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Abstract—Size-based scheduling improves data transfer re-
sponse times by favoring flows at an early stage. Although
appealing, these techniques raise concerns as they require to
keep track of the volume of data sent by each and every on-
going connections and they may starve long-lived flows even
if they use up limited bandwidth. Early Flow Discard (EFD)
scheduling addresses these issues and we present its adaptation to
infrastructure 802.11 networks where the access point downlink
queue naturally builds up. To deal with this problem, EFD needs
to take into account bi-directional traffic, so that it effectively
controls uploads and downloads even though EFD applies to the
downlink buffer only. It appears that even with limited buffers,
which translates into limited memory of flows for EFD, the most
simple flavor of bidirectional EFD –a simple pair of FIFO queues
and tracking flow transferred volumes with a packet granularity–
enables to rip the full benefit of size-based scheduling, without
any of the aforementioned drawbacks.

Index Terms—Performance, EFD, Wireless LAN.

I. I NTRODUCTION

We consider the typical infrastructure-based WLAN where
mobile stations equipped with 802.11 interface communicate
with an Access Point (AP) on a wireless channel and the AP
relays traffic to and from the wired network. In many cases, the
wireless LAN is the performance bottleneck,e.g. companies
or labs frequently use access links to the Internet with 100
Mbit/s or higher capacity.

The TCP transport protocol is used for controlling the vast
majority of data transfers in volume (bytes sent) and the
majority of flows. When TCP traffic is relayed over an 802.11
network, a key performance problem, known as “TCP Unfair-
ness”, occurs. It happens when the downloads data packets,
from the wired network, and TCP level acknowledgments
from the uploads compete to access the access point downlink
buffer. The buffer at the access point tends to fill up because
the Distributed Coordination Function (DCF) at the MAC layer
does not grant enough priority to the Access Point as compared
to the other stations in the cell [14]. Several solutions have
been investigated at different levels of the protocol stack
(MAC, IP, Transport) to address the TCP unfairness problem
[2], [11], [7], [18] .

In this paper, we consider solutions at the IP level (leaving
the MAC layer unchanged), based on size-based scheduling.
Size-based scheduling is a specific type of priority scheduling
family where the priority of a flow is a function of the amount
of service it has received so far. The Least Attained Service

(LAS) policy implements this approach in a straightforward
manner by granting full priority to the flow that has received
the least amount of service so far [9].The key idea when size-
based scheduling is applied in a networking context is to give
priority to short transfers that are, for most of them, due to
interactive applications like Web browsing or mail checking.
Several size-based scheduling solutions have been proposed
and analyzed to improve the performance of short transfers [1],
[16] and more recently to solve the TCP unfairness problem,
e.g, LASACK [18], which is a variant of LAS for 802.11
networks.

In spite of the appealing property of improving end user
interactivity, size-based scheduling suffers from a number of
shortcomings. In particular, it is a potential threat to long
transfers which can face starvation; it is originally unable to
account for the rate of transfers – a long transfer might be
long only because it has been active for a long time, even
though at a small rate – and finally, size-based scheduling
requires to keep one state for each active flow. Some size-based
scheduling policies have addressed some of these issues,e.g.,
starvation is addressed by Run2C [1], accounting for rates and
accumulated volume simultaneously is addressed by LARS
[8]. LARS is a variant of the original LAS that applies a
temporal decay to the accumulated volume of service received
by a flow, thus accounting simultaneously for volumes and
rates.

To the best of our knowledge, only EFD [3] manages to
tackle all aforementioned concerns. EFD uses two virtual
queues, one for the high priority packets and one for the low
priorty packets. Each queue is serviced in a FIFO manner
while the low priority queue is drained only if the high priority
queue is empty. This is similar to the Run2C proposal. How-
ever, a key distinction between EFD and Run2C is the flow
management. Run2C needs to keep one state per flow1. The
flow states are efficiently managed in EFD by dropping flow
records from the flow table as soon as the last packet of a flow
in the flow table leaves the queue. In [3], EFD is investigated
in wired network and using some pretty large buffer of 300
packets. In this paper, we investigate the performance of EFD
(Early Flow Discard) policy in 802.11 networks, where buffer
sizes tend to be smaller as they typically range between 30

