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Abstract—The performance of channel estimation is often
assessed by deriving the proper Cramér-Rao Bound (CRB).
However, in the blind case a special treatment is required due to
the singularity of the Fisher Information Matrix (FIM). Usually
a constraint is introduced to overcome the blind ambiguity and
ensuing singularity. Hence, a constrained CRB has been derived
in the literature since a long time ago. Although this constrained
CRB has been proven to be a valid lower bound in the medium
and high SNR regimes, it fails completely in the low SNR regime
because unlike the MSE it does not saturate. Motivated by the
shortcoming of the constrained CRB, we derive in this paper
a modified constrained CRB (MCCRB) for deterministic blind
channel estimation. The MCCRB is valid over the whole SNR
regime. In the second part of the paper we address Bayesian blind
channel estimation and explore the apparent discrepancy between
channel unidentifiability with a non-singular FIM. We highlight
that in the less familiar Bayesian case this relationship needs to be
interpreted differently. The analytical formulas for the introduced
bounds are validated by some Monte-Carlo simulations.

I. INTRODUCTION

It is well known that blind channel estimation yields a

channel estimate with a scalar ambiguity in the context of

SIMO transmission systems. Traditionally, this ambiguity is

solved by forcing a constraint. There are many constraints

available in the literature, e.g. linear constraints, least-squares

constraints, fixing one tap constraints. However, all these

constraints assume that the true channel or part of it is provided

by a genie. Nevertheless, people have used extensively these

constraints to evaluate and compare blind channel estimation

algorithms. Practically, the true channel is not available at all,

hence one should resort to other techniques to fix this scalar

ambiguity, for eg. differential modulation. On the other hand,

as we have indicated previously, people have derived a perfor-

mance lower bound that constitutes a reference for comparing

different blind channel estimation algorithms. In the training

sequence case, this lower bound is usually computed from the

inverse of the FIM. However, in the blind channel estimation

case, the FIM is singular due to the scalar ambiguity and

consequently, it can’t be inverted. Hence, to fix this ambiguity

people usually resort to impose constraints as we indicated. In

[1], a constrained CRB has been derived for the singular FIM

case. In the same spirit, in [2] the authors prove that taking

the pseudo inverse of the FIM would yield the constrained

CRB that has the lowest MSE. However, the main drawback

of this CRB is its incapability to track the estimation error

in the low to very low SNR regime. In other words, the

existing constrained CRB is no longer a lower bound in this

SNR regime. The main reason for this shortcoming is that

the constraint usually imposed on the blind channel estimate

renders the estimation error bounded at low SNR (reflecting a

bias). Hence, we notice from various simulations that we have

conducted that the Normalized Mean Square Error (NMSE)

levels off at low SNR and doesn’t grow unboundedly as the

noise variance gets smaller and smaller. This behavior is not

reflected in the constrained CRB that has been derived by [1]

and [2]. Motivated by the need to have a valid lower bound

also at the low and very low SNR regimes for the blind channel

estimation, we investigate and derive in the sequel, a modified

constrained CRB that takes into consideration that the error is

bounded at low SNR.

On the other hand, in [3] the Bayesian CRB in the context

of cooperative OFDM was derived where the authors claimed

(section III-B) that the knowledge of the prior information of

the channel eliminates the ambiguity of the blind channel es-

timation. We will show in this paper that the prior information

of the channel doesn’t provide any information about the phase

while it provides some information about the amplitude of the

channel response scale factor. Consequently, the ambiguity is

not completely removed and the singularity persists.

