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Large Families of Asymptotically Optimal
Two-Dimensional Optical Orthogonal Codes

Reza Omrani, Gagan Garg, P. Vijay Kumar, Petros Elia, and Pankaj Bhambhani

Abstract—Nine new 2-D OOCs are presented here, all sharing
the common feature of a code size that is much larger in relation
to the number of time slots than those of constructions appearing
previously in the literature. Each of these constructions is either
optimal or asymptotically optimal with respect to either the
original Johnson bound or else a non-binary version of the
Johnson bound introduced in this paper.

The first 5 codes are constructed using polynomials over finite
fields - the first construction is optimal while the remaining 4
are asymptotically optimal. The next two codes are constructed
using rational functions in place of polynomials and these are
asymptotically optimal. The last two codes, also asymptotically
optimal, are constructed by composing two of the above codes
with a constant weight binary code.

Also presented, is a three-dimensional OOC that exploits the
polarization dimension.

Finally, phase-encoded optical CDMA is considered and con-
struction of two efficient codes are provided.

Index Terms—Optical orthogonal codes, optical CDMA,
OCDMA, two-dimensional codes, 2-D OOC, wavelength-time
hopping codes, Johnson bound, phase-encoded OCDMA.

I. INTRODUCTION

There has been an upsurge of interest in applying code divi-
sion multiple access (CDMA) techniques to optical networks
- optical CDMA (OCDMA) [1]. This is partly due to the
increase in security [2] afforded by OCDMA (as measured,
for instance, by the increased effort needed to intercept an
OCDMA signal) and partly due to the flexibility and simplicity
[3] of network control afforded by OCDMA.

There are two main approaches to data modulation and
spreading in optical CDMA (OCDMA). The first approach,
known as direct-sequence encoding [1], makes use of on-
off-keying (OOK) data modulation and unipolar spreading
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sequences with good correlation properties. Traditionally, as
in the case of wireless communication, the spreading has
been carried out in the time domain and we will refer to this
class of OOCs as one-dimensional OOCs (1-D OOCs) [3]–
[26]. A drawback of 1-D OOCs is the requirement of a large
chip rate. By employing two-dimensional optical orthogonal
codes (2-D OOCs) that spread in both time and wavelength
domain, it turns out that the large-chip-rate requirement can be
substantially reduced [27]. There is a considerable literature on
2-D OOC constructions. However, in this paper, we focus our
attention only on optimal and asymptotically optimal construc-
tions. A quick overview of optimal (or asymptotically optimal)
constructions of 2-D codes in the literature is presented in
Table I. The code constructions presented here came about
as a result of a DARPA-funded project [28], a subgoal of
which was coming up with constructions that would give the
experimentalist the maximum possible flexibility in choosing
the parameters Λ and T . In this context, Fig. 2 provides a
visual depiction of the parameter sets for small Λ, T in the
range, 2 ≤ Λ ≤ 17, 2 ≤ T ≤ 33 for which constructions are
now available as a result of the 9 constructions presented here.

The second OCDMA approach uses spectral encoding. In
this method, spreading is achieved by encoding of amplitude
or phase of the data spectrum [29], [30].

This paper is organized as follows: Section II provides
background material along with an overview of the results
of this paper. In Section III, we propose two new bounds
on the size of 2-D OOCs - we use these bounds to prove
optimality of some of the constructions presented in the current
paper as well as of two constructions previously known in the
literature, but which were not known to be optimal. In the next
section, we propose five families of 2-D OOCs constructed
using polynomials over finite fields. In Section V, we present
two families of asymptotically optimal codes constructed using
rational functions over finite fields. We show in Section VI
how one can generate two asymptotically optimal families by
composing two of the previous constructions with a constant
weight binary code. In Section VII, we present a three-
dimensional OOC using polarization as the third dimension.
In Sections VIII and IX, we use generalized bent functions
to construct two families of efficient asynchronous phase-
encoding sequences for Optical CDMA. The last section
concludes the paper. New results are presented as Propositions,
known results appear as Theorems. Most of the proofs have
been moved to the Appendices to ensure smooth reading of
the paper.
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TABLE I
OPTIMAL AND ASYMPTOTICALLY OPTIMAL 2-D OPTICAL ORTHOGONAL CODES IN THE LITERATURE

Construction Parameters Code Size Constraint Optimality
Name Satisfied

Lee, Seo [31] (Λ× T, 3, 1)

6Λst+ Λs+ Λt, where s and t
are the sizes of the optimal OOCs

(Λ, 3, 1) and (T, 3, 1) respectively.
(O) when Λ, T ≡ 1 (mod 6);

(AO) otherwise

None (O)

Shurong (Λ× T, ω, 1), Λ(ΛT−1)
ω(ω−1)

None (O)
et. al. [32] Λ = pk

Kwong, (Λ× T, ω, 1), Λ2

pk
+ Λ2

pkpk−1
+ Λ2

pkpk−1pk−2
+ . . .+ Λ AM-OPPTS (AO)

Yang [33] Λ = p1p2 · · · pk , T = p1,
pk ≥ pk−1 ≥ . . . ≥ p1 ≥ ω

Yang, (Λ× T, ω, 1),
Λ(Λ2−1)
ω(ω−1)

None (O)
Kwong [34] Λ = T = ωt(ω − 1) + 1,

Λ is prime, t is some integer

Yang, (Λ× T, ω, 1), T OPPW (O)∗
Kwong [34] ω = Λ, T = p1p2 · · · pk,

pk ≥ pk−1 ≥ . . . ≥ p1 ≥ Λ

Yang, (Λ× T, ω, 1), ω = Λ− 1, ΛT
Λ−1

AM-OPPW (AO)
Kwong [34] Λ = p1, T = (p1 − 1)p2 · · · pk,

pk ≥ pk−1 ≥ . . . ≥ p1

Kwong (Λ× T, ω, 1), Λ2 · ΦOOC , AM-OPPTS (AO)
et. al. [35] Λ = p1p2 · · · pk , where ΦOOC is the cardinality

pk ≥ pk−1 ≥ . . . ≥ p1 ≥ ω of the optimal (T, ω, 1) OOC

Shivaleela (Λ× T, ω, 1), T OPPW (O)∗
et. al. [36] Λ = T = ω, T is prime

Here,
• (O) denotes Optimal,
• (AO) denotes Asymptotically Optimal,
• p or pi denotes a prime.

∗ These constructions are shown to be optimal using the bounds proposed in this paper.

II. BACKGROUND AND RESULTS

The focus of the entire paper (except for Sections VIII
and IX) is on direct-sequence encoding. Phase-encoding is
restricted to Sections VIII and IX only.

The advent of Wavelength-Division-Multiplexing (WDM)
and dense-WDM (D-WDM) technology has made it possible
to spread in both wavelength and time [34]. The corresponding
codes are variously called wavelength-time hopping codes and
multiple-wavelength codes. Here, we will simply refer to these
codes as two-dimensional OOCs (2-D OOCs).

A 2-D (Λ × T, ω, κ) OOC C is a family of {0, 1} Λ × T
arrays of constant weight ω. Every pair {A,B} of arrays in
C is required to satisfy:

Λ∑
λ=1

T−1∑
t=0

A(λ, t)B(λ, (t⊕T τ)) ≤ κ, (1)

where either A 6= B or τ 6= 0. We will refer to κ as the
maximum collision parameter (MCP) when in addition to (1)
holding for all τ , we have that equality holds in (1) for some

pair A,B and for some τ . Note that the asynchronism is
present only along the time axis.

AM-OPPTSAM-OPPW

OPPW
P1, R1

OPPTS
P2, P5, R2

P4 No Restriction

2-D OOCs

P3, CP1, CR1

Fig. 1. Various types of 2-D OOCs. The symbols P3, CP1 etc. are reference
to specific constructions appearing in Table II.

Practical considerations often place restrictions on the place-
ment of pulses within an array. With this in mind, we introduce
the following terminology (see Fig. 1):
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TABLE II
NEW 2-D OPTICAL ORTHOGONAL CODES PROPOSED IN THIS PAPER

Construction Parameters Code Size Constraint Optimality
Name Satisfied

P1 (Λ× T, ω, κ), Tκ OPPW (O)
κ < ω = Λ ≤ T ,
T is prime

P2 (Λ× T, ω, κ), 1
T

∑
d|(Λ−1)

(
Λ

⌈
κ+1
d

⌉
− 1

)
µ(d) OPPTS (AO)

Λ = p, ω = T ,
κ < ω, T | p− 1

P3 (Λ× T, ω, κ),
(T+1)κ+1−1

T
AM-OPPW (AO)

1 ≤ Λ ≤ pm, T = pm − 1,
ω = Λ− κ, κ < ω

P4 (Λ× T, ω, κ), 1
T

∑
d|Λ

(
(Λ + 1)

⌈
κ+1
d

⌉
− 1

)
µ(d) AM-OPPTS (AO)

ω = T − κ, T | pm − 1,
Λ = pm − 1, κ < ω

P5 (Λ× T, ω, κ), 1
T

∑
d|(Λ−1)

(
Λ

⌈
κ+1
d

⌉
− 1

)
µ(d) OPPTS (AO)

ω = T , Λ = pm,
κ < ω, T | pm − 1

R1 (Λ× T, ω, κ),
c(κ2 )
T

+ 1 OPPW (AO)
ω = Λ, Λ ≤ T − 1,
T = pm + 1, κ < ω is even

R2 (Λ× T, ω, κ), 1
T (q−1)

∑
h(x) u(d− deg(h(x)), T, 1)µ̂(h(x)) OPPTS (AO)

T |pm − 1, Λ = pm + 1, where the sum is over monic h(x) ∈ Fq [x]
ω = T , κ < ω is even of deg ≤ d

CP1 (Λ× T, ω, κ), Tκ
⌊

Λ
ω

⌊
Λ−1
ω−1

⌊
Λ−2
ω−2

. . .
⌊

Λ−κ
ω−κ

⌋⌋⌋⌋
AM-OPPW (AO)

κ < ω ≤ Λ, T is prime

CR1 (Λ× T, ω, κ),
(
c(κ2 )
T

+ 1

)⌊
Λ
ω

⌊
Λ−1
ω−1

⌊
Λ−2
ω−2

. . .
⌊

Λ−κ
ω−κ

⌋⌋⌋⌋
AM-OPPW (AO)

ω ≤ Λ, κ < ω is even,
T = pm + 1

Here,
• (O) denotes Optimal and (AO) denotes Asymptotically Optimal,
• p denotes a prime, q = pm

• µ(·) is the Mobius function,
• µ̂(·) and u(·) are defined in equations (6) and (22) respectively, and

• c(t) =

{
q2t+1 − q, t = 1, 2, 3, 4, 5, 6

≥ q2t+1 − q2t−6

7
, t ≥ 7.

