
Improving Schema Matching with Linked Data
Ahmad Assaf†, Eldad Louw†, Aline Senart†, Corentin Follenfant†,

Raphaël Troncy‡ and David Trastour†
†
SAP Research, SAP Labs France SAS

805 avenue du Dr. Maurice Donat, BP 1216
06254 Mougins Cedex, France

firstname.lastname@sap.com

‡
EURECOM

BP193, F-06904 Sophia Antipolis Cedex, France

raphael.troncy@eurecom.fr

ABSTRACT

With today’s public data sets containing billions of data items,

more and more companies are looking to integrate external data

with their traditional enterprise data to improve business

intelligence analysis. These distributed data sources however

exhibit heterogeneous data formats and terminologies and may

contain noisy data. In this paper, we present a novel framework

that enables business users to semi-automatically perform data

integration on potentially noisy tabular data. This framework

offers an extension to Google Refine with novel schema matching

algorithms leveraging Freebase rich types. First experiments show

that using Linked Data to map cell values with instances and

column headers with types improves significantly the quality of

the matching results and therefore should lead to more informed

decisions.

1. INTRODUCTION
Companies have traditionally performed business analysis based

on transactional data stored in legacy relational databases. The

enterprise data available for decision makers was typically

relationship management or enterprise resource planning data [2].

However social media feeds, weblogs, sensor data, or data

published by governments or international organizations are

nowadays becoming increasingly available [3].

The quality and amount of structured knowledge available make it

now feasible for companies to mine this huge amount of public

data and integrate it in their next-generation enterprise

information management systems. Analyzing this new type of

data within the context of existing enterprise data should bring

them new or more accurate business insights and allow better

recognition of sales and market opportunities [4].

These new distributed sources however raise tremendous

challenges. They have inherently different file formats, access

protocols or query languages. They possess their own data model

with different ways of representing and storing the data. Data

across these sources may be noisy (e.g. duplicate or inconsistent),

uncertain or be semantically similar yet different [5]. Integration

and provision of a unified view for these heterogeneous and

complex data structures therefore require powerful tools to map

and organize the data.

In this paper, we present a framework that enables business users

to semi-automatically combine potentially noisy data residing in

heterogeneous silos. Semantically related data is identified and

appropriate mappings are suggested to users. On user acceptance,

data is aggregated and can be visualized directly or exported to

Business Intelligence reporting tools. The framework is composed

of a set of extensions to Google Refine server and a plug-in to its

user interface [6]. Google Refine was selected for its extensibility

as well as good cleansing and transformation capabilities [7].

We first map cell values with instances and column headers with

types from popular data sets from the Linked Open Data Cloud.

To perform the matching, we use the Auto Mapping Core (also

called AMC [8]) that combines the results of various similarity

algorithms. The novelty of our approach resides in our

exploitation of Linked Data to improve the schema matching

process. We developed specific algorithms on rich types from

vector algebra and statistics. The AMC generates a list of high-

quality mappings from these algorithms allowing better data

integration.

First experiments show that Linked Data increases significantly

the number of mappings suggested to the user. Schemas can also

be discovered if column headers are not defined and can be

improved when they are not named or typed correctly. Finally,

data reconciliation can be performed regardless of data source

languages or ambiguity. All these enhancements allow business

users to get more valuable and higher-quality data and

consequently to take more informed decisions.

The rest of the paper is organized as follows. Section 2 presents

some related work. Section 3 describes the framework that we

have designed for business users to combine data from

heterogeneous sources. Section 4 validates our approach and

shows the value of the framework through experiments. Finally,

Section 5 concludes the paper and discusses future work.

2. RELATED WORK
While schema matching has always been an active research area

in data integration, new challenges are faced today by the

increasing size, number and complexity of data sources and their

distribution over the network. Data sets are not always correctly

typed or labeled and that hinders the matching process.

In the past, some work has tried to improve existing data schemas

[9] but literature mainly covers automatic or semi-automatic

labeling of anonymous data sets through Web extraction.