1In the original Run2C paper, the authors propose a smart modification of
the algorithm to assign the initial sequence number of TCP to have a stateless
scheduler. Modifying all TCP stacks is however difficult at the Internet scale.



and 100 packets.
Our contributions are as follows:
• We propose two adaptations of EFD in WLAN networks,

EFDACK and PEFD, that aim at mitigating the TCP un-
fairness problem. EFDACK keeps track of the amount of
bytes sent by each flow in both the upload and download
directions, which requires reading TCP segments (the
acknowledgment number field) within IP packets. This is
the same idea as the one of LASACK [18]. In contrast,
PEFD keeps track of the number of packets and does not
distinghuish between uploads and downloads.

• We compare EFDACK and PEFD to state-of-the-art size
scheduling policies, Run2C, LASACK, LARS and also
FIFO and SCFQ.

• We demonstrate that the two modifications of EFD either
outperform other scheduling policies or perform similarly
but with a lower overhead in terms of flow bookkeeping2.

• We demonstrate that PEFD, that requires no inspection
of TCP packets achieves similarly to EFDACK, except
when the buffer size becomes too small.

• We extend the original design of EFD by considering
alternative scheduling policies for the low and high
priority queues and discuss their impact.

The remainder of this paper is organized as follows. We
introduce new variants of EFD to be analyzed in an 802.11
context in Section II. In Section III, we detail our evaluation
methodology. Sections IV and V present the evaluation results
of the different scheduling disciplines. Section VI reviews
prior related work. Section VII concludes the paper.

II. SCHEDULING DISCIPLINES

SCFQ [6] is known to be a good approximation of Processor
Sharing (PS) in practice for packet networks. As the extensions
of LAS, LASACK [18] bases its decision on the total amount
of bytes sent so far by each flow in both directions, whereas
LARS [8] applies a temporal decay to the service obtained
by a flow - accounting for volumes and rates simultaneously.
Run2C [1] is in essential a two level FIFO+FIFO method, that
uses a threshold to differentiate short and long transfers.

EFD [3] belongs to the family of multi-level processor shar-
ing (MLPS - see [9]) policies. It features two (virtual) queues
called the high-priority and low-priority queues respectively.
Both are drained using the FIFO discipline.The low priority
queue is serviced only if the high priority queue is empty.

The key difference between EFD and other MLPS schedul-
ing disciplines is the way flow states are handled. The EFD
scheduler keeps track of flows only as long as they have at
least one packet present in the queue. At the creation of the
flow record, the packets of a fresh flow are serviced by the high
priority queue. If, at some point in time, the record of a flow
maintained by the scheduler exceeds a thresholdth, where
th is typically 20 packets or equivalently 30 KB (considering

2The benefit of EFD concerning the overhead has been clearly justified in
[3]. To avoid redundancy, we don’t discuss the memory consumption in this
paper as the two modifications of EFD naturally inherit this good property
from EFD.

MSS3 packets), its subsequent packets are directed to the low
priority queue. For this to happen, the flow must have had
continuously at least one packet in the queue.

Let us consider the example of a TCP flow in its early
infancy. Assuming that delayed-ack is turned off, and neglect-
ing the interaction with other flows and the connection set-up,
the scheduler will create a record for the first data packet of
this flow, delete it upon its departure from the queue, createa
new record for the second flight of 2 packets, delete it upon
departure, etc.

Now if we consider the example of a bursty UDP flow that
sends batches ofn packets per RTT, as soon asn ≥ th, th
packets will be serviced by the high priority queue andn− th
in the low priority queue (for simplicity, we consider MSS-
long packets here).

The above flow management process has a key advantage
of constraining the size of the flow table to the physical size
of the queue4. More generally, it has been observed that [3]:

• EFD keeps track of a number of flows that is orders of
magnitude smaller than the other size-based scheduling
disciplines. It is often much smaller than the physical
queue.

• EFD avoids lock-outs between long flows and starvation
of long flows, similarly to Run2C or LARS.