II. SIMO FIR TX SYSTEM MODEL

In (semi-)blind channel identification, a multichannel frame-

work can be obtained from oversampling a received signal and

leads to a Single Input Multiple Output (SIMO) vector channel

representation. The multiple FIR channels we obtain in this

representation can also be obtained from multiple received

signals from an array of antennas (in the context of mobile

digital communications [4]) from a combination of both. To

further develop the case of oversampling, consider a linear

digital modulation over a linear channel with additive noise

so that the received signal y(t) has the following form

y(t) =
∑

k

h(t − kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol

period and h(t) is the channel impulse response. The channel

is assumed to be FIR with length NT . If the received signal

is oversampled at the rate m
T

(or if m different samples of the

received signal are captured by m sensors every T seconds, or



a combination of both), the discrete input-output relationship

can be written as:

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH
1 (k) · · · yH

m(k)]H ,h(i) =[
hH

1 (i) · · ·hH
m(i)

]H
, v(k) = [vH

1 (k) · · · vH
m(k)]H , H =

[h(N−1) · · ·h(0)], AN (k) =
[
a(k−N+1)H · · · a(k)H

]H

and superscript H denotes Hermitian transpose. Let

H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H be the SIMO

channel transfer function, and h =
[
hH(N−1) · · ·hH(0)

]H

.

Consider additive independent white Gaussian circular noise

v(k) with rvv(k−i) = E v(k)v(i)H = σ2
vIm δki. Assume

we receive M samples:

YM (k) = TM (h)AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for

V M (k), and TM (h) is a block Toepltiz matrix with M block

rows and [H 0m×(M−1)] as first block row. We shall simplify

the notation in (3) with k = M−1 to

Y = T (h)A + V (4)

III. PRELIMINARY FORMULAS

In [5] we have presented a complete framework that permits

the derivation of various deterministic and Bayesian CRBs.

Those different CRBs were classified into two categories. The

first category constitutes of the CRBs that correspond to the

cases where we jointly estimate the channel and the symbols,

whereas the second category corresponds to the cases where

we estimate the channel and marginalize the symbols. In this

paper we are are going to deal with CRBs that belong to

the first category. Hence, we shall reintroduce the framework

presented originally in [5] to elaborate our ideas. If we denote

by θ the unknown parameters to be estimated then it is given

by:

θ = [AH ,hH ]H (5)

The likelihood function is given by:

f(Y, θ) = f(Y/θ)f(θ) (6)

Where f(θ) stands for the probability density function (pdf)

of θ, f(Y, θ) stands for the joint probability density function

of Y and θ and f(Y/θ) stands for the pdf of Y conditioned

on θ is given or known. Once we substitute θ in (6) by its

elements we get:

f(Y,A,h) = f(Y/A,h)f(A)f(h) (7)

Since the symbols and the channel are independent of each

other we can write f(θ) = f(A)f(h). Of course on the basis

of how we treat the symbols and the channel both f(A) and

f(h) differs from one estimator to another as we shall see

in the sequel. Knowing that the CRB and consequently the

Fisher Information Matrix (FIM) requires the log-likelihood

function, hence we apply the log function on both sides of (7)

to get:

ln[f(Y,A,h)] = ln[f(Y/A,h)] + ln[f(A)] + ln[f(h)] (8)

Now let J represents the Fisher Information matrix (FIM), it

is given by:

Jθθ = E

(
∂ ln[f(Y,A,h)]

∂θ∗

) (
∂ ln[f(Y,A,h)]

∂θ∗

)H

= −E
∂

∂θ∗

(
∂ ln[f(Y,A,h)]

∂θ∗

)H

(9)

As we shall observe later, since we are treating complex

parameters we need besides Jθθ also Jθθ∗ which is defined

by:

Jθθ∗ = E

(
∂ ln[f(Y,A,h)]

∂θ∗

)(
∂ ln[f(Y,A,h)]

∂θ

)H

= −E
∂

∂θ

(
∂ ln[f(Y,A,h)]

∂θ∗

)H

(10)

When Jθθ∗ 6= 0 we shall resort to θR defined below:

θR =

[
Re(θ)
Im(θ)

]
= M

[
θ
θ∗

]
,M =

1

2

[
I I

−jI jI

]

(11)

Knowing that Jθθ = J∗
θ∗θ∗ and Jθθ∗ = J∗

θ∗θ then (11)

yields:

JθRθR
= M

[
Jθθ Jθθ∗

J∗
θθ∗ J∗

θθ

]
MH (12)

On the other side, when Jθθ∗ = 0 then JθRθR
is determined

totally by Jθθ. This holds true for all the cases where we

jointly estimate the channel and the symbols, as we shall notice

later. Under some assumptions and regularity conditions [6]

the error covariance matrix of an unbiased channel estimator

ĥ(Y ), which is defined as:

C(ĥ) = E

{[
ĥ(Y ) − h

] [
ĥ(Y ) − h

]H
}

(13)

and which satisfies the following inequality:

C(ĥ) ≥ {JθRθR
}−1 △

= CRB (14)

We usually focus on comparing the Mean Square Error, MSE

= tr
{

C(ĥ)
}

to the minimum error variance which is defined

by tr {CRB} where tr stands for the trace of a matrix.