Examples include [10] that automatically labels news articles with

a tree structure analysis or [11] that defines heuristics based on

distance and alignment of a data value and its label. These

approaches are however restricting label candidates to Web

content from which the data was extracted. [12] goes a step

further by launching speculative queries to standard Web search

engines to enlarge the set of potential candidate labels. More

recently, [1] applies machine learning techniques to respectively

annotate table rows as entities, columns as their types and pairs of

columns as relationships, referring to the YAGO ontology. The

work presented aims however at leveraging such annotations to

assist semantic search queries construction and not at improving

schema matching.

With the emergence of the Semantic Web, new work in the area

has tried to exploit Linked Data repositories. The authors of [13]

present techniques to automatically infer a semantic model on

tabular data by getting top candidates from Wikitology [14] and

classifying them with the Google page ranking algorithm. Since

the authors’ goal is to export the resulting table data as Linked

Data and not to improve schema matching, some columns can be

labeled incorrectly, and acronyms and languages are not well

handled [13]. In the Helix project [15], a tagging mechanism is

used to add semantic information on tabular data. A sample of

instances values for each column is taken and a set of tags with

scores are gathered from online sources such as Freebase [16].

Tags are then correlated to infer annotations for the column. The

mechanism is quite similar to ours but the resulting tags for the

column are independent of the existing column name and

sampling might not always provide a representative population of

the instance values.

3. PROPOSITION
Google Refine (formerly Freebase Gridworks) is a tool designed

to quickly and efficiently process, clean and eventually enrich

large amounts of data with existing knowledge bases such as

Freebase. The tool has however some limitations: it was initially

designed for data cleansing on only one data set at a time, with no

possibility to compose columns from different data sets. In this

section, we describe in detail our framework allowing data

mashup from several sources. We first present our framework

architecture, then the activity flow and finally our approach to

schema matching.

3.1 Framework Architecture
Google Refine makes use of a modular web application

framework similar to OSGi called Butterfly [17]. The server-side

written in Java maintains states of the data (undo/redo history,

long-running processes, etc.) while the client-side implemented in

Javascript maintains states of the user interface (facets and their

selections, view pagination, etc.). Communication between the

client and server is done through REST web services.

As depicted in Figure 1, our framework leverages Google Refine

and defines three new Butterfly modules to extend the server’s

functionality (namely Match, Merge and Aggregate modules) and

one JavaScript extension to capture user interaction with these

new data matching capabilities.

3.2 Activity Flow
This section presents the sequence of activities and

interdependencies between these activities when using our

framework. Figure 2 gives an outline of these activities.

The data sets to match can be contained in files (e.g. csv, Excel

spreadsheets, etc.) or defined in Google Refine projects (step 1).

The inputs for the match module are the source and target files

and/or projects that contain the data sets. These projects are

imported into the internal data structure (called schema) of the

AMC [18] (step 2). The AMC then uses a set of built-in

algorithms to calculate similarities between the source and target

schemas on an element basis, i.e. column names in the case of

spreadsheets or relational databases. The output is a set of

similarities, each containing a triple consisting of source schema

element, target element, and similarity between the two. As

depicted in Figure 3, these results are presented to the user in

tabular form (step 3) such that s/he can check, correct, and

potentially complete them (step 4).

Figure 2. Activity Flow

Figure 3. Suggestions of Table Matching

Figure 1. Framework Architecture

Once the user has completed the matching of columns, the merge

information is sent back to Google Refine, which calls the merge

module. This module creates a new project, which contains a

union of the two projects where the matched columns of the target

project are appended to the corresponding source columns (step

5). As shown in Figure 4, the user can then select the columns that

s/he wants to merge and visualize by dragging and dropping the

required columns onto the fields that represent the x and y axes

(step 6).

Once the selection has been performed, the aggregation module

merges the filtered columns and the result can then be visualized

as shown in Figure 5 (step 7). As aggregation operations can

quickly become complex, our default aggregation module can be

replaced by more advanced analytics on tabular data. The

integration of such a tool is part of future work.