• EFD accounts for both volumes and rates in its scheduling
decision, though not as explicitly as LARS that applies
a temporal decay to the accumulated of service received
by a flow.

The original work on EFD [3] considered the applicability
of EFD in wired networks. In the present paper, our focus is
on 802.11 networks, which feature two key properties that
lead to the TCP performance problem: (i) the protocol is
half-duplex, meaning that uploads and downloads share the
wireless medium and (ii) the Access Point is not granted a
high enough priority to access the medium under DCF, which
means that its queue, which is typically 30 to 100 packets,
tends to build up.

EFD was designated with quite large buffers of typically
300 packets in mind, which is not unusual for routers. In a
wireless context, 300 packets seems like a big buffer, although
high speed access points (802.11n) typically store hundreds of
packets when a station temporarily leaves the network to scan
for other access points. When this temporary buffer is cleared
(once the station comes back) the AP reverts to its normal
operational mode where it typically uses a buffer (shared by
all stations) that is always smaller. Hence, we explore how
reducing the buffer size impacts EFD’s behavior.

A. Adapting EFD to half-duplex links

The original EFD policy accounts for volumes in bytes. An
alternative is to count volumes in terms of number of packets.

3Maximum Segment Size (MSS) is equal to 1460 bytes by Ethernet
standard. We use MSS packet in this paper to denote the data packet with the
maximum size allowed.

4Remember that most if not all networking devices generally limitthe size
of their queues by the number of packets they can hold as opposed to the
number of bytes the packets are worth.



In the remainder of the paper, we refer to these two EFD
flavors as BEFD (Byte-based EFD) and PEFD (Packet-based
EFD) respectively. To illustrate the difference between these
two options, consider the case of a WLAN with a single upload
and a single download. At the buffer of the AP, one observes,
in the downstream direction, the data packet stream from the
download and the ACK packet stream from the upload. As
data packets are generally MSS packets while ACKs are 40
bytes packets, one clearly sees that counting volumes in bytes
or packets will significantly impact the priority granted to
the ACK stream: when counting in bytes, its priority will
consistently be maximum whereas the competition between
the upload and download will be more fair when counting in
packets.

In addition to BEFD and PEFD, we introduce a variant of
EFD that accounts for the half-duplex nature of MAC layer
protocol. It attributes a virtual service size to TCP ACK packet
by accounting for the total amount of data traffic that has
been transferred by the flow so far, obtained through the TCP
acknowledgment number in the TCP header. We call EFDACK
this scheduling policy. Considering the same example as above
of a WLAN cell with a single upload and a single download,
and assuming that the flows are continuously tracked by the
scheduler, the priority of an ACK packet is related to the total
amount of bytes sent by the upload. We compare EFDACK,
BEFD and PEFD extensively in Sections IV and V.

Essentially, the original EFD and its adaptation for 802.11
network - EFDACK, are FIFO+FIFO schemes since pack-
ets within each (virtual) queue are drained using the FIFO
discipline at packet level. We also investigate in this paper
the impact of alternative scheduling disciplines in the EFD
scheme. In particular, we consider two candidates, FIFO
and LAS, which leads to four combinations: FIFO+FIFO,
LAS+FIFO, FIFO+LAS, LAS+LAS. We explore the relative
merits of these flavors of EFD in Section V-1.

A last point to mention is that each of the scheduling
policies that we consider in this paper are paired with a buffer
management scheme. For FIFO or SCFQ (an implementation
of Processor Sharing for packet networks [6]), this is drop tail.
In contrast, for the size-based scheduling policies, when the
queue is full, the newly arriving packet is assigned a priority
according the scheduling policy and this is the packet with the
smallest priority that is discarded.

III. E VALUATION METHODOLOGY

In this section, we provide a high level overview of the
evaluation methodology we apply to compare the variants of
EFD that we introduced in the previous section to state-of-
the-art scheduling policies.