• arrays with one-pulse per wavelength (OPPW): each
row of every (Λ×T ) code array in C is required to have
Hamming weight = 1.

• arrays with at most one-pulse per wavelength (AM-
OPPW): each row of any (Λ×T ) code in C is required
to have Hamming weight ≤ 1.

• arrays with one-pulse per time slot (OPPTS): each
column of every (Λ × T ) code array in C is required
to have Hamming weight = 1.

• arrays with at most one-pulse per time slot (AM-OPPTS):
each column of any (Λ×T ) array in C is required to have
Hamming weight ≤ 1 .

The constructions mentioned in Fig. 1 are proposed in this
paper and have been summarized in Table II.

Remark 1: Note that for codes that are AM-OPPW or
OPPW, the autocorrelation for non-zero values of the time
shift is zero. This is obvious since there is (at most) one
1 in each row; hence, the time-shifted code matrix cannot
have any overlap with the original code matrix. We shall use
this fact later while proving the correlation properties of our
constructions.
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A. Johnson Bound

For a given set of values of Λ, T, ω, κ, let Φ(Λ × T, ω, κ)
denote the largest possible cardinality of a (Λ× T, ω, κ) 2-D
OOC. The following adaptation of the Johnson’s bound for
constant weight codes to 2-D OOCs was first noted by Yang
and Kwong in [34]:

Theorem 1: [Johnson Bound]

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
ΛT − 1

ω − 1
· · ·
⌊

ΛT − κ
ω − κ

⌋⌋⌋
. (2)

A construction method with Φ(Λ × T, ω, κ) codewords
is called optimal and therefore, a construction meeting the
Johnson bound is optimal. A construction that meets this
bound asymptotically (i.e., when Λ or T (or both) tend to
infinity) is called an asymptotically optimal construction.

B. Literature Review

In this subsection, we focus primarily on prior constructions
of optimal or asymptotically optimal constructions of 2-D
OOCs in the literature. A summary of these appears in Table I.
Note that all these constructions are optimal (or asymptotically
optimal) only for MCP = 1. However, the constructions
that we propose in this paper are optimal (or asymptotically
optimal) for all values of the MCP, i.e., MCP ≥ 1 thereby
leading to larger size (this is explained in detail in the next
subsection).

The construction by Lee and Seo [31] spreads in the wave-
length and the time domain by using two different 1-D OOCs.
Shurong et. al [32] construct a 2-D OOC by employing a fre-
quency hopping code to spread in the wavelength domain and
a 1-D OOC to spread along the time axis. The construction by
Kwong and Yang [33] interchanges the time and wavelength
components of a frequency-hopping code and then applies
specific cyclic shifts to control the value of the MCP. The
first construction by Yang and Kwong [34] uses a 1-D OOC
to achieve spreading in the wavelength and time domains. The
remaining two constructions in [34] modify frequency-hopping
codes to construct 2-D OOCs. The construction by Kwong et.
al [35] spreads in the wavelength domain using a frequency-
hopping code and in the time domain using a 1-D OOC. The
OPPW construction by Shivaleela et. al [36] places a 1 in the
first time slot of the first wavelength. By cyclically shifting
the position of the 1 in the subsequent wavelengths by k, the
entire 2-D code is generated. The k for different codewords
varies from 0 to T − 1, where T is the number of time slots.

Additional papers in the literature dealing with the design
of 2-D OOCs include [2], [37]–[61]. However, since the focus
of the current paper is on optimal or asymptotically optimal
constructions, we do not discuss these further here. A paper
relating to 3-D code construction is [62].

C. Overview of Results

We propose a version of non-binary Johnson bound and
derive two other bounds from it - these bounds provide upper
bounds on the size of 2-D OOCs for the case of AM-OPPW
2-D OOCs and OPPW 2-D OOCs. A special instance is shown
to lead to the Singleton bound.

We then propose 9 new families of 2-D OOCs of large
size. All the codes proposed in this paper are optimal (or
asymptotically optimal) with respect to the original Johnson
bound [34] or the new bounds proposed in this paper. We
obtain codes with large size by constructing optimal families
for large values of the MCP. Consider MCP = κ = 1, for
example. The 2-D Johnson bound gives

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
ΛT − 1

ω − 1

⌋⌋
≈ Λ

ω

(
ΛT − 1

ω − 1

)
≈ Λ2T

ω2

=
1

T

(
ΛT

ω

)2

.

Similarly, for large values of κ, we get

Φ(Λ× T, ω, κ) .
1

T

(
ΛT

ω

)κ+1

.

This shows that, for fixed values of Λ, T and ω, the
upper bound on the maximum number of codewords increases
exponentially in the MCP. Note that all the constructions in
Table I have MCP = 1 thereby restricting the size to Λ2T

ω2 .
Hence, by constructing optimal (or asymptotically optimal)
constructions for larger values of the MCP, we are proposing 2-
D OOCs with size larger than has been previously constructed.

All the 9 constructions presented in this paper have been
summarized in Table II. Additionally, Fig. 2 provides a visual
depiction of the parameter sets for small Λ, T in the range,
2 ≤ Λ ≤ 17, 2 ≤ T ≤ 33 for which constructions are now
available as a result of the 9 constructions presented here.
All constructions are either optimal or else drawn from a
family of asymptotically optimal constructions and correspond
in every case to a code whose size is large in relation to the
number T of time slots. This table brings out the need for
proposing different constructions since these 9 constructions
are applicable to different values of Λ and T . For ease of
representation, we use the following legend:

Construction Name in Construction Name in
Name the Table Name the Table

P1 A R1 F
P2 B R2 G
P3 C CP1 H
P4 D CR1 I
P5 E

For example, consider the entry in the table corresponding to
T = 5,Λ = 3. The entry reads AFHI. This means that for T =
5 and Λ = 3, we are proposing four optimal (or asymptotically
optimal) constructions in this paper, viz., construction P1, R1,
CP1 and CR1.

Remark 2: Note that the rows corresponding to T = 21, 25
and 27 are empty. However, this does imply that there are no
constructions for these values of T - it simply means that there
are no constructions for 2 ≤ Λ ≤ 17. For example, for T = 21,
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we have construction P2 ( or B) for Λ = 43, 127, 211 etc. Sim-
ilarly, we have construction P2 for T = 25,Λ = 101, 151, 251;
and for T = 27,Λ = 109, 163, 271 and so on.

The seven constructions (P1 to P5, R1 and R2) are generated
by regarding a codeword in the 2-D code as the graph of
a function. For example, a codeword in a 2-D AM-OPPW
code can be regarded as the graph of a function t = f(λ),
0 ≤ t ≤ T − 1, 0 ≤ λ ≤ Λ− 1 mapping wavelength to time.
Analogously, a codeword in a 2-D AM-OPPTS OOC can be
regarded as the graph of a function λ = f(t) , 0 ≤ t ≤ T −1,
0 ≤ λ ≤ Λ− 1 mapping time to wavelength.

The first 5 of these codes (P1 to P5) are constructed using
polynomials over finite fields. Code P1 is optimal while codes
P2 to P5 are asymptotically optimal.

The next two codes (R1 and R2) are constructed using
rational functions over finite fields. Both these codes are
defined for even values of the MCP and are asymptotically
optimal.

Next, we compose P1 with a constant weight binary code
and generate the concatenated code CP1. This code is asymp-
totically optimal and is AM-OPPW. We do a similar compo-
sition of R1 and a constant weight binary code to generate
CR1, which is also asymptotically optimal.

We present a 3-D code construction using polarization as the
third dimension. This code is constructed using the Chinese
Remainder Theorem.

Finally, we use generalized bent functions to construct a
family of efficient asynchronous phase-encoding sequences for
optical CDMA.

III. NEW BOUNDS ON THE CODE SIZE

In this section, we begin by proposing a one-dimensional
Johnson bound on constant weight codes over a non-binary
alphabet. The bound will establish the optimality of some of
the constructions that we propose in the sections that follow.

The codes under consideration are over an alphabet A of
size (T + 1) containing a distinguished element, which we
shall call 0. For codes over such an alphabet, we define
the Hamming correlation between two codewords to be the
number of symbol locations in which the two codewords
contain the same non-zero symbol.

Let AT (Λ, ω, κ) denote the maximum possible size of a
constant-weight code C over the alphabet A of size T + 1 of
length Λ, Hamming weight ω, and Hamming correlation ≤ κ.

Proposition 2 (Nonbinary Johnson Bound):

AT (Λ, ω, κ) ≤
⌊
TΛ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋
.

For the proof, we refer the reader to Appendix A.

Remark 3 (Recovering the Binary Johnson Bound): In the
binary case, i.e., when T+1 = 2, the above inequality reduces
to the Johnson bound for constant-weight binary codes.

Remark 4 (Singleton Bound): For the special case when
Λ = ω, the above bound reduces to

AT (Λ, ω, κ) ≤ Tκ+1

and we have, in fact, recovered the Singleton bound of coding
theory.

We now proceed to apply the non-binary Johnson bound to
derive bounds on AM-OPPW 2-D OOCs.

Proposition 3 (Bound on AM-OPPW Code Size): The
maximum possible size Φ(Λ×T, ω, κ) of an AM-OPPW 2-D
OOC with parameters (Λ× T, ω, κ) satisfies:

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋
.