3.3 Schema Matching
Schema matching is typically used in business to business

integration, metamodel matching, as well as Extract, Transform,

Load (ETL) processes. For non-IT specialists the typical way of

comparing financial data from two different years or quarters, for

example, would be to copy and paste the data from one Excel

spreadsheet into another one, thus creating reduncancies and

potentially introducing copy-and-paste errors. By using schema

matching techniques it is possible to support this process semi-

automatically, i.e. to determine which columns are similar and

propose them to the user for integration. This integration can then

be done with appropriate business intelligence tools to provide

visualisations.

One of the problems in performing the integration is the quality of

data. The columns may contain data that is noisy or incorrect.

There may also be no column headers to provide suitable

information for matching. A number of approaches exploit the

similarities of headers or similarities of types of column data. We

propose a new approach that exploits semantic rich typing

provided by popular datasets from the Linked Data cloud.

3.3.1 Data Reconciliation
Reconciliation enables entity resolution, i.e. matching cells with

corresponding typed entities in case of tabular data. Google

Refine already supports reconciliation with Freebase but requires

confirmation from the user. For medium to large data sets, this

can be very time-consuming. To reconcile data, we therefore first

identify the columns that are candidates for reconciliation by

skipping the columns containing numerical values or dates. We

then use the Freebase search API to query for each cell of the

source and target columns the list of typed entities candidates.

Results are cached in order to be retrieved by our similarity

algorithms.

3.3.2 Matching Unnamed and Untyped Columns
The AMC has the ability to combine the results of different

matching algorithms. Its default built-in matching algorithms

work on column headers and produce an overall similarity score

between the compared schema elements. It has been proven that

combining different algorithms greatly increases the quality of

matching results [8] [19]. However, when headers are missing or

ambiguous, the AMC can only exploit domain intersection and

inclusion algorithms based on column data. We have therefore

implemented three new similarity algorithms that leverage the rich

types retrieved from Linked Data in order to enhance the

matching results of unnamed or untyped columns. They are

presented below.

3.3.2.1 Cosine Similarity
The first algorithm that we implemented is based on vector

algebra. Let be the vector of ranked candidate types returned by

Freebase for each cell value of a column. Then:

 ∑

 ⃗⃗

where is the score of the entry and ⃗⃗ is the type returned by

Freebase. The vector notation is chosen to indicate that each

distinct answer determines one dimension in the space of results.

Figure 4. Data Selection

Figure 5. Data Visualization

Each cell value now has a weighted result set that can be used for

aggregation to produce a result vector for the whole column. The

column result is then given by:

 ∑

We now compare the result vector of candidate types from the

source column with the result vector of candidate types from the

target column. Let be the result vector for the target column,

then the similarity between the columns pair can be calculated

using the absolute value of the cosine similarity function:

| |

‖ ‖ ‖ ‖

3.3.2.2 Pearson Product-Moment Correlation

Coefficient (PPMCC)
The second algorithm that we implemented is PPMCC, a

statistical measure of the linear independence between two

variables [20]. In our method, x is an array that represents

the total scores for the source column rich types, y is an array that

represents the mapped values between the source and the target

columns. The values present in x but not in y are represented by

zeros. We have:

 [{ } { } { } { }]

 [{ } { } { } { }]

Where are different rich type values retrieved from

Freebase, are the sum of scores for each

corresponding r occurrence in the source column, and

 are the sum of scores for each corresponding r

occurrence in the target column.

The input for PPMC consists of two arrays that represent the

values from the source and target columns, where the source

column is the column with the largest set of rich types found. For

example:

 []

 []

Then the sample correlation coefficient (r) is calculated using:

∑ ̅ ̅

√∑ ̅
 √∑ ̅

Based on a sample paired data , the sample PPMCC is:

∑(

 ̅

)

(
 ̅

)

Where (
 ̅

) ̅and are the standard score, sample mean and

sample standard deviation, respectively.