A. Network Configuration

In this paper, we consider a simple network configuration
with 10 wired hosts and 10 wireless stations associated to a
single access point, as depicted in Figure 1. We use the 802.11a
protocol with nominal bit rate of 54Mb/s, with RTS/CTS
disabled. Good and fair radio transmission conditions are

guaranteed as the 10 wireless stations are at the same physical
distance from the access point and in line of sight of each
other. The 10 wired hosts are connected to a router with
an output rate 10 times larger than its input rate, so that its
output queue never builds up. With such a configuration, the
bottleneck is the access point. We use QualNet 4.5 to obtain all
simulation results. TCP NewReno is used with delayed ACK
enabled in the simulations.

Figure 1. Network Set-up, with one way delay of 2ms in wired part

B. Workload

A key point in our evaluation is the choice of workload. We
consider essentially two workloads. First, we use only long-
lived flows: while unrealistic, results obtained under sucha
workload enable to pinpoint easily some fundamental charac-
teristics of a scheduling policy, due to the relative simplicity
of the scenario.

Secondly, we consider a more realistic case of a mix of
short and long flows. We generate the workload with the
assumption that TCP connections arrive according to a Poisson
process with rateλ and adjustλ so as to obtain two regimes:
a medium load of 10 Mbit/s and a high load of 20 Mbit/s.
These loads have to be considered relatively to the maximum
throughput of a single TCP transfer over 802.11a at 54 Mbit/s,
which is merely 27.3 Mbit/s [4]. The workload consists of
bulk TCP transfers of varying size, generated from a bounded
Zipf distribution with an average size of about 60 Kbytes
(40 packets with size of 1500 bytes each), which is in line
with flow sizes observed on typical campus WLANs [12].
The minimum transfer size is 6 MSS, and the maximum
transfer volume corresponds to 10 MB with a coefficient of
variation5 of 6, which controls how the mass of the distribution
is split between short and long transfers. Note that bounded
Zipf is a discrete equivalent of a continuous (bounded) Pareto
distribution, and Pareto is a long tailed distribution usually
adopted for modeling flows in the Internet. Each packet has a
fixed size of 1500 bytes in our simulations.

5The CoV is defined as the ratio of the standard deviation to themean of
a distribution. The larger it is, the more skewed the distribution.



A last important parameter of the workload, in a 802.11
scenario where the medium is managed in a half-duplex
manner, is the ratio of download to upload traffic. We denote
by λd andλu the arrival rate of TCP downloads and uploads
respectively. We considered initially three scenarios:λd

λu
=1

for symmetric load,λd
λu

=10 and λd

λu
=100 for two asymmetric

loads respectively. Those three scenarios are related to real
use cases. The caseλd

λu
=10 corresponds to a typical residential

user browsing the Web with no heavy P2P nor HTTP stream-
ing (YouTube, DailyMotion, etc.) activity [13]. Clients that
rely heavily on P2P tend to produce more symmetric ratios,
corresponding toλd

λu
=1. On the other side of the spectrum, a

trend in residential network is to see more and more heavy
hitters characterized by a heavy HTTP streaming activity[13].
In such a scenario, almost all bytes flow from the server to
the client, leading to ratios close to 100.

To gain insights about the typical traffic within an enterprise
network, we captured one full day of traffic within the Eu-
recom network, which comprises about 600 machines and 60
servers. We analyzed the ratio of download to upload traffic for
intranet traffic and Internet traffic of each host and found that
Internet traffic corresponds to an average ratio of 10, as users
mostly browse the Internet, without heavy HTTP streaming
activity. In contrast, intranet traffic (SMB, LDAP, etc.) islarger
in volume and highly symmetric,i.e. characterized by ratio
close to 1. A reason why the ratio of the latter is symmetric
is that p2p traffic is banned from the network, as from most
enterprise networks in general.

In Section V, we consider the casesλd
λu

=1 for symmetric
load, λd

λu
=10 for asymmetric load as the caseλd

λu
=100 is less

frequent in enterprise networks and degenerates to the pure
download case, where the TCP unfairness problem typically
vanishes. We sum up the simulation parameters in Table I.