For the proof, we refer the reader to Appendix B.

Corollary 4 (Bound on OPPW Code Size): The maximum
possible size Φ(Λ × T, ω, κ) of an OPPW 2-D OOC with
parameters (Λ× T, ω, κ) satisfies:

Φ(Λ× T, ω, κ) ≤ Tκ.

It follows from the above that the following constructions
are optimal (note that κ = 1 here) although this was unknown
to the authors (see Table I):
• the second construction by Yang and Kwong [34] and
• the construction by Shivaleela et. al [36].
The next few sections will each introduce new constructions

of optimal (or asymptotically optimal) 2-D OOCs.

IV. NEW CONSTRUCTIONS BASED ON POLYNOMIAL
FUNCTIONS

A codeword in a 2-D AM-OPPW OOC can be regarded as
the graph of a function t = f(λ), 0 ≤ t ≤ T−1, 0 ≤ λ ≤ Λ−1
mapping wavelength to time. Analogously, a codeword in a 2-
D AM-OPPTS OOC can be regarded as the graph of a function
λ = f(t), 0 ≤ t ≤ T − 1, 0 ≤ λ ≤ Λ − 1 mapping time to
wavelength.

Without loss of generality, in the constructions below, we
will identify the T time slots with the set ZT , which we label
as T . This will allow us to identify cyclic shifts in the time
domain with (mod T ) additions in ZT . We will identify the
Λ wavelengths with subsets L of algebraic structures. Thus,
| T |= T and | L |= Λ.

All of the constructions in this section employ polynomial
functions whose degree is bounded above by the desired value
of the MCP κ. In the next section, we use rational functions
to construct 2-D OOCs.

While the constructions below have some elements in com-
mon, they also have their differences. The reason for providing
the set of constructions is to provide constructions for as many
(Λ, T ) parameter sets as possible. The impact of the different
constructions given here can be seen in Fig. 2, where we
identify constructions with the entries in the table.

A. Construction P1: Mapping Wavelength to Time, OPPW,
ω = Λ, Λ ≤ T, κ < ω, T prime

Here T = p, T = Zp, L ⊆ Zp and we consider
polynomials f(λ) over Zp of degree ≤ κ mapping L → T ,
where p is a prime. Let ϕ be a mapping from the set of all
such functions to the code matrices, where the Λ × T code
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T 
\ Λ

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

2
A

C
D

H
B

C
E

H
D

G
H

B
E

H
D

G
H

B
E

H
D

G
H

E
H

D
G

H
B

E
H

D
G

H
B

E
H

G
H

H
D

H
B

E
H

3
A

C
E

FH
I

A
C

D
G

H
I

C
H

I
E

H
I

D
G

H
I

B
H

I
E

H
I

G
H

I
H

I
E

H
I

D
G

H
I

B
H

I
H

I
D

H
I

H
I

E
H

I
4

C
FI

C
E

FI
C

D
G

I
B

C
I

I
E

I
D

G
I

I
I

E
I

D
G

I
B

I
I

I
D

I
B

I
5

A
FH

I
A

FH
I

A
E

FH
I

A
G

H
I

H
I

H
I

H
I

E
H

I
D

G
H

I
B

H
I

H
I

H
I

H
I

D
H

I
H

I
H

I
6

C
FI

C
FI

C
FI

C
E

FI
C

D
G

I
B

C
I

I
I

I
E

I
D

G
I

B
I

I
I

I
E

I
7

A
C

H
A

C
H

A
C

H
A

C
H

A
C

H
A

C
D

H
C

H
H

H
H

H
E

H
G

H
H

H
H

8
C

FI
C

FI
C

FI
C

FI
C

FI
C

E
FI

C
D

G
I

C
I

I
I

I
I

I
I

D
I

B
I

9
FI

FI
FI

FI
FI

FI
E

FI
G

I
I

I
I

I
I

I
I

E
I

10
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

E
FI

C
D

G
I

B
C

I
I

I
I

I
I

I
11

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

H
H

H
H

H
H

12
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

FI
C

E
FI

C
D

G
I

B
C

I
I

I
I

I
13

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
H

A
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Fig. 2. Representative table showing constructions for (Λ, T ), Λ ∈ [2, 17], T ∈ [2, 33]
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matrix C associated to function f is given by C(λ, t) = 1 iff
f(λ) = t, where λ ∈ L.

We first show that ϕ is an injective mapping, i.e., the code
matrices C1 and C2, corresponding to polynomials f1 and
f2 respectively, are equal iff f1 = f2. This is true since
C1(λ, t) = C2(λ, t)⇔ f1(λ) = f2(λ). Since f1(λ)−f2(λ) is
a non-zero polynomial of degree ≤ κ, this equation can have a
maximum of κ zeroes. Hence, as ω > κ , these two functions
cannot coincide in all the ω positions.

Since this code is OPPW, the autocorrelation function for
each of these matrices for non-zero cyclic shifts is 0 by
Remark 1.

We next declare two polynomials f(λ) and f(λ)+δ, where
δ ∈ Zp, to be equivalent. This causes the set of all the code
matrices to be partitioned into equivalence classes, each of
size T . This results in Tκ+1

T = Tκ code matrices.
Note first that Ca(λ, t + τ) = 1 = Cb(λ, t) iff fa(λ) −

τ = fb(λ). For cross-correlation, consider Ca(λ, t + τ) and
Cb(λ, t) from different equivalence classes corresponding to
functions fa and fb respectively. Next, the polynomial fa(λ)−
τ − fb(λ) is non-zero since fa and fb belong to different
equivalence classes. Since the polynomial is non-zero, it can
have a maximum of κ zeroes (the degree of the polynomial);
hence, the two code matrices Ca and Cb can have a maximum
of κ collisions.

This results in a (Λ × T,Λ, κ) 2-D OOC of size Tκ. This
construction can be seen to be optimal by Corollary 4.

Remark 5: The elements of this 2D-OOC can also be
regarded as corresponding to codewords in a Reed-Solomon
code under an appropriate equivalence relation between the
codewords. Let Λ, κ, T be as above. In particular T = p,
where p is a prime. The [Λ, κ] Reed-Solomon code CRS may
be constructed as follows: let {α1, α2, . . . , αΛ} denote a set
of Λ distinct elements drawn from Fp. Let Pκ denote the set
of all polynomials over Fp of degree ≤ κ. Set

CRS = {(f(α1), . . . , f(αΛ)) | f ∈ Pκ} . (3)

Next, partition the set of all the codewords into pκ equivalence
classes by declaring c1 ∼ c2 if c1 − c2 = η1 , η ∈ F∗p =
Fp\{0} (where 1 denotes the all 1 vector). Finally, we form a
set S by picking precisely one element from each equivalence
class and by associating a (Λ × T ) matrix A(λ, t) to each
vector a ∈ S by setting

A(λ, t) = 1 iff aλ = t, 1 ≤ λ ≤ Λ.

B. Construction P2: Mapping Time to Wavelength, OPPTS,
Λ = p, p prime, T | p− 1, ω = T, κ < ω

Here L = Zp. Let α be an element of Zp of multiplicative
order T and let H be the subgroup of order T generated by α
in Zp. We will identify ZT with H by associating t with αt.
Consider polynomials f(x) over Zp of degree ≤ κ mapping
H → L. Let ϕ be a mapping from the set of all such functions
to the code matrices, where the Λ×T code array C is obtained
by setting C(λ, t) = 1 iff f(αt) = λ, where t ∈ T and
λ ∈ Zp.

We first prove that ϕ is injective, i.e., the code matrices C1

and C2, corresponding to polynomials f1 and f2 respectively,

are equal iff f1 = f2. This is true since C1(λ, t) = C2(λ, t)⇔
f1(αt) = f2(αt). Since f1(αt) − f2(αt) is a non-zero
polynomial of degree ≤ κ, this equation can have a maximum
of κ zeroes. Hence, as ω > κ, these two polynomials cannot
coincide in all the ω positions.

We next discard all sub-period polynomials, i.e., polynomi-
als f(x) that satisfy f(αix) = f(x) for some i ∈ Z∗T . This
ensures good autocorrelation. Since f(αix)− f(x) is not the
zero polynomial, we know that it has a maximum of κ zeroes
(the degree of the polynomial). Hence, the autocorrelation is
bounded above by κ.

We now define two polynomials f(x), g(x) to be equivalent
if f(αix) = g(x) for some i ∈ ZT . We pick a code matrix
corresponding to each equivalence class to form a code of size
1
T

∑
d|(Λ−1)

(
Λd

κ+1
d e − 1

)
µ(d), where µ(·) is the Mobius

function (see [6] for code size computation).
Now, consider two polynomials fa and fb drawn from

different equivalence classes. Consider the corresponding code
matrices Ca and Cb. We know that Ca(λ, t+τ) = Cb(λ, t)⇔
fa(αt+τ ) = fb(α

t). Since these two polynomials have
been drawn from distinct equivalence classes, the difference
polynomial fa(ατx) − fb(x) is non-zero. This implies that
fa(ατx) − fb(x) has ≤ κ zeroes. This proves that the
crosscorrelation is bounded above by κ.

This construction is shown to be asymptotically optimal in
Appendix C.

C. Construction P3: Mapping Wavelength to Time, AM-
OPPW, ω = Λ − κ, κ < ω, 1 ≤ Λ ≤ pm, T = pm − 1, p
prime

Let p be prime and α a primitive element of Fpm . Let
T = pm − 1, T = ZT and L ⊆ Fpm . Consider polynomials
f(x) over Fpm of degree ≤ κ mapping L → Fpm . Let ϕ
be a mapping from the set of all such functions to the code
matrices, where the Λ×T code array C is obtained by setting
C(λ, t) = 1 iff f(λ) = αt, where t ∈ T and λ ∈ L. For those
values of λ such that f(λ) = 0, the entire row is left blank.
Clearly, at most κ rows in any matrix can be blank. To restore
the constant weight property, we arbitrarily delete appropriate
number of 1’s to keep the weight equal to Λ − κ for all the
codewords.