3.3.2.3 Spearman’s Rank Correlation Coefficient
The last algorithm that we implemented to match unnamed and

untyped columns is Spearman’s rank correlation coefficient [21].

It applies a rank transformation on the input data and computes

PPMCC afterwards on the ranked data. In our experiments we

used Natural Ranking with default strategies for handling ties and

NaN values. The ranking algorithm is however configurable and

can be enhanced by using more sophisticated measures.

3.3.3 Column Labeling
We showed in the previous section how to match unnamed and

untyped columns. Column labeling is however beneficial as the

results of our previous algorithms can be combined with

traditional header matching techniques to improve the quality of

matching.

Rich types retrieved from Freebase are independent from each

other. We need to find a method that will determine normalized

score for each type in the set by balancing the proportion of high

scores with the lower ones. We used Wilson score interval for a

Bernoulli parameter that is presented in the following equation:

(

 ̂

 ⁄

 ⁄ √

[

 ̂ ̂
 ⁄

⁄

]

 ⁄

)

(⁄
 ⁄)⁄

Here ̂ is the average score for each rich type, n is the total

number of scores and ⁄ is the score level; in our case it is 1.96

to reflect a score level of 0.95.

4. FIRST EXPERIMENTS
We present in this section early results from experiments we

conducted using the different methods described above. To

appreciate the value of our approach, please consider the two

simple Excel spreadsheets in Table 1 and Table 2:

Table 1. Source Table

Table 2. Target Table

Most of the column headers in the source table exist and

adequately present the data. The language is English, and airports

are represented by their IATA code. The target table presents

another set of data which has been produced by combining

multiple queries from different data sources. As you can see, the

country column is labeled in French while the values are written

in different languages (Italian, Spanish, German, French and

Arabic). The organization column is code-labeled and companies

are either represented by their full name or by their NASDAQ

code.

Airport Code Organization Cost

LHR England Microsoft 123.2

LGA United States Apple 232.12

HUU Peru Orange 321.7

DBO Australia IBM 354.64

BGY Italy Accenture 243.8

Airport Pays OR_lbl Cost

LaGuardia Estados Unidos MS 201.41

Heathrow Angleterre Yahoo 90.5

Queen Alia الأردن Samsung 198

Prestwick Scozia GOOG 211.27

Beauvais Frankreich HP 55.99

Running AMC with its default matchers returns the matching

results shown in Table 3.

Table 3. Similarity Scores Using the AMC Default Matching

Algorithms

The AMC has perfectly matched the two columns labeled “Cost”

using name and data type similarity calculations. Moreover, it has

computed a similarity of approximately 71% between the “Airport

Code” and “Airport” columns. However, there is no alignment

found between the other columns since their headers are not

related to each other, although the actual values are similar.

The Cosine Similarity algorithm combined with the AMC default

matchers produces the results shown in Table 4.

Table 4. Enhanced Similarity Scores Adding the Cosine

Similarity Method

We notice that the similarity score for the “Airport” column has

increased slightly, and that the “Country” column is aligned to the

blank header. This shows that our approach allows performing

schema matching on columns with no headers.

The similarity score is an average of the applied algorithms

(AMC’s native and Cosine). The relatively high similarity score

of “Country” column is explained by the fact that the native AMC

matching algorithm has skipped that column as it does not have a

valid header, and the results are solely those of the Cosine

matcher. Likewise, the Cosine matcher skips checking the “Cost”

columns as they contain numeric values, so only the AMC’s

native matcher results are taken into account. Finally, the

“Organization” column is still not mapped as similarities under a

threshold of 50% are ignored.

The second matching algorithm (PPMCC) combined with the

previous algorithm yields the results presented in Table 5.

Table 5. Enhanced Similarity Scores Adding the PPMCC

Method

We now notice enhanced similarity scores and higher number of

mappings. Mainly, the “Oganization” column from the source

table has being aligned to the correct corresponding column

“OR_lbl”.

The third matching algorithm (Spearman’s matcher) combined

with the two previous ones generates the final results in Table 6.