Table I
SIMULATION PARAMETERS

Simulator QualNet 4.5
MAC protocol 802.11a@54Mbit/s

W
or

kl
oa

d

long-lived cnxs
buffer size 10-70 MSS

composition 5 uploads vs. 5 downloads

mixed workload

buffer size 30MSS / 300 MSS
transfer size distr. bounded Zipf

load regimes
medium 10 Mbit/s

high 20 Mbit/s

traffic ratio
sym. λd/λu = 1
asym. λd/λu = 10

C. Performance Metrics

We focus on two performance metrics in our study. First,
the global volumes uploaded and downloaded. It is important
to keep an eye on this metric to assess the ability of a
scheduling policy to effectively use the available network
capacity. Secondly, the conditional response times in each
flow direction as they allow to observe how the scheduling
discipline treats each flow size and also if unfairness exists
between uploads and downloads or between flows of various
sizes.

IV. T HE CASE OFLONG-LIVED CONNECTIONS

In this section, we evaluate the fairness of the following
disciplines: FIFO, BEFD, PEFD, EFDACK, LASCAK, LARS,
Run2C and SCFQ for the case of long lived TCP transfers, in
order to highlight the impact of half-duplex nature of 802.11
wireless links. In the case of Run2C, we use a variant that
takes into account the volume transferred in both directions
(by tracking ACK number progress), as otherwise it would
only worsen the unfairness. We refer to it as Run2CACK.

Each Qualnet simulation lasts 100 seconds. We consider a
scenario with 5 uploads and 5 downloads. The TCP unfair-
ness problem gets more pronounced with decreasing buffer
size [14]. This is because the root of the problem lies in
the competition to access the buffer of the AP. Conversely,
unfairness drops and eventually vanishes for all scheduling
disciplines when buffer size increases, although at the cost of
extreme queueing delays fore.g.FIFO. In our simulations, we
considered buffer sizes from 10 to 500 packets. We observed
that losses are not observed any more when the buffer reaches
around 300 packets. Indeed, since the receiver’s advertised
window is set to 65 KB, which is equivalent to 43 MSS, at
most 5 × 43 outstanding data packets for the 5 downstream
flows and 5 × (43/2) outstanding ACK packets for the 5
upstream flows can be in the buffer at any time (with delayed
ACK). For values larger than 300 packets, all policies are fair,
although response time explodes for FIFO.

We report below on results for small buffer sizes from
10 to 70 packets. Figure 2 depicts the aggregate long term
throughput of the uploading and downloading flows, by taking
the average of 30 independent simulations.
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Figure 2. Long-lived connections: 5 uploads against 5 downloads

The pronounced unfairness between uploads and downloads
experienced by legacy FIFO is clearly illustrated by Figure2
when the buffer size is small. Moreover, we observe from
the ratio of upload to download aggregate throughputs that,
the original EFD (i.e. BEFD) is even less fair than FIFO, as
uploads highly restrain downloads and achieve throughput 2



to 3 orders of magnitude larger than that of downloads when
the buffer size is small. This is due to the high priority granted
to ACKs as mentioned in section II-A. With small buffer, this
low priority translates into high loss rates for downloads under
BEFD and Run2C. In contrast, the loss rates experienced under
LASACK, PEFD, EFDACK and LARS are negligible (with a
buffer larger than 20 packets). Although Run2CACK keeps
track of bidirectional traffic, long lived connections quickly
end up in the low priority queue, so that this policy degenerates
to FIFO in this setup.

Figure 2 further demonstrates that the network capac-
ity is fairly shared between uploads and downloads under
LASACK[7] and under LARS[8]. Meanwhile, PEFD and
EFDACK are able to enforce a good level of fairness – far
better than FIFO, SCFQ, and BEFD but not as perfect as
LASACK or LARS – when the buffer size is larger than 20
packets. An interesting point is that fairness is not obtained
at the expense of performance degradation as the aggregate
throughputs under PEFD and EFDACK are larger than the
ones of FIFO and SCFQ.

In an attempt to better understand the modus operandi of
BEFD and EFDACK, we have computed the mean value of
the two metrics: RTT and congestion window, both for the
uploads and the downloads, as a function of the buffer size
at the access point, which are represented in Figure 3, by
collecting the samples in 30 independent simulations.