We first prove that ϕ is injective, i.e., the code matrices C1

and C2, corresponding to polynomials f1 and f2 respectively,
are equal iff f1 = f2. This is true since C1(λ, t) = C2(λ, t)⇔
f1(λ) = f2(λ). Since f1(λ)− f2(λ) is a non-zero polynomial
of degree ≤ κ, this equation can have a maximum of κ zeroes.
Hence, as ω > κ, these two polynomials cannot coincide in
all the ω positions.

Since this code is AM-OPPW, the autocorrelation function
for each of these matrices for non-zero cyclic shifts is 0 by
Remark 1.

We define two polynomials f(x), g(x) of degree ≤ κ
to be equivalent if αif(x) = g(x) for some i ∈ ZT .
In our construction, we choose one polynomial from each
equivalence class. This gives us a code of size (T+1)κ+1−1

T .
Now, consider two polynomials fa and fb drawn from

different equivalence classes. Consider the corresponding code
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matrices Ca and Cb. We know that Ca(λ, t+τ) = Cb(λ, t)⇔
α−τfa(x) = fb(x). Since these two polynomials have been
drawn from distinct equivalence classes, the difference poly-
nomial α−τfa(x) − fb(x) is non-zero. This implies that
α−τfa(x) − fb(x) has ≤ κ zeroes. This proves that the
crosscorrelation is bounded above by κ.

This construction is proved to be asymptotically optimal in
Appendix D.

D. Construction P4: Mapping Time to Wavelength, AM-
OPPTS, Λ = pm−1, p prime, ω = T−κ, κ < ω, T | pm−1

Let p be prime. Let α be a primitive element of Fpm and
let β be a non-zero element in Fpm of multiplicative order
T . Let H be the subgroup of Fpm generated by β. We will
identify ZT with H by associating t with βt. Let L = F∗pm =

{1, α, . . . , αpm−2} and T = ZT . Consider polynomials f(x)
over Fpm of degree ≤ κ mapping H → L. Let ϕ be a mapping
from the set of all such functions to the code matrices, where
the Λ × T code array C is obtained by setting C(λ, t) = 1
iff f(βt) = λ. For those values of λ such that f(βt) = 0, the
entire column is left blank. Clearly, at most κ columns in any
matrix can be blank. To restore the constant weight property,
we arbitrarily delete an appropriate number of 1’s to keep the
weight equal to T − κ for all the codewords.

We first prove that ϕ is injective, i.e., the code matrices C1

and C2, corresponding to polynomials f1 and f2 respectively,
are equal iff f1 = f2. This is true since C1(λ, t) = C2(λ, t)⇔
f1(βt) = f2(βt). Since f1(βt) − f2(βt) is a non-zero poly-
nomial of degree ≤ κ, this equation can have a maximum of
κ zeroes. Hence, as ω > κ , these two polynomials cannot
coincide in all the ω positions.

We next discard all sub-period polynomials, i.e., polynomi-
als f(x) that satisfy f(βix) = f(x) for some i ∈ Z∗T . This
ensures good autocorrelation. Since f(βix)− f(x) is not the
zero polynomial, we know that it has a maximum of κ zeroes
(the degree of the polynomial). Hence, the autocorrelation is
bounded above by κ.

We now define two polynomials f(x), g(x) to be equivalent
if f(βix) = g(x) for some i ∈ ZT . We pick a code matrix
corresponding to each equivalence class to form a code of
size 1

T

∑
d|Λ

(
(Λ + 1)d

κ+1
d e − 1

)
µ(d) (see [6] for code size

computation).
Now, consider two polynomials fa and fb drawn from

different equivalence classes. Consider the corresponding code
matrices Ca and Cb. We know that Ca(λ, t+τ) = Cb(λ, t)⇔
fa(βt+τ ) = fb(β

t). Since these two polynomials have been
drawn from distinct equivalence classes, the difference polyno-
mial fa(βτx)−fb(x) is non-zero. This implies that fa(βτx)−
fb(x) has ≤ κ zeroes. This proves that the crosscorrelation is
bounded above by κ.

Since the number of codewords is similar to the number
of codewords for construction P2, the proof for asymptotic
optimality is along the same lines - see Appendix C.

E. Construction P5: Mapping Time to Wavelength, OPPTS,
Λ = pm, p prime, ω = T, κ < ω, T | pm − 1

Let p be prime. Let α be a primitive element of Fpm
and let β be a non-zero element in Fpm of multiplicative

order T . Let H be the subgroup of Fpm generated by β.
We will identify ZT with H by associating t with βt. Let
L = Fpm = {0, 1, α, . . . , αpm−2} and T = ZT . Consider
polynomials f(x) over Fpm of degree ≤ κ mapping H → L.
Let ϕ be a mapping from the set of all such functions to the
code matrices, where the Λ× T code array C is obtained by
setting C(λ, t) = 1 iff f(βt) = λ. Thus, the construction here
is along the lines of the previous construction except that the
wavelengths are in 1-1 correspondence with all of Fpm .

We first prove that ϕ is injective, i.e., the code matrices C1

and C2, corresponding to polynomials f1 and f2 respectively,
are equal iff f1 = f2. This is true since C1(λ, t) = C2(λ, t)⇔
f1(βt) = f2(βt). Since f1(βt) − f2(βt) is a non-zero poly-
nomial of degree ≤ κ, this equation can have a maximum of
κ zeroes. Hence, as ω > κ , these two polynomials cannot
coincide in all the ω positions.

We next discard all sub-period polynomials, i.e., polynomi-
als f(x) that satisfy f(βix) = f(x) for some i ∈ Z∗T . This
ensures good autocorrelation. Since f(βix)− f(x) is not the
zero polynomial, we know that it has a maximum of κ zeroes
(the degree of the polynomial). Hence, the autocorrelation is
bounded above by κ.

We now define two polynomials f(x), g(x) to be equivalent
if f(βix) = g(x) for some i ∈ ZT . We pick a code matrix
corresponding to each equivalence class to form a code of
size 1

T

∑
d|(Λ−1)

(
Λd

κ+1
d e − 1

)
µ(d) (see [6] for code size

computation).
Now, consider two polynomials fa and fb drawn from

different equivalence classes. Consider the corresponding code
matrices Ca and Cb. We know that Ca(λ, t+τ) = Cb(λ, t)⇔
fa(βt+τ ) = fb(β

t). Since these two polynomials have been
drawn from distinct equivalence classes, the difference polyno-
mial fa(βτx)−fb(x) is non-zero. This implies that fa(βτx)−
fb(x) has ≤ κ zeroes. This proves that the crosscorrelation is
bounded above by κ.

The proof for asymptotic optimality of construction P5 is
similar to the proof for construction P2 - see Appendix C.

V. NEW ASYMPTOTICALLY OPTIMAL CONSTRUCTIONS
BASED ON RATIONAL FUNCTIONS

We now use rational functions over Fq to construct two
2-D OOCs. Some properties of rational functions that we
use are summarized in the first subsection; the following two
subsections deal with the two constructions.

A. Cyclic Ordering for the Projective Line

Consider all elements of F2
q other than the element [0 0]T .

We define an equivalence relation amongst these elements as
follows:

[a b]T ∼ [c d]T , (4)

if for some η ∈ F∗q , we have [c d]T = [ηa ηb]T . This
partitions F2

q into (q+ 1) equivalence classes, with each class
containing (q − 1) elements. The projective line is obtained
by taking precisely one element from each equivalence class.
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We denote this by P1(Fq). Thus, there are (q+1) “points” on
the projective line. We will use[

a

b

]
eq

to denote the equivalence class containing[
a

b

]
.

We next present a cyclic ordering of the elements of P1(Fq).
Let h(x) = x2 + h1x+ h0 with h1, h0 ∈ Fq be a primitive

polynomial over Fq . Let α be a zero of this polynomial and

H =

[
0 −h0

1 −h1

]
be the associated companion matrix.

Theorem 5: We claim that{[
Hi

[
1

0

]]
eq

∣∣∣∣∣ 0 ≤ i ≤ q

}
= P1(Fq). (5)

Proof: Note from the definition of the companion matrix
that

Hi

[
1

0

]
=

[
a

b

]
is equivalent to saying that

αi · 1 = a+ bα.

Thus
Hi

[
1

0

]
∼ Hj

[
1

0

]
,

with j > i iff
αi = θαj

for some θ ∈ F∗q , i.e., iff

(q + 1) | (j − i).

Hence, the equivalence classes[
Hi

[
1

0

]]
eq

∣∣∣∣∣ 0 ≤ i ≤ q

are all distinct, thus proving the theorem.

Example 1: We present a cyclic ordering of P1(F3). The
polynomial f(x) = x2 + x+ 2 is a primitive polynomial over
F3. Thus

H =

[
0 −2
1 −1

]
=

[
0 1
1 2

]
⇒

H

[
1

0

]
=

[
0

1

]
, H2

[
1

0

]
=

[
1

2

]
, H3

[
1

0

]
=

[
2

2

]
⇒

P1(F3) =

{[
1

0

]
eq
,

[
0

1

]
eq
,

[
1

2

]
eq
,

[
2

2

]
eq

}
·

It can easily be checked that

H4

[
1

0

]
=

[
2

0

]
∼
[
1

0

]
,

which shows that the ordering is cyclic.

B. Construction R1: Mapping Wavelength to Time, OPPW,
T = q + 1, for q = pm, p prime, Λ ≤ q, ω = Λ, κ < ω,
κ = 2κ′ = 2d

Set T = P1(Fq) and L = {α1, α2, . . . , αλ, . . . , αΛ} ⊆
Fq .

Let f, g be polynomials over Fq and let φ denote the
mapping given by:

φ(αi) =

[
f(αi)

g(αi)

]
eq
, 1 ≤ i ≤ Λ.

We will regard φ as a rational function map because when
g(αi) 6= 0 for any i, we equivalently have:

φ(αi) =

[ f(αi)
g(αi)

1

]
eq
.