A. CRBdet

This is the traditional lower bound [7] for the case where

both the symbols and the channel are considered as deter-

ministic unknowns to be estimated jointly. After a little bit

treatment, (9) yields:

Jθθ =
1

σ2
v

[
T H(h)T (h) T H(h)A
AHT (h) AHA

]
(15)



Moreover, we can easily show that Jθθ∗ = 0. Hence, by

applying the Schur’s complement on (15) we can extract the

FIM for the channel. Normally, the CRB can be obtained by

inverting the FIM however, in the blind channel estimation

case the FIM is singular and consequently can’t be inverted.

In [2] it was shown that taking the pseudo inverse of the FIM

corresponds to the constrained CRB with the lowest MSE.

Hence, we can write:

CRBdet = J+

hh
= σ2

v

(
AHP⊥

T (h)
A

)+

(16)

Where + denotes the Moore-Penrose pseudoinverse, P⊥
T (h)

=

I − P
T (h)

and P
T (h)

= T (h)(T H(h)T (h))−1T H(h) is

a projection matrix on T (h). The main shortcoming of this

CRB is its incapability to comply with the deterministic blind

channel estimators that normally saturate at low SNR due to

the imposed constraint. In other words, this CRB can’t be

considered a valid lower bound in this SNR regime. This

encourages us to derive a modified CRB that tries to deal with

the effect of the constraint directly. Although the methodology

we shall implement is considered to be rigorous, nonetheless

it provides a concrete formula for an upper lower bound which

is valid at the whole SNR range.

B. Modified Constrained CRBdet (MCCRBdet)

To commence, we show below the relation between the

blind channel estimate ĥ, the true channel and the channel

estimation error h̃:

ĥ = β(h + h̃) (17)

Where β denotes the scalar ambiguity. As mentioned earlier,

we can get rid of this scalar ambiguity by using one of the

constraints available in the literature. In our case, we choose

the least squares constraint. However, it should be noted that

the formula for the modified constrained CRB that we are

going to derive is affected well by the choice of the constraint.

min
α

||h − αĥ||2 (18)

which yields α =
̂h

H

h
||
̂h||2

. Hence, we have:

ˆ̂
h = αĥ

= αβ(h +
˜̃
h) (19)

On the other hand, we know that
˜̃
h is orthogonal to

ˆ̂
h (well

known property of the least squares estimate). Therefore, we

can write:
˜̃
h = P⊥

ˆ̂
h

h and consequently,

C ˜̃
h

= E
˜̃
h

˜̃
hH = E P⊥

ˆ̂
h

hhHP⊥
ˆ̂
h

. (20)

Where E stands for the Expectation operator. Since we are

usually interested in computing NMSE for different algo-

rithms, then we are only interested in the diagonal elements

of C ˜̃
h

. Hence, we apply the trace operator as follows:

tr(C ˜̃
h

) = ||h||2 − E
hH ˆ̂

h
ˆ̂
hHh

||
ˆ̂
h||2

(21)

Since it is difficult to carry out the expectation operator in

(21), we shall resort to Jensen’s inequality which permits us

to split the expectation operator between the numerator and

the denominator as follows:

E

ˆ̂
h

||
ˆ̂
h||

ˆ̂
hH

||
ˆ̂
h||

≥
E

ˆ̂
h

ˆ̂
hH

E ||
ˆ̂
h||||

ˆ̂
h||

(22)

As we shall observe in the sequel, by using Jensen’s inequality

we are no longer computing the exact channel error covariance

matrix but rather an upper bound for it. Now, substituting (19)

in (22), we can write:

E

ˆ̂
h

||
ˆ̂
h||

ˆ̂
hH

||
ˆ̂
h||

≥
E (hhH + h

˜̃
hH +

˜̃
hHh +

˜̃
h

˜̃
hH)

tr
{

E (hhH + h
˜̃
hH +

˜̃
hHh +

˜̃
h

˜̃
hH)

}

(23)

It should be noted that the |αβ|2 terms from the numerator

and the denominator cancel each other. Moreover, knowing

that E h
˜̃
hH = E

˜̃
hhH = 0 since E

˜̃
h = 0 (error with zero

mean) and substituting E
˜̃
h

˜̃
h by C ˜̃

h
in (24) we get:

E

ˆ̂
h

||
ˆ̂
h||

ˆ̂
hH

||
ˆ̂
h||

≥
(hhH + C ˜̃

h
)

tr ((hhH + C ˜̃
h

))
(24)

Thus, making use of (24) in (21) we get:

tr (C ˜̃
h

) ≤ ||h||2 −
hH

(hhH
+C ˜̃

h
)h

tr(hhH
+C ˜̃

h
)

≤ ||h||2 − ||h||4

||h||2+tr(C ˜̃

h
)

≤
||h||2tr(C ˜̃

h
)

||h||2+tr(C ˜̃

h
)

(25)

where we have used in the above derivation the fact that

hHC ˜̃
h

h = 0. This is true since C ˜̃
h

admits h as a singular

vector [8]. Moreover, we have also substituted tr (hhH) by

||h||2. Now we can define the trace of the modified error

covariance matrix as follows:

tr (Cmod
˜̃
h

) =
||h||2tr(C ˜̃

h
)

||h||2 + tr(C ˜̃
h

)
(26)

A close look at (26) suggests that at very low SNR

(tr(C ˜̃
h

) >> ||h||2) we can neglect ||h||2 in the denominator.

This yields a simple formula for the modified Mean Square

Error (MSEmod) as follows:

MSEmod = tr (Cmod
˜̃
h

) = ||h||2 (27)

It is obvious from (27) that the channel error is bounded

and can’t exceed the norm of the channel even when the noise



variance grows infinitely. However, at high SNR (tr(C ˜̃
h

) <<

||h||2) we can neglect tr(C ˜̃
h

) in the denominator. By doing

so, we get the same MSE giving by the traditional formula for

the error covariance matrix:

MSEmod = tr (Cmod
˜̃
h

) = tr (C ˜̃
h

) = MSE (28)

Consequently, we deduce that our proposed formula for the

constrained channel estimation error has the potential to keep

track of the actual channel estimation error at low SNR, by

leveling off as expected, and at high SNR, by providing the

same traditional analytical formula.

Well, substituting now C ˜̃
h

by CRBdet in (26), we will get

the formula for the modified constrained CRB:

tr (MCCRBdet) =
||h||2tr(CRBdet)

||h||2 + tr(CRBdet)
(29)

The same discussion illustrated in the case of the modified

error covariance matrix is still applicable here in the case of the

modified CRB. As a result, we can state that our modified CRB

levels off at low SNR whereas it is congruent to the traditional

CRB at high SNR. Furthermore, we know that tr (C ˜̃
h

) ≥

tr (CRBdet), hence substituting C ˜̃
h

by CRBdet in the right

hand side of the second line in (25) yields:

||h||2 − ||h||4

||h||2+tr(C ˜̃

h
)

≥ ||h||2 − ||h||4

||h||2+ tr (CRBdet)

||h||2 tr (C ˜̃

h
)

||h||2+tr(C ˜̃

h
)

≥ ||h||2tr(CRBdet)

||h||2+ tr (CRBdet)

tr (Cmod
˜̃
h

) ≥ tr (MCCRBdet)

(30)

Therefore, this modified constrained CRB still constitutes a

lower bound for the modified error covariance matrix.