A scheduling policy might impact both the congestion
window of a flow and its RTT. It can impact the congestion
window by creating losses. Controlling the RTT is simply
obtained by varying the priority of the packet of the flow at the
scheduler. In a sense, losses can be seen as an extreme case
of the delay (an infinite delay), hence the RTT is the primary
variable through which a scheduler controls a TCP connection.
Furthermore, if the scheduler considers only the directionin
which ACKs travel, then keeping the ACKs is the only control
variable as dropping them has only a limited impact oncwnd
growth.

We observe first that RTTs are similar between uploads
and downloads when the queuing policy does not differentiate
between up and down directions. This is the case for FIFO and
BEFD. This confirms the fact that there is a single bottleneck
(the buffer of the AP) that governs all RTTs. When its size
grows, the RTT grows. Second, it is clear that for FIFO, the
download congestion windows do not significantly grow, so
that these connections throughput remains low. With BEFD
things are even worse. With EFDACK, uploads and downloads
are effectively decoupled by the scheduler that inflates theRTT
to compensate congestion window increase. The result with
EFDACK is that throughputs of uploads and downloads are
eventually similar,i.e. the TCP unfairness problem vanishes.
We observed a similar effect with LARS, and to a lesser extent
with PEFD.

One of the lessons of the above evaluation is that SCFQ and
BEFD are clearly ineffective when the traffic consists of both
uploads and downloads. This is why we rule them out from
further investigation bellow. One can argue that this is also

the case for FIFO. However, as FIFO is the legacy scheduling
discipline, we keep it as a reference point hereafter.

V. PERFORMANCEEVALUATION USING REALISTIC

WORKLOADS

In this section, we first investigate the impact of varying
the scheduling discipline for EFD like schemes. We con-
sider 4 combinations of disciplines: FIFO+FIFO, LAS+FIFO,
FIFO+LAS, LAS+LAS in two different flavors corresponding
to a threshold either in byte like in EFDACK or in packets
like PEFD. We conclude that the original FIFO+FIFO is a
good candidate and thus focus only on the original PEFD and
EFDACK in subsequent analyses.

We next compare PEFD and EFDACK to FIFO, LARS, LA-
SACK and Run2CACK. We examine the conditional response
time of uploads and downloads, assuming a highly skewed (as
the coefficient of variation is 6) flow size distribution. Finally,
we discuss the impact of the buffer size at the AP on the
performance of scheduling policies in 802.11 networks.

The simulation parameters are given in Table I, and each
simulation lasts 5000s. Some connections are unfinished at the
end of a simulation due to the premature end of simulation;
however, under high load and for long enough simulations
as in our case, the main reason is that they were set aside
by the scheduler. We report performance results only for the
connections that have completed a transfer. In this section, we
do not represent on the figures the confidence intervals (for
each flow size) as, given the number of curves per figure, they
tend to obscure the graphs. Still, they enabled us to check that
the simulations were long enough to draw conclusions based
on the conditional mean response times.

1) Comparison of EFD Variants:In this part, we consider
four variants of EFD: LAS+FIFO, FIFO+LAS, LAS+LAS as
well as FIFO+FIFO itself. For each variant, we have two
flavors, depending on the bookkeeping option which is either
in bytes like EFDACK or packets as PEFD.

Before going into the details, we need to explicit the way
LAS is used here. This is the global EFD scheduler that
assigns the volumes, either in packets or bytes depending on
the strategy. Each packet is thus marked with an associated
volume and, when LAS is used, it manages the queue where
it is applied in such a way that packets are always sorted in
ascending order of their associated volume.

We conducted simulations for a symmetric load and 10
Mbit/s (moderate load) and 20 Mbit/s (high load) respectively.
The buffer size is set to 30 packets. Average conditional
response times of byte-based schemes are depicted in Figure
4 while the case for the packet-based schemes are illustrated
in Figure 5. Results with an asymmetric load are qualitatively
similar and we do not present them here.