Let Fd denote the class of rational functions[
f(x)

g(x)

]
over Fq (and hence over L by restriction) where f and g are
polynomials over Fq satisfying:

1) f and g are both non-zero and both of degree ≤ d,
2) f and g are relatively prime, i.e., (f, g) = 1,
3) f is monic, and
4) either f or g must be a non-constant function; equiva-

lently, f(x)
g(x) is not the constant function.

The last condition has been included here since it is mathe-
matically convenient to exclude the constant functions at this
stage and bring them back later. Let µ̂(·), µ̂(·) : Fq[x] → Z
be the function defined by

µ̂(b(x)) =


1, b(x) = 1,

(−1)r, b(x) is the product of r monic,
irreducible polynomials over Fq,

0, else.

(6)

Then the number cd =| Fd | of rational functions in Fd can
be computed from the results in [6] and is given by:

| Fd | =
∑
h(x)

(qd−s+1 − 1)2

(q − 1)
µ̂(h(x)) − (q − 1)

where the sum is over all monic polynomials h(x) ∈ Fq[x]
of degree s ≤ d and where the last term accounts for the
disallowed constant functions. It can be shown [6] that

c(d) =

{
q2d+1 − q, d = 1, 2, 3, 4, 5, 6

≥ q2d+1 − q2d−6

7 , d ≥ 7.
(7)

Let ϕ be a mapping from Fd to the code matrices, where
the Λ× T code array is obtained by setting C(λ, t) = 1 iff[

f(αλ)

g(αλ)

]
∼ Ht

[
1

0

]
.

We first prove that ϕ is injective, i.e., the code matrices
Ca and Cb, corresponding to rational functions

[
fa(αλ)
ga(αλ)

]
and[

fb(αλ)
gb(αλ)

]
respectively, are equal iff fa(x) = fb(x) and ga(x) =
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gb(x). Clearly, the code matrices Ca and Cb are equal iff for
every 1 ≤ λ ≤ Λ,[

fa(αλ)

ga(αλ)

]
= θλ

[
fb(αλ)

gb(αλ)

]
for some θλ ∈ F∗q , (8)

i.e., iff

⇔ fa(αλ) = θλfb(αλ) and ga(αλ) = θλgb(αλ) ∀ λ
⇔ θλ [fa(αλ)gb(αλ)− fb(αλ)ga(αλ)] = 0 ∀ λ
⇔ fa(αλ)gb(αλ)− fb(αλ)ga(αλ) = 0 ∀ λ

⇔ fa(x)gb(x)− fb(x)ga(x) = 0 as polynomials
⇔ fa(x)gb(x) = fb(x)ga(x).

Since fa(x) is coprime to ga(x), it must be that fa(x)|fb(x).
Similarly, fb(x)|fa(x). Since both fa(x) and fb(x) are monic,
it implies that fa(x) = fb(x) which forces ga(x) = gb(x) and
hence proves that ϕ is injective.

Since this code is OPPW, the autocorrelation function for
each of these matrices for non-zero cyclic shifts is 0 by
Remark 1.

Next, we would like to establish that the collection of
matrices ϕ(Fd) is closed under cyclic shifts along the time
axis. To show this, it is sufficient to show that if C(λ, t) is
the code matrix associated to element

[
f(x)
g(x)

]
∈ Fd, then

there exists
[f ′ (x)

g′ (x)

]
∈ Fd whose associated code matrix is

C(λ, t+1 (mod T )). Such an element
[f ′ (x)

g′ (x)

]
∈ Fd is easily

found by setting[
f
′
(x)

g′(x)

]
= µ0

[
0 −h0

1 −h1

] [
f(x)

g(x)

]
= µ0

[
−h0g(x)

f(x)− h1g(x)

]
where µ0 is chosen to ensure that (µ0)(−h0)g(x) is monic.

Let us define two elements
[
fa(x)
ga(x)

]
and

[
fb(x)
gb(x)

]
to be equiv-

alent, i.e., [
fa(x)

ga(x)

]
∼
[
fb(x)

gb(x)

]
if the corresponding code matrices Ca and Cb obtained via
the mapping ϕ, are cyclic shifts of each other. Since ϕ is a
1 − 1 mapping and since every code matrix C(λ, t) in the
image of ϕ has T distinct cyclic shifts, it follows that there
are T elements within each such equivalence class. Our 2D-
OCDMA code C is then the code obtained by selecting one
element of Fd from each equivalence class and then applying
the mapping ϕ. It follows then that this code is of size c(d)

T +1,
where the 1 arises from the inclusion of the constant function
and where c(·) is as defined in (7).

It remains to establish the cross-correlation bound for the
code C. Consider two rational functions

[
fa(x)
ga(x)

]
,
[
fb(x)
gb(x)

]
and

their corresponding code matrices Ca and Cb. Let
[
fc(x)
gc(x)

]
be

the element of Fd associated to a cyclic shift of Ca(λ, t) by
τ . Let the value of the cross-correlation be ν and let V denote
the collection of (t, λ) ∈ {1, 2, · · · ,Λ}×{1, 2, · · · , T} such
that

Ca(λ, t+ τ (mod T )) = Cb(λ, t) = 1.

This implies that for every λ such that (λ, t) ∈ V ,[
fc(αλ)

gc(αλ)

]
= θλ

[
fb(αλ)

gb(αλ)

]
for some θλ ∈ F∗q , (9)

i.e.,

fc(αλ) = θλfb(αλ) and gc(αλ) = θλgb(αλ)

⇔ θλ [fc(αλ)gb(αλ)− fb(αλ)gc(αλ)] = 0,

⇔ fc(αλ)gb(αλ)− fb(αλ)gc(αλ) = 0.

But since the product polynomials fc(x)gb(x) and fb(x)gc(x)
both have degree that is bounded above by 2d = κ, it follows
that | V |≤ κ, thereby establishing that all cross-correlations
for any cyclic shift are bounded above by κ, i.e., that the
MCP ≤ κ and we are done. This construction is proved to be
asymptotically optimal in Appendix E.

C. Construction R2: Mapping Time to Wavelength, OPPTS,
ω = T, T | q − 1, Λ = q + 1, for q = pm, p prime,
κ = 2κ′ = 2d < ω

We associate with each wavelength a distinct element of
P1(Fq). Unlike in the case of Construction R1, the ordering
of elements of P1(Fq) is immaterial here. We associate βt

with the t-th time slot, 0 ≤ t ≤ T − 1, where β ∈ Fq has
multiplicative order T , T |(q − 1). As before, we associate
elements along the time axis with elements of ZT .

We restrict our rational functions to once again belong to
the set Fd for d = κ

2 , where Fd is as defined in the previous
subsection. In this case, we need to necessarily exclude the
constant functions since they lead to constant autocorrelation
function equal to ω for all time shifts and ω > κ. Thus unlike
the case of Construction R1, the last condition in the definition
of Fd is needed here.

Let ϕ be a mapping from Fd to the code matrices, where
the Λ×T code array associated to

[
f(x)
g(x)

]
is obtained by setting

C(λ, t) = 1 iff [
f(βt)

g(βt)

]
∼ λ,

where t ∈ ZT and λ ∈ P1(Fq).
Once again, the first objective is to prove that ϕ is injective,

i.e., that the code matrices Ca and Cb, corresponding to
rational functions

[
fa(x)
ga(x)

]
and

[
fb(x)
gb(x)

]
respectively, are equal

iff fa(x) = fb(x) and ga(x) = gb(x). Clearly, Ca and Cb are
equal iff[
fa(βt)

ga(βt)

]
= θt

[
fb(β

t)

gb(βt)

]
where θt ∈ F∗q all 0 ≤ t ≤ T − 1.

This equation is similar to equation (8) obtained in the
previous subsection and hence by arguing in similar fashion,
we conclude that ϕ is injective.

If C(λ, t) is the code matrix corresponding to rational
function

[
f(x)
g(x)

]
, and µf is the coefficient of the highest degree

term in f(βτx), then it is clear that C(λ, t + τ (mod T ))
is uniquely associated to 1

µf

[
f(βτx)
g(βτx)

]
. Next, note that if the

autocorrelation function of C(λ, t) is equal to ω for some
nonzero time shift τ , this must mean that the matrices C(λ, t)
and C(λ, t+τ (mod T )) are identical, which in turn can only
happen by the 1− 1 nature of ϕ, if and only if the functions[
f(x)
g(x)

]
and 1

µf

[
f(βτx)
g(βτx)

]
are identical. It follows then that to

avoid constructing code matrices C(λ, t) with autocorrelation
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function equal to ω for some nonzero time shift τ , we need
to discard sub-period functions, i.e., functions that satisfy[

f(βτx)

g(βτx)

]
= θ

[
f(x)

g(x)

]
, θ ∈ F∗q (10)

for any 1 ≤ τ ≤ T − 1. Accordingly, our next objective is
to calculate the size of the set resulting from discarding the
sub-period functions belonging to Fd. Let us first calculate the
number of polynomial pairs (f(x), g(x)) satisfying

1) f and g are both non-zero and both of degree ≤ d,
2) f(x) is monic and
3) the pair (f(x), g(x)) is not sub-periodic, i.e., that

[
f(x)
g(x)

]
does not satisfy (10) for any value of time-shift pa-
rameter τ (this condition subsumes the requirement of
elements of Fd, that either f(x) or g(x) be a non-
constant polynomial).

We will subsequently modify this count to ensure that
[
f(x)
g(x)

]
satisfies the remaining requirement that will cause

[
f(x)
g(x)

]
to

belong to Fd, namely that
4) (f, g) = 1 .

Let

f(x) =

r∑
i=1

fix
ei ,

where without loss of generality 0 ≤ e1 < e2 < . . . < er ≤ d
and fr = 1. Similarly, let

g(x) =

s∑
j=1

gjx
aj

where 0 ≤ a1 < a2 < . . . < as ≤ d. It is straightforward to
show that (10) holds iff for some 1 ≤ τ ≤ (T − 1):

βτ(ei−e1) = 1 for 2 ≤ i ≤ r,
βτ(aj−a1) = 1 for 2 ≤ j ≤ s, and (11)
βτ(e1−a1) = 1.