IV. BAYESIAN CRAMER RAO BOUND WITH

DETERMINISTIC SYMBOLS (BCRBdet,joint)

In this section we treat the Bayesian blind case where the

channel is considered as random with Gaussian distribution

and the symbols are considered as deterministic unknowns to

be jointly estimated with the channel. Lets denote by ρejφ

to the a scalar ambiguity, where ρ stands for the amplitude

and φ stands for the phase. From the pdf of the channel

(h ∼ N (0, Co
h)), we can easily notice that the prior Fisher

information Matrix (FIM) is given by Co
h
−1. Usually the total

FIM is the sum of the prior FIM and the FIM of the data. The

latter is singular while the the former has usually a full rank.

Hence, the total FIM has a full rank. At the first glance this

will lead to the same conclusion that was drawn in [3] namely,

the prior information eliminates the blind channel ambiguity.

However, a closer look at the problem will prove that this

result is inaccurate at all.

First of all the notion of parameter identifiability needs to be

considered with care in the case of Bayesian parameters. For

deterministic parameters, local identifiability means that no

continuously valued unknowns remain in the parameters and

corresponds to the Fisher Information Matrix (FIM) being non-

singular and hence its inverse, the Cramer-Rao bound (CRB)

being finite. Local unidentifiability on the other hand means

that the CRB and hence the MSE (for which the CRB is

a lower bound) is infinite. Local identifiability with global

unidentifiability means that there are some discrete valued

unknowns remaining in the parameter estimates. In Bayesian

blind channel estimation on the other hand, the FIM coming

from the prior channel distribution (expressing the PDP) is

non-singular and leads to non-singularity of the overall FIM.

On the other hand, it is clear that the channel response remains

only identifiable up to a global phase factor (unit magnitude

scalar), which is a continuously varying unknown. On the other

hand, the channel estimation MSE remains finite. Indeed, any

wrong hypothesis on the phase factor leads to finite MSE since

the channel itself has finite power (due to the prior distribution

with finite PDP). So in the Bayesian case, the concepts of

identifiability need to be considered with care.

Now, the question is how to show that the prior FIM is

rank deficient? In order to answer this question and show

that the prior FIM is singular we should reparametrize the

problem between our hands. Moreover, we should also resort

to splitting the complex channel parameters into their real

and imaginary parts. When we accomplish the two previous

steps and derive the FIM for the new reparametrized prior

we will find it singular for sure. To commence with this

task, lets take the first tap of the channel as a common

factor we get h = ρejφh
′

where h
′

= [1 h̄
H

]H . Denote by

hR = [h̄
rT

, h̄
sT

, ρ, φ] the set of parameters to be estimated

where h̄
rT

and h̄
sT

denotes respectively the real and the

imaginary parts of h̄. Due to the lack of space we will not go

into the detailed derivation nevertheless we will show below

the resulting prior FIM (2mN x 2mN)which is given by:

Jprior

hRhR

=





Co
h(1, 1)C̄o

h

−1
0 0 0

0 Co
h(1, 1)C̄o

h

−1
0 0

0 0 Co
h
−1(1, 1) 0

0 0 0 0





(31)

Where Co
h(1, 1) denotes the element that lies in the first row

and first column of Co
h and C̄o

h

−1
can be obtained from Co

h
−1

by omitting the first row and the first column. It is evident now

that the prior FIM admits one singularity that corresponds to

the phase and it provides only the variance of the ambiguous

amplitude Co
h(1, 1) and not the amplitude itself. Hence, this

information is considered limited and incomplete. Now to

pursue the derivation of the BCRB we should play the same

game with the FIM of the data. Denote by A
′

= ρejφA then

(4) can be written as: Y = T (h
′

)A
′

+ V or in the following

form: Y = A
′

h
′

+V . We shall work out the FIMdata first in

its complex form hence we take θ = [h̄
H

, ρejφ, A
′H ]. Using

(9) we get:

Jdata
θθ = Eh

1

σ2
v




Ā′

H
Ā′ 0 Ā′

H
T (h

′

)
0 0 0

T H(h
′

)Ā′ 0 T H(h
′

)T (h
′

)



 (32)



Where Ā′

is obtained from A
′

by omitting the first col-

umn. On the other hand, we can prove after a little bit

manipulation that Jθθ∗ = 0. Now in order to be able to

compute the total FIM of the channel which is obtained

by adding both FIMdata and FIMprior of the channel.