We observe from Figure 4(a) that the 4 schemes perform
similarly. They all offer lower response time to short flows
as compared to FIFO, but at the cost of a slight increase
of completion time for long flows when the offered load is
moderate at 10 Mbit/s. A similar effect for the case of packet-
based scenario is visible in Figure 5(a). When the load is
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Figure 3. How does the scheduler control the connection throughputs? RTT and Cwnd w.r.t. buffer size at AP

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

File size in MSS

M
ea

n 
R

es
po

ns
e 

tim
e 

(s
)

Down

 

 

FIFO down
FIFO+FIFO down
FIFO+LAS down
LAS+FIFO down
LAS+LAS down

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

File size in MSS

M
ea

n 
R

es
po

ns
e 

tim
e 

(s
)

Up

 

 

FIFO up
FIFO+FIFO up
FIFO+LAS up
LAS+FIFO up
LAS+LAS up

(a) Workload of 10Mbit/s
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Figure 4. Comparison between various queueing policies in EFD queues – Average response time, symmetric load, byte-based

high, the behavior of the 4 different schemes differ especially
for the byte-based scenario. FIFO+LAS basically offers the
best response time for both scenarios, as illustrated in Figure
4(b) and Figure 5(b). FIFO+FIFO performs quite close to
FIFO+LAS for the byte-based scenario. Using LAS in the
high priority queue seems detrimental. Though the use of
LAS is different from the original LAS policy that has a full
knowledge of the history of each flow, we believe that the bad
performance obtained when LAS is used in the high priority
queue is a consequence of the bad performance of LAS when
the distribution has a low variability - see [9]. This is the
case in the high priority queue perspective here, since the flow
sizes in this queue range between 1 and 30 MSS only, and the
distribution is much less skewed (CoV close to 1) than the
overall distribution (CoV of 6).

In conclusion, modifying the queuing discipline of each
individual queue in an EFD scheduler (reasoning on packet
or bytes) appear beneficial only for the low priority queue
and can have a detrimental effect in the high priority. Overall,

the benefit of LAS in the low priority queue seems limited in
comparison to the increased complexity. We thus consider only
the original FIFO+FIFO flavors, namely PEFD and EFDACK
in the rest of this section.

2) Impact of Load and Symmetry Ratio:We present simu-
lations results for 10 and 20 Mbit/s and for symmetric (λd

λu
=1)

and asymmetric (λd
λu

=10) scenarios. The buffer size is set to 30
packets. Conditional response times of uploads and downloads
are depicted in Figures 6 and 7 respectively. The response
time is defined as the time required for a TCP connection of
a given size to complete its transfer (set-up, data transferand
tear-down).

We first observe that under FIFO, for all the scenarios and
all load condition - even a moderate load - the TCP unfairness
problem is visible. It is thus a performance problem for any
operational 802.11 network.

In contrast, we observe that all size-based scheduling poli-
cies mitigate the TCP unfairness problem, while granting a
high priority to short flows, whose performance significantly
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Figure 5. Comparison between various queueing policies in EFD queues – Average response time, symmetric load, packet-based
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Figure 6. Comparison of EFD variants for a symmetric workload: average response time – AP buffer of 30MSS

improve as compared to FIFO. These are obtained at the cost
of a negligible increase of the response time of long flows.

An important remark is that we present conditional response
times as a function of flow size so as to see the impact of the
scheduling disciplines on each flow size. However, with a point
of view that would perhaps better account for user experience,
one could have considered the percentiles of flow size on the
x-axis. This would have magnified the left side of each plot
because short flows represent the majority of flows,e.g., the
90-th quantile is less than approximately 50 packets, meaning
that 90% of the flows experience a significant improvement
with the size-based scheduling policies we consider.

The figures show that LASACK performs slightly better
than PEFFD and EFDACK, especially for mid-size-flows. This
is a side-effect of the threshold used in PEFD and EFDACK.
Overall, the take-away message is that PEFD and EFDACK
are able to achieve almost as well as state-of-the-art size-based
scheduling policies that keep a full memory of each flow (in
contrast to EFD like policies that have a memory “limited to
the buffer”). Here, Run2CACK uses the same size threshold
as EFD to decide in which queue a packet should go. But
due to its infinite memory, flows go earlier in the low priority
queue, following the expected behavior described in Section
II. In fact, Run2CACK gives a more marked transition than
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Figure 7. Comparison of EFD variants for an asymmetric workload: average response time – AP buffer of 30MSS

EFD, with a pronounced protection of short flows detrimental
to even mid-size ones, so that it is in fact more sensitive to
the transition threshold setting.