It will be found convenient to partition the different ways in
which this can happen as follows:
• Case (A) e1 = a1 and r = s = 1.
• Case (B) e1 = a1, either r > 1 or s > 1 and

gcd
(
{ei − e1}ri=2, {aj − a1}sj=2, T

)
= l for some l > 1. (12)

• Case (C) e1 > a1 and

gcd
(
{ei − e1}ri=2, {aj − a1}sj=2, (e1 − a1), T

)
= l for some l > 1. (13)

• Case (D) a1 > e1 and

gcd
(
{ei − e1}ri=2, {aj − a1}sj=2, (a1 − e1), T

)
= l for some l > 1. (14)

Our interest is in counting the number of rational functions[
f(x)
g(x)

]
corresponding to Cases B, C, D where l = 1 in each

case and will carry out the count for the different cases
separately. Clearly the count for Case C and Case D is the

same, so it suffices to obtain a count for Cases B and C. We
begin with the count for Case C.

Case C Count For l|T , let us define uC(l) to be the number
of integer sets corresponding to Case C, i.e., the number of
integer sets, {ei | 0 ≤ ei ≤ d, 1 ≤ i ≤ r}, {aj | 0 ≤ aj ≤
d, 1 ≤ j ≤ s} where e1 > a1 and where in addition,

gcd
(
{ei − e1}ri=2, {aj − a1}sj=2, |e1 − a1|, T

)
= l. (16)

Our interest lies in computing uC(1) and we will do this using
Mobius inversion [6].

Let yC(l) be the number of integer sets {ei | 0 ≤ ei ≤
d, 1 ≤ i ≤ r}, {aj | 0 ≤ aj ≤ d, 1 ≤ j ≤ s} where e1 > a1

and where in addition,
• l|T ,
• l|(ei − e1) ∀ 2 ≤ i ≤ r,
• l|(aj − a1) ∀ 2 ≤ j ≤ s and
• l|(e1 − a1) .

It follows that

yC(l) =
∑

l′ : l|l′ |T

uC(l′). (17)

Set

ỹC(l) = yC(
T

l
),

ũC(l) = uC(
T

l
).

Then we can rewrite (17) in the form

ỹC(
T

l
) =

∑
l′ : l|l′ |T

ũC(
T

l′
),

=
∑

l′ :l′ |T and T
l′ |

T
l

ũC(
T

l′
),

i.e., for any divisor l of T ,

ỹC(l) =
∑
l′ |l

ũC(l
′
).

Our goal is to compute uC(1) = ũC(T ). Using Mobius
inversion allows us to write

uC(1) = ũC(T ) =
∑
l|T

ỹC

(
T

l

)
µ(l),

=
∑
l|T

yC(l)µ(l), (18)

where µ(·) is the Mobius function. The value of yC(l) can be
shown to be given by

yC(l) =

d∑
e1=0

{
qb

d−e1
l c+1 − 1

} b e1l c∑
c=1

{
qb

d−e1+cl
l c+1 − 1

}
. (19)

The count is really a count of the number of polynomials
with exponents given by the {ei, aj}. This follows from
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|C| =
1

T (q − 1)

∑
h(x)

∑
l|T

2

d−deg(h(x))∑
e1=0

{
qb

d−deg(h(x))−e1
l c+1 − 1

} b e1l c∑
c=1

{
qb

d−deg(h(x))−e1+cl
l c+1 − 1

}
+

d−deg(h(x))∑
e1=0

{
qb

d−deg(h(x))−e1
l c+1 − 1

}2

− (q − 1)2 (d− deg(h(x)) + 1)

µ(l)

 µ̂(h(x)). (15)

writing

f(x) =

r∑
i=1

fix
ei

= xe1

{
r∑
i=1

fix
(ei−e1)

}

= xe1

{
r∑
i=1

fiy
(ei−e1)

l

}
(where y = xl

)
= xe1f ′(x)

where f ′(x) is a polynomial of degree b (d−e1)
l c in y. This

explains the count on the left. The inside summation in (19)
above, does the same for the polynomials whose exponents
are the {aj} with a1 = (e1 − cl).

Since we are interested in counting the number of polyno-
mials

[
f(x)
g(x)

]
where f(x) is monic, we are interested in the

quantity uC(1)
(q−1) which can be computed by substituting for yC

from (19) into (18) and then dividing by (q − 1).
Case B Count An analogous argument can be used to show

that the corresponding expressions for yB(l), uB(1) in Case
B are given by

yB(l) =

d∑
e1=0

{
qb

d−e1
l c+1 − 1

}2

− (q − 1)2 (d+ 1) ,

uB(1) =
∑
l|T

yB(l)µ(l) (20)

in which the subtracted second term in the expression for
yB(l) ensures that the instances when both f(x) and g(x)
are monomials of the same degree are not counted.

Overall Count Putting together Cases B, C, D, we see that
the analogous expressions for y(l) and u(1) for the desired
overall count u(1) are given by

y(l) =

2

d∑
e1=0

{
qb

d−e1
l c+1 − 1

} b e1l c∑
c=1

{
qb

d−e1+cl
l c+1 − 1

}
+

d∑
e1=0

{
qb

d−e1
l c+1 − 1

}2

− (q − 1)2 (d+ 1) , (21)

u(1) =
∑
l|T

y(l)µ(l). (22)

The overall count is computed by substituting for y from (21)
into (22) and then dividing by (q − 1).

We next proceed to modify this count to ensure that f(x)
and g(x) are co-prime.

Let us set
N(d, T ) =

u(d, T, 1)

(q − 1)

where we have written u(d, T, 1) in place of u(1) to emphasize
that u is a function of both d, T as well. In the ensuing, it will
be found convenient to keep in mind that for any polynomial
h(x), the function

[
f(x)h(x)
g(x)h(x)

]
is sub-periodic iff the function[

f(x)
g(x)

]
is sub-periodic. Let h(x) be a fixed, monic polynomial

over Fq of degree s and let M(d, T, h(x)) denote the number
of polynomials satisfying

1) f and g are both non-zero and both of degree ≤ d,
2) f(x) is monic
3) f(x) = h(x)f

′
(x), g(x) = h(x)g

′
(x), for some f

′
(x),

g
′
(x),

4) (f
′
(x), g

′
(x)) are not sub-periodic, i.e., that

[f ′ (x)

g′ (x)

]
does

not satisfy (10) for any value of time shift parameter τ .
It is not hard to show that M(d, T, h(x)) is a function of the
polynomial h(x) only through its degree s and that moreover,

M(d, T, h(x)) = N(d− s, T ).

Let us also define M(d, T ) to be the set of all polynomials[
f(x)
g(x)

]
satisfying

1) f and g are both non-zero and both of degree ≤ d,
2) f(x) is monic
3) (f(x), g(x)) are not sub-periodic, i.e., that

[
f(x)
g(x)

]
does

not satisfy (10) for any value of time shift parameter τ
and in addition

4) (f, g) = 1 .
Then we can show that M(d, T ) is given by

M(d, T ) =
∑
h(x)

M(d, T, h(x))µ̂(h(x)),

=
∑
h(x)

N(d− deg(h(x)), T )µ̂(h(x)),

where the function µ̂ is as defined in (6) and where the
sum is over all monic polynomials h(x) ∈ Fq[x] of degree
≤ d. We can now define equivalence classes on the M(d, T )
functions that remain as before by defining the functions[
f(x)
g(x)

]
and 1

µf

[
f(βτx)
g(βτx)

]
to be equivalent and choosing precisely

one function from each equivalence class. Since there are no
sub-period functions, there are precisely T elements in each
equivalence class and thus the total number of code matrices
is then finally given by

M(d, T )

T
(23)
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and we have completed our count. This overall count is given
in (15).

It is relatively easy to verify that the autocorrelation function
is bounded above by 2d = κ for all nonzero time shifts
and that the crosscorrelation function is uniformly bounded
above by κ as well. The proof for asymptotic optimality for
construction R2 is given in Appendix F.

VI. NEW ASYMPTOTICALLY OPTIMAL CONSTRUCTIONS
BASED ON CONCATENATION

Consider a (Λ×T, ω, κ) 2-D OOC C under the requirement
that there is at most one pulse per wavelength (AM-OPPW).
We present two asymptotically optimal constructions that are,
in a sense, concatenation of a constant-weight binary code
and an OPPW code. We use this method to construct two new
AM-OPPW codes by composing a constant weight binary code
with code P1 (or R1).

Let Ccw be a constant weight binary {0, 1} code of maxi-
mum possible size having the following parameters: length=
Λ, weight= ω, and maximum inner product between any two
codewords ≤ κ. The size of Ccw is upper bounded by the
one-dimensional Johnson Bound:

| Ccw | ≤
⌊

Λ

ω

⌊
Λ− 1

ω − 1

⌊
Λ− 2

ω − 2
· · ·
⌊

Λ− κ
ω − κ

⌋⌋⌋⌋
.

The idea is to construct a 2-D OOC whose code arrays are
partitioned into | Ccw | subsets with each subset associated
to a distinct codeword in Ccw. Consider a codeword in Ccw
where the 1’s in this binary codeword, appear in the ω symbol
locations λ1, λ2, · · · , λw. We associate with this codeword, a
maximal collection of 2-D code arrays with MCP κ which are
such that only the wavelengths associated to rows λ1, · · · , λw
contain a pulse. No pulse is sent along any of the other
wavelengths. For any of the | Ccw | choices of ω wavelengths,
let us use a 2-D OOC Coppw with exactly one pulse per
wavelength.

It is easy to see that the composition of these two codes
forms a 2-D OOC code with parameters (Λ× T, ω, κ) of size
| Ccw | · | Coppw |.

Since the new code is AM-OPPW, the autocorrelation is 0
by Remark 1.