Table 6. Similarity Scores Using the Combination of

Algorithms

The similarity results have slightly decreased when plugging

Spearman’s matcher. Several experiments have shown that this

method does not work well with noisy data sets. For instance, the

similarity results returned by Cosine, Pearson’s and Spearman’s

matchers for the {Airport, Airport Code} pair is much higher:

83%, 87% and 13% respectively.

In a second set of experiments, we compare our previous results

with less noisy data sets. Consider the tables 7 and 8.

Running the AMC on these tables will fail as their column

headers strictly do not match. Combining Cosine and Pearson’s

methods with the AMC’s native matchers’ results in:

Table 9. Enhanced Similarity Scores Adding the Cosine and

Pearson’s Method

Adding Pearson’s method was found to enhance the results when

dealing with relatively clean data sets. For the above example the

result obtained is:

Table 10. Similarity Scores Using the Combination of

Algorithms

For the {Pays, country} pair, the similarity results returned by

Cosine, Pearson’s and Spearman’s matchers are 99.3%, 99%,

95.8% respectively. Therefore, using the AMC allows identifying

the best matching algorithms for a given data set.

Finally, applying our labeling method on the above data sets

suggested relevant column names. For instance, looking at the

unlabeled column, the system suggested “Organization” with a

score of 1.72 compared to the next top score which is “Organism

Classification“ with a score of 0.371.

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.7142857

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.7741357

Click to edit Country 0.7024157

Source Column Target Column Similarity

Cost Cost 1

Airport Code Airport 0.80629116

Click to edit Country 0.7177106

Organization OR_lbl 0.61101884

Source Column Target Column Similarity

Cost Cost 1

Click to edit Country 0.66648626

Airport Code Airport 0.6370289

Organization OR_lbl 0.5439194

pays organization

Uganda ibm

Zimbabwe microsoft

Iran google

Iraq sap

Libya orange

Syria apple

country

france accenture

iran microsoft

Iran google

jordan sap

england orange

Syria apple

organization Click to edit 0.726031

Pays country 0.600207

organization Click to edit 0.78427

Pays country 0.643885

Table 7. Source Table Table 8. Target Table

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a framework enabling mashup of

potentially noisy enterprise and external data. The implementation

is based on Google Refine and uses Freebase to annotate data with

rich types. As a result, the matching process of heterogeneous data

sources is improved. Our preliminary evaluation shows that for

data sets where mappings were relevant yet not proposed, our

framework provides higher quality matching results. Additionally,

the number of matches discovered is increased when Linked Data

is used in most data sets. We plan in future work to evaluate the

framework on larger data sets using rigorous statistical analysis of

[22]. We also consider integrating additional linked open data

sources of semantic types such as DBpedia [23] or YAGO [24]

and evaluate our matching results against instance-based ontology

alignment benchmarks such as [25] or [26]. Another future work

will be to generalize our approach on data schemas to data

classification. The same way the AMC helps identifying the best

matches for two datasets, we plan to use it for identifying the best

statistical classifiers for a sole dataset, based on normalized

scores.

6. REFERENCES
[1] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti,

"Annotating and Searching Web Tables Using Entities,

Types and Relationships," Proceedings of the VLDB

Endowment, vol. III, no. 1, pp. 1338-1347, September 2010.

[2] Michael James Hernandez, Database design for mere

mortals: a hands-on guide to relational database design.:

Addison-Wesley, 2003.

[3] Danah Boyd and Kate Crawford, "Six Provocations for Big

Data," Computer and Information Science, vol. 123, no. 1,

2011.

[4] Steve LaValle, Eric Lesser, Rebecca Shockley, Michael S.

Hopkins, and Nina Kruschwitz, "Big Data, Analytics and the

Path from Insights to Value," MIT Sloan Management

Review, vol. 52, no. 2, 2011.

[5] C. Kavitha, G. Sudha Sadasivam, and Sangeetha N. Shenoy,

"Ontology Based Semantic Integration of Heterogeneous

Databases," European Journal of Scientific Research, vol.