We should transform the former to make it corresponds to

θR = [h̄
rT

, h̄
sT

, ρ, φ,A
′rT , A

′sT ]. We shall accomplish this

task in two steps. In the first step we use the Jacob matrix M in

([5], eqn. 12) to get J
θ
′

R
θ
′

R

from (32) as in ([5], eqn. 13 ) where

θ
′

R = [h̄
rT

, ρcosφ,A
′rT , h̄

sT
, ρsinφ,A

′sT ]. However, in the

second step we use another Jacob matrix (M
′

) to compute

JθRθR
which is given by: JθRθR

= M
′

J
θ
′

R
θ
′

R

M
′H where M

′

is given by:




ImN−1 0 0 0 0 0
0 0 0 ImN−1 0 0
0 cosφ 0 0 −ρsinφ 0
0 sinφ 0 0 ρcosφ 0
0 0 IM+N−1 0 0 0
0 0 0 0 0 IM+N−1





(33)

Now using Schur’s complement we can readily extract Jdata

hRhR

from JθRθR
. Taking a close look at JhRhR

we realize that it

admits two singularities, one corresponds to the amplitude and

the other corresponds to the phase. However, the total FIM

which is the sum of the prior and the data FIMs is given by:

JhRhR

= Eh Jdata

hRhR

+ Jprior

hRhR

(34)

Checking JhRhR

closely, one can show that it admits one

singularity that corresponds to the phase. This is due to the

fact that the prior FIM ameliorates only the singularity that

corresponds to the amplitude which results from the FIM

of the data. Therefore, the prior FIM only contributes to fix

one singularity while it has no means to deal with the other.

As a consequence, the resulting BCRB which is defined as

the inverse of the total FIM is still singular and needs an

additional constraint to fix the phase ambiguity. If we consider

for instance that the phase and/or the amplitude of the first

channel tap is given then the BCRB is obtained by the Moore-

Penrose pseudo inverse of JhRhR

.

V. SIMULATIONS

In this section we try to verify the analytical formulas we

have derived throughout this paper by means of Monte Carlo

simulations. Since we are dealing with a deterministic channel

case, we used the channel in ([9], table II) which is composed

of four taps and corresponds to having 4 antennas at the

receiver.

However, in each Monte Carlo simulation we generate

different realizations of symbols and white Gaussian noise.

The symbols are drawn from a 8PSK constellation. The

performance of the different channel estimators is evaluated

by means of the Normalized MSE (NMSE) vs. SNR. The

SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

while the NMSE

is defined as
||h−

ˆ̂
h||2

||h||2
where

ˆ̂
h =

ˆh
H

h
||

ˆh||2
h is the channel

estimate adjusted by the least squares constraint. We can notice

from fig. 1 how the analytical performance for Deterministic

Maximum Likelihood (DML) levels off in a consistent way

like the simulated DML. Moreover, we can notice also that our

modified constrained deterministic CRB (MCCRBdet) remains

the lower bound for the modified analytical performance of

DML after leveling off. It should be noted here that we use the

analytical performance of DML that has been derived in [8].

It is worth noting that the simulated DML has been initialized

by Subchannel Response Matching (SRM) [9].
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Fig. 1. Least squares constrained ML performance.
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VII. CONCLUSION

We have derived in this paper an analytical formula for

both the least squares constrained blind channel estimation

error and its corresponding constrained CRB. In the low SNR

regimes, our formulas are totally capable of tracking the error

resulting in the simulations by providing an upper bound

for this error, whereas the traditional analytical performance

formulas and constrained CRB fail to accomplish this task.

However, in the high SNR regimes our proposed formulas

matches the traditional one, hence it provides the exact channel

estimation error and its corresponding lower bound rather

than an upper bound for both. On the other hand, we have

also derived in this paper a reparametrized BCRB in the

context of blind channel estimation, showing the incapability

of the prior information to ameliorate the singularity due to

the phase ambiguity. Moreover, we have shown that it offers

only a limited information concerning the amplitude of the

ambiguous scalar.
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