For crosscorrelation, consider two codewords Ca and Cb
from the new code. There are two possibilities: either both
Ca and Cb have originated from the same codeword (of the
constant weight binary code), or from different codewords. If
Ca and Cb correspond to the same codeword in the constant
weight binary code, then they have the same selection of rows
and hence, their crosscorrelation is the same as that of the
corresponding codewords from the 2-D OPPW code, which we
know is ≤ κ. If, on the other hand, Ca and Cb have originated
from two different codewords in the constant weight binary
code, then the maximum number of rows that can overlap
in these two codewords is bounded above by κ, and each
row can contribute a maximum of 1 collisions; hence, the
crosscorrelation is bounded above by κ.

Remark 6: One might think of using a Steiner system
instead of a constant weight binary code. The size of a

S(κ+1, ω,Λ) Steiner system (which is the same as a (κ+1)-
(Λ, ω, 1) t-design) is (

Λ
κ+ 1

)
(

ω
κ+ 1

) · (24)

This reduces to
Λ

ω

(
Λ− 1

ω − 1
· · ·
(

Λ− κ
ω − κ

))
· (25)

Note that every Steiner system is also a constant weight
binary code and hence satisfies the Johnson Bound for 1-D
codes with equality. However, Steiner systems do not exist for
all possible values of κ,Λ, ω. Hence, using constant weight
binary codes provides a more general construction.

A. Construction CP1: AM-OPPW, κ < ω ≤ Λ, T is prime

For the case when T is prime and ω ≤ T , a code
Coppw of maximum-possible size Tκ can be constructed using
construction P1. The overall size of the new 2-D OOC in this
case is given by

| Ccw | Tκ ≤ Tκ
⌊

Λ

ω

⌊
Λ− 1

ω − 1

⌊
Λ− 2

ω − 2
· · ·
⌊

Λ− κ
ω − κ

⌋⌋⌋⌋
.

Proposition 6: In the above construction, the resulting AM-
OPPW 2-D OOC is asymptotically optimal, if the constant
weight code is asymptotically optimal (in Johnson Bound).

For the proof, we refer the reader to Appendix G.
Example 2: In this example, we construct a (7 × 5, 3, 1)

AM-OPPW 2-D OOC. We first need to choose a constant
weight code of length 7, weight 3 and κ = 1. We know that
the Singer construction [3], [63] for OOCs has the desired
parameters and that its corresponding constant weight code is
optimal and consists of the following codewords:

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6},
{0, 4, 5}, {1, 5, 6}, {0, 2, 6}

Using construction P1 for OPPW 2-D OOC, we construct a
(3× 5, 3, 1) OPPW 2-D OOC of size 5. Concatenating these
two codes will result in a (7× 5, 3, 1) AM-OPPW 2-D OOC
of size 35, which is optimal by Proposition 3.

B. Construction CR1: AM-OPPW, ω ≤ Λ, κ < ω is even,
T = pm + 1

In a manner similar to the one described above, we compose
the OPPW construction R1 with a constant weight binary code.
The overall size of the new 2-D OOC is given by

| C |≤
(
c(κ′)

T
+ 1

)⌊
Λ

ω

⌊
Λ− 1

ω − 1

⌊
Λ− 2

ω − 2
· · ·
⌊

Λ− κ
ω − κ

⌋⌋⌋⌋
.

Proposition 7: In the above construction, the resulting AM-
OPPW 2-D OOC is asymptotically optimal, if the constant
weight code is asymptotically optimal (in Johnson Bound).

Proof: Using equation (63) of Appendix E, we see that

lim
Λ,T→∞

|C| ≥ Tκ, (26)
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which is the same as the number of codewords in construc-
tion P1. The rest of the proof follows from Appendix G.

λλλλ1111
λλλλ2222

λλλλ3333

λλλλ 1111
λλλλ 2222

λλλλ 3333 t1 t2 t3 t4 t5 t6 t7

Fig. 3. Example of Polarization Rotation Invariant OOC

VII. CODES EXPLOITING POLARIZATION

A third dimension that can be exploited to construct OOCs
is the polarization dimension. Light propagates along two
orthogonal polarization states. Under ideal conditions, these
two polarization states will be perceived as being orthogonal
at the receiver [64] despite polarization rotation.

If we can design codes with good correlation properties that
are resilient to both timing and polarization ambiguity, we can
use these codes, which we shall refer to as 3-D OOCs [62],
[65], to spread the signal in time, wavelength and polarization.

A 3-D (2×Λ×T, ω, κ) OOC C is a family of {0, 1} 2×Λ×T
arrays of constant weight ω. Every pair {A,B} of arrays in
C is required to satisfy:

2∑
p=1

Λ∑
λ=1

T−1∑
t=0

A(p, λ, t)B((p⊕2 τ1), λ, (t⊕T τ2)) ≤ κ (27)

where either A 6= B, τ1 6= 0 or τ2 6= 0. All the bounds of
Section III can be generalized to this class of OOCs.

Polarization Rotation Invariant Codes Construction: It
is of course possible to construct a 3-D OOC by starting from
a 1-D OOC and applying the Chinese Remainder Theorem
(CRT) [66]. When the 3-D code is constructed from a 2-D
code, however, then the transformation can be seen as a means
of reducing the required chip rate.

Let C be a (Λ × (2T ), ω, κ) 2-D OOC where T is an odd
integer. For every codeword in C, apply the CRT mapping
to each wavelength to spread that wavelength in time and
polarization. The CRT mapping is a one-to-one mapping
between a sequence and an array that preserves correlation
values. It follows that by making use of the two orthogonal
polarization states, we have in effect, reduced the needed chip
rate by half.

Fig. 3 shows an example of a 3-D OOC with 3 wavelengths,
7 time slots, weight 6 and κ = 1 constructed using the above
construction.

VIII. SEQUENCES FOR PHASE-ENCODED OCDMA

We now focus our attention to designing sequences for
phase-encoded OCDMA.

time time

Mode-locked laser 
with K locked 

modes
K tunable microresonators used as 
phase modulators for encoding the 

signal

φφφφ0 φφφφ1 φφφφ2 φφφφK-1 OOK 
Modulation

Shared

Channel

time time

−−−−φφφφ0−−−−φφφφ1−−−−φφφφ2−−−−φφφφK-1
OOK 

DeModulation

Data

Data

Fig. 4. Phase Encoding OCDMA system with Coherent Source.

The spectral encoding OCDMA system is harder to imple-
ment in comparison with direct-sequence OCDMA. That is
perhaps the reason why most studies on spectral encoding
systems have an implementation focus. There is not much
literature on the subject of spreading sequence design with
the exception of a few results on spectral amplitude encoding.

We first present a model of an asynchronous phase-encoded
OCDMA system, and then identify a metric reflective of the
amount of cross-correlation (other-user interference) in the
system. Based on this model, we formulate the sequence
design problem. As will be shown, this problem is closely
related to the PAPR (peak to average power ratio) problem
in OFDM [67]–[70]. Finally, in the next section, generalized
bent functions [71] are used to construct efficient spreading
sequences for an asynchronous system.

A. System Model

The system that we model in this section is a phase encoding
OCDMA system with coherent laser source. A diagram of this
system with a transmitter and receiver is shown in Fig. 4. The
typical laser sources used for coherent transmission are mode
locked lasers (MLL). The electrical field of a mode locked
laser can be written as

EMLL(t) = eiω0t
K−1∑
k=0

eik(∆ω)t . (28)

In this equation, K is the number of modes in the mode locked
laser, and ∆ω is the channel spacing between two consecutive
modes in the mode locked laser.

The output of the MLL is then passed through a phase
encoder. In our model, the phase encoder applies different
phase shifts to different modes of the MLL to spread it.
Conventionally, the phase masks used in this approach consist
of only {0, π} phase shifts. Recently, Stapleton et al. [72],
[73] showed that by using microdisk resonator technology,
any phase can be applied to the different modes of the MLL.
In light of this result, no restriction on the choice of phases is
considered in this paper. The output of the phase encoder is
of the form

EEnc(t) = eiω0t
K−1∑
k=0

ei(k(∆ω)t+φk) , (29)
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where φk is the phase shift that the encoder applies to the k-th
mode of the MLL. Upon OOK modulation with data bit d

ETr(t) = deiω0t
K−1∑
k=0

ei(k(∆ω)t+φk), d ∈ {0, 1} . (30)

At the receiver, the phase decoder applies the inverse phase
shift −φk to each mode k of the received signal

EDec(t) = deiω0t
K−1∑
k=0

ei(k(∆ω)t+φk−φk)

= deiω0t
K−1∑
k=0

eik(∆ω)t , (31)

which is the original signal in (28) modulated by data bit d.
After the phase decoder, a photo detector is used to detect the
intensity of the received signal

|EDec(t)|2 =

∣∣∣∣∣deiω0t
K−1∑
k=0

eik(∆ω)t

∣∣∣∣∣
2

= d

∣∣∣∣∣
K−1∑
k=0

eik(∆ω)t

∣∣∣∣∣
2

. (32)

If we sample this signal at time t = 0, then the received
signal will be dK2 and we can retrieve the transmitted data d
using a threshold detector [74], [75].

Remark 7: In this model, no noise source is considered.
This is because we wish to focus on the effect of multiple
access interference (MAI).

When there is more than one user transmitting data, the
receiver receives the superposition of the signals. Assume
that users m and n are transmitting data simultaneously
and asynchronously. Each user uses its own phase encoder
Φ(`) = {φ`0, φ`1, · · · , φ`K−1} where ` ∈ {m,n}. Let the time
difference between user m and n be denoted by τ (τ = 0 in
a synchronous system). The received signal is given by

E
(m)
Tr (t) + E

(n)
Tr (t+ τ) = d(m)eiω0t

K−1∑
k=0

ei(k(∆ω)t+φ
(m)
k ) +

d(n)eiω0(t+τ)
K−1∑
k=0

ei(k(∆ω)(t+τ)+φ
(n)
k ) .