64, no. 1, pp. 115-122, 2011.

[6] Google Code. Google Refine. [Online].

http://code.google.com/p/google-refine/

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee, "Linked

Data - The Story So Far," International Journal on Semantic

Web and Information Systems, vol. 5, no. 3, pp. 1-22, 2009.

[8] Eric Peukert, Julian Eberius, and Rahm Erhard, "A Self-

Configuring Schema Matching System," in 28th IEEE

International Conference on Data Engineering, 2012.

[9] Renee J. Miller and Periklis Andritsos, "On Schema

Discovery," IEEE Data Engineering Bulletin, vol. 26, no. 3,

pp. 40-45, 2003.

[10] Davy de Castro Reis, Paulo B. Golgher, Altigran S. da Silva,

and Alberto H. F. Laender, "Automatic Web News

Extraction Using Tree Edit Distance," in 13th International

Conference on World Wide Web, 2004.

[11] Jiying Wang and Fred Lochovsky, "Data Extraction and

Label Assignment for Web Databases," in 12th International

Conference on World Wide Web, 2003.

[12] Altigran S. da Silva, Denilson Barbosa, M. B. Joao

Cavalcanti, and A. S. Marco Sevalho, "Labeling Data

Extracted from the Web," in International Conference on the

Move to Meaningful Internet Systems, 2007.

[13] Tim Finin, Zareen Syed, Varish Mulwad, and Anupam Joshi,

"Exploiting a Web of Semantic Data for Interpreting Tables,"

in Web Science Conference, 2010.

[14] Tim Finin, Zareen Syed, James Mayfield, Paul McNamee,

and Christine Piatko, "Using Wikitology for Cross-

Document Entity Coreference Resolution," in AAAI Spring

Symposium on Learning by Reading and Learning to Read,

2009.

[15] Oktie Hassanzadeh et al., "Helix: Online Enterprise Data

Analytics," in 20th International World Wide Web

Conference - Demo Track, 2011.

[16] Metaweb Technologies. Freebase. [Online].

http://www.freebase.com/

[17] Google Code. Smilie Butterfly. [Online].

http://code.google.com/p/simile-butterfly/

[18] Eric Peukert, Julian Eberius, and Erhard Rahm, "AMC - A

Framework for Modelling and Comparing Matching Systems

as Matching Processes," in International Conference on Data

Engineering - Demo Track, 2011.

[19] Umberto Straccia and Raphael Troncy, "oMAP: Combining

Classifiers for Aligning Automatically OWL Ontologies," in

6th International Conference on Web Information Systems

Engineering, 2005, pp. 133-147.

[20] Charles J. Kowalski, "On the Effects of Non-Normality on

the Distribution of the Sample Product-Moment Correlation

Coefficient," Journal of the Royal Statistical Society, vol. 21,

no. 1, pp. 1-12, 1972.

[21] Sarah Boslaugh and Paul Andrew Watters, Statistics in a

Nutshell.: O'Reilly Media, 2008.

[22] Tom Fawcett, "An Introduction to ROC Analysis," Journal

of Pattern Recognition Letters, vol. 27, no. 8, 2006.

[23] Soren Auer et al., "DBpedia: A Nucleus for a Web of Open

Data," in 6th International and 2nd Asian Semantic Web

Conference , 2007.

[24] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum,

"Yago: a Core of Semantic Knowledge," in 16th

International Conference on World Wide Web, 2007.

[25] (2011) Instance Matching at OAEI. [Online].

http://oaei.ontologymatching.org/2011/instance/index.html

[26] Alfio Ferrara. ISLab Instance Matching Benchmark.

[Online]. http://islab.dico.unimi.it/iimb/

http://code.google.com/p/google-refine/
http://www.freebase.com/
http://code.google.com/p/simile-butterfly/
http://oaei.ontologymatching.org/2011/instance/index.html
http://islab.dico.unimi.it/iimb/