3) The Impact of Buffer size at AP:We considered buffer
sizes ranging from 10 to 500 packets. Due to space limit, we
pick two representative values: 30 and 300 packets. Simula-
tions are conducted in an asymmetric load scenario. Results
are presented respectively in Figures 7 and 8.

When the buffer size is large - 300 MSS for instance, there is
no more unfairness between uploads and downloads even with
FIFO regardless of the load, as the queue rarely overflows.
Nevertheless, this is obtained at the cost of very long times
spent in the AP downlink queue.

Comparing with figure 7, PEFD, EFDACK and LASACK
do not suffer nor benefit from larger buffer space. This is in
line with our previous results and the results obtained in the
original EFD paper [3], although the buffer size is directly
linked to the scheduler “memory”. This confirms that, unlike
FIFO, (some) size-based scheduling policies are much less
sensitive to the actual buffer size.

VI. RELATED WORK

Classically, size-based scheduling policies are divided into
blind and non-blind scheduling policies. A blind size-based
scheduling policy is not aware of the job6 size while a non-
blind one is. Non blind scheduling policies are applicable to
servers [17] where the job size is related to the size of the
content to transfer. A typical example of non blind policy is
the Shortest Remaining Processing Time (SRPT) policy, which
is optimal among all scheduling policies, in the sense that it
minimizes the average response time.

6Job is a generic entity in queueing theory. In the context of this work, a
job corresponds to a flow.

For the case of network appliances (routers, access points,
etc.) the job size, i.e. the total number of bytes to transfer, is
not known in advance. Several blind size-based scheduling
policies have been proposed. The Least Attained Service
(LAS) policy [15] bases its scheduling decision on the amount
of service received so far by a flow. LAS is known to be
optimal if the flow size distribution has a decreasing hazard
rate (DHR) as it becomes, in this context, a special case of
the optimal Gittins policy [5]. Some representatives of the
family of Multi-Level Processor Sharing (MLPS) scheduling
policies [10] have also been proposed to favor short flows.
An MLPS policy consists of several levels corresponding to
different amounts of attained service of jobs, with possibly a
different scheduling policy at each level. Run2C, which is a
specific case of MLPS policy using FIFO+FIFO scheduling,
has already been compared to LAS [1].

Run2C and LAS share a number of drawbacks. Flow
bookkeeping is complex. LAS requires to keep one state per
flow. Run2C needs to check, for each incoming packet, if it
belongs to a short or to a long flow. Moreover, both LAS and
Run2C classify flows based on the accumulated number of
bytes they have sent, without taking the flow rate into account.

LARS is a size-based scheduling designed to account for
rates [8]. It consists in a variant of LAS, Least Attained Recent
Service (LARS), where the amount of bytes sent by each flow
decays with time according to a fading factorβ. LARS is able
to handle differently two flows that have sent a similar amount
of bytes but at different rates and it also limits the lock out
duration of one long flow by another long flow to a maximum
tunable value.

VII. C ONCLUSION

This paper presents the adaptation and evaluation of EFD
to the case of IEEE 802.11 networks, the most common half
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Figure 8. Comparison of EFD variants for an asymmetric workload: average response time – AP buffer of 300MSS

duplex links effectively in use. There are basically two ways
to do this adaptation: keep track of the volumes exchanged in
both directions or simply count packets in a single direction.
In fact, as long as the workload does not consist of flows with
very disparate MSS, PEFD is a much simpler approach.

Compared to size-based scheduler with infinite flow states
memory, EFD is marginally less efficient in combatting the
TCP unfairness problem than LARS or LASACK; this is es-
pecially evident for long lived flow experiments. Nevertheless,
for a more realistic workload, this difference vanishes even for
relatively short buffers. In brief, the EFD variants presented
in this paper are simple, low overhead schedulers that can
effectively improve performance in wireless networks, without
the usual drawbacks associated to size-based schedulers.
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