The signal at the output of the phase decoder tuned to user
m takes on the form

d(m)eiω0t
K−1∑
k=0

ei(k(∆ω)t) +

d(n)eiω0(t+τ)
K−1∑
k=0

ei(k(∆ω)(t+τ)+(φ
(n)
k −φ

(m)
k )) .

The output of the photo detector of this receiver will be the
square of the magnitude of the above expression. As can
be seen, there is multiple access interference (MAI) at the
receiver output. Each transmitter-receiver pair is assumed to
operate synchronously, and consequently, the receiver samples

its output at time t = 0 to get

A =

∣∣∣∣∣d(m)K + d(n)eiω0τ
K−1∑
k=0

ei(k(∆ω)τ+(φ
(n)
k −φ

(m)
k ))

∣∣∣∣∣
2

= d(m)K2 + d(n)

∣∣∣∣∣
K−1∑
k=0

ei(k(∆ω)τ+(φ
(n)
k −φ

(m)
k ))

∣∣∣∣∣
2

+

2d(m)d(n)KRe

(
e−iω0τ

K−1∑
k=0

e−i(k(∆ω)τ+(φ
(n)
k −φ

(m)
k ))

)
. (33)

When d(n) = 0, there is no interference and we are back to
the single-user case. Hence, we assume d(n) = 1 from now.

Remark 8: In the synchronous τ = 0 case, if Φ(m) and
Φ(n) are Walsh-Hadamard sequences, (i.e., each {exp(iφ

(`)
k )}

is a sequence in a Walsh-Hadamard sequence family), the two
summations in (33) become zero, and there is no interference.
This is of course clearly not the case when τ 6= 0 (see Example
3 and Fig. 5).
Setting

Θnm(τ) =

K−1∑
k=0

e−i[k(∆ω)τ+(φ
(n)
k −φ

(m)
k )] , (34)

and noting that

| Re
(
e−iω0τΘnm(τ)

)
|≤ |Θnm(τ)| , (35)

we obtain

d(m)K2 + |Θnm(τ)|2 − 2d(m)K |Θnm(τ)| ≤ A
≤ d(m)K2 + |Θnm(τ)|2 + 2d(m)K |Θnm(τ)| . (36)

It follows that minimization of |Θnm(τ)| for all τ is a
reasonable criterion for signal design.

Remark 9: The above generalizes in a straightforward fash-
ion to the case of more than 2 users.

B. Connection with PAPR problem

Our objective is thus the design of sequences of length K
such that:

max
τ∈[0, 2π

∆ω )

∣∣∣∣∣
K−1∑
k=0

e−i[k(∆ω)τ+(φ
(n)
k −φ

(m)
k )]

∣∣∣∣∣ (37)

is minimized for every sequence pair {φ(n)
k }, {φ

(m)
k }. Equiv-

alently, we seek to minimize

max
τ∈[0,1)

∣∣∣∣∣
K−1∑
k=0

e−ik2πτe−i(φ
(n)
k −φ

(m)
k )]

∣∣∣∣∣ . (38)

The design of sequences with minimum PAPR (peak to
average power ratio) crops up in conjunction with signal
design for OFDM systems [67]–[70], [76]. Since designing for
low PAPR is hard, the common design approach is to design
for low PMEPR (peak-to-mean envelope power ratio), which
is more tractable. The PMEPR problem (see [70]) is one of
designing sequences {ak} that minimize :

max
τ∈[0,1)

∣∣∣∣∣ 1

K

K−1∑
k=0

ake
−ik2πτ

∣∣∣∣∣
2

. (39)
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As can be seen, in our problem, we are interested in phase
sequences Φ(m) and Φ(n) such that exp(−i(Φ(n) −Φ(m))) is
a sequence with good PMEPR.

The results in [70] as applied to the present situation are
stated below. Let

M
(K)
d = max

j=0,··· ,K−1

∣∣∣∣∣
K−1∑
k=0

e−ik2π( jK )e−i(φ
(n)
k −φ

(m)
k )]

∣∣∣∣∣ (40)

and

M (K)
c = max

τ∈[0,1)

∣∣∣∣∣
K−1∑
k=0

e−ik2πτe−i(φ
(n)
k −φ

(m)
k )]

∣∣∣∣∣ . (41)

From [70], we know
Theorem 8: M (K)

d ≥
√
K .

Theorem 9: For K > 3:
2

π
lnK + 0.603− 1

6K
< max

FK(t)

{
Mc(FK)

Md(FK)

}
<

2

π
lnK + 1.132 +

3

K
(42)

in which

FK(t) =

K−1∑
k=0

ake
2πikt such that

K−1∑
k=0

|ak|2 = K (43)

and

Md(FK) = max
j=0,...,K−1

∣∣∣∣FK ( j

K

)∣∣∣∣ ,
Mc(FK) = max

t∈[0,1)
|FK (t)| .

The implication of Theorem 9 is that, if we design se-
quences with good asynchronous properties for all the j

K
samples of τ , it is guaranteed that the same sequence has
good asynchronous properties for all values of τ .

IX. SEQUENCE CONSTRUCTIONS BASED ON BENT
FUNCTIONS

In this section we use generalized bent functions to design
sequences with good asynchronous properties. Some prelim-
inaries on generalized bent functions that we will use are
introduced in the first subsection.

A. Generalized Bent Functions

Definition 1: [71] Let Zmq denote the set of m-tuples with
elements drawn from the set of integers modulo q, w = ei(

2π
q )

and g a complex-valued function defined on Zmq . The Fourier
transform of g is then defined to be the function G given by:

G(λ) =
1√
qm

∑
x∈Zmq

g(x)w−λ
T x, λ ∈ Zmq . (44)

Definition 2: [71] A function f , f : Zmq → Zq is said to
be bent if all the Fourier transform coefficients of wf have
unit magnitude.

Theorem 10: [71] Every affine or linear translate of a bent
function is also bent.
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Fig. 5. An Example of Walsh-Hadamard Sequences with K = 8.

Theorem 11: [71] Let q be odd. Then the function f over
Zq defined by:

f(k) = k2 + ck all k ∈ Zq . (45)

is bent for all c ∈ Zq .

B. New Construction 1

Proposition 12: Let

Φ =
{

Φ(`) | Φ(`) = {φ`0, φ`1, · · · , φ`K−1}, ` ∈ {1, 2, · · · , L}
}

be a family of phase sequences such that the difference
sequence is associated to a bent function, i.e.,

Φ(n) − Φ(m) =
2π

K
(f(0), f(1), · · · , f(K − 1)), n 6= m

where f(x) is a bent function over ZK . Then max |Θnm(τ)|
is as small as it can possibly be over multiples τ of 2π

K(∆ω) ,
and thus these phase sequences are suitable for use in asyn-
chronous phase-encoded OCDMA systems.

For the proof, we refer the reader to Appendix H
Proposition 13: The following phase sequences have the

minimum possible value of max |Θnm(τ)| property to be used
for asynchronous phase encoding OCDMA systems with K
modes, where K is an odd prime:

φ
(m)
k = (k3 + amk

2 + bmk + cm)
2π

K
,

am, bm, cm ∈ ZK ; m 6= n : am 6= an; K a prime > 2.

For the proof, we refer the reader to Appendix I
Example 3: Fig. 5 shows the application of Walsh-

Hadamard sequences for asynchronous systems. In this graph,
K = 8, ω0 = π

4 , ∆ω = π
10 , Φ(m) = (0, 0, 0, 0, 0, 0, 0, 0) and

Φ(n) = (π, π, π, π, 0, 0, 0, 0). In this figure, the output of the
MLL as it is seen after the photo detector is denoted by the
graph that has a maxima above 60 (this curve is lighter in
the print and is red colored in the soft copy). The other curve
with a maxima just above 30 (which is darker in print and is
blue colored in the soft copy) shows |Θnm(τ)|2 at the output.
As can be seen, the system has no interference for τ = 0
(synchronous case). However, even for small deviations from
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Fig. 6. An Example of application of Proposition 12 with K = 7.

τ = 0, |Θnm(τ)|2 increases significantly. Because of the high
peak of |Θnm(τ)|2, these phase sequence are not suitable for
asynchronous transmission.

Example 4: Fig. 6 shows the application of the construction
of Proposition 13, where K = 7, ω0 = π

4 , ∆ω = π
10 ,

(am, bm, cm) = (2, 5, 3) and (an, bn, cn) = (5, 4, 1). For this
system Φ(m) = ( 6π

7 ,
8π
7 ,

2π
7 , 0, 0, 0,

12π
7 ) and

Φ(n) = ( 2π
7 ,

8π
7 ,

4π
7 ,

2π
7 , 0,

10π
7 , 2π

7 ). In this figure, the output
of the MLL as seen after the photo detector is denoted by the
curve that has its maxima around 50 (lighter curve in print,
which is colored red in the soft copy). The other curve with
maxima around 15 (darker curve in print, which is colored
blue in the soft copy) shows |Θnm(τ)|2 at the output. Here,
the circles are samples of |Θnm(τ)|2 for τ = 2πj

K(∆ω) . As can
be seen, all these values are equal to 7. It can be observed that
|Θnm(τ)|2 is low for all values of τ and the phase sequences
are thus applicable for asynchronous transmission.

C. New Construction 2

The second construction is based on the following family
of bent functions.

Theorem 14: [77] Let q be an integer which is neither the
product of distinct primes nor equal to 2 modulo 4. Then the
function f(·) over Zq , defined by

f(k + 1) = f(k) + ak, ∀k, ak ∈ Zq, f(0) ∈ Zq (46)

is bent if the integers ak satisfy the dual conditions:
K−1∑
k=0

ak = 0 (mod s), (47)

ak+ns = ak + c1ns (mod q), ∀k ∈ Zs,∀n ∈ Zq/s, (48)

where c1 is any integer relatively prime to q and s is any
integer greater than one that has the same parity as q and
whose square divides q.

Let g(k) be a second bent function over Zq such that

g(k + 1) = g(k) + bk, ∀k, bk ∈