the {Pays, country} pair, the similarity results returned by 

Cosine, Pearson’s and Spearman’s matchers are 99.3%, 99%, 

95.8% respectively. Therefore, using the AMC allows identifying 

the best matching algorithms for a given data set. 

Finally, applying our labeling method on the above data sets 

suggested relevant column names. For instance, looking at the 

unlabeled column, the system suggested “Organization” with a 

score of 1.72 compared to the next top score which is “Organism 

Classification“ with a score of 0.371. 

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.7142857

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.7741357

Click to edit Country 0.7024157

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.80629116

Click to edit Country 0.7177106

Organization OR_lbl 0.61101884

Source Column Target Column Similarity

Cost Cost 1

Click to edit Country 0.66648626

Airport Code Airport 0.6370289

Organization OR_lbl 0.5439194

pays organization

Uganda ibm

Zimbabwe microsoft

Iran google

Iraq sap

Libya orange

Syria apple

country

france accenture

iran microsoft

Iran google

jordan sap

england orange

Syria apple

organization Click to edit 0.726031

Pays country 0.600207

organization Click to edit 0.78427

Pays country 0.643885

Table 7. Source Table Table 8. Target Table 



5. CONCLUSION AND FUTURE WORK 
In this paper, we presented a framework enabling mashup of 

potentially noisy enterprise and external data. The implementation 

is based on Google Refine and uses Freebase to annotate data with 

rich types. As a result, the matching process of heterogeneous data 

sources is improved. Our preliminary evaluation shows that for 

data sets where mappings were relevant yet not proposed, our 

framework provides higher quality matching results. Additionally, 

the number of matches discovered is increased when Linked Data 

is used in most data sets. We plan in future work to evaluate the 

framework on larger data sets using rigorous statistical analysis of 

[22]. We also consider integrating additional linked open data 

sources of semantic types such as DBpedia [23] or YAGO [24] 

and evaluate our matching results against instance-based ontology 

alignment benchmarks such as [25] or [26]. Another future work 

will be to generalize our approach on data schemas to data 

classification. The same way the AMC helps identifying the best 

matches for two datasets, we plan to use it for identifying the best 

statistical classifiers for a sole dataset, based on normalized 

scores. 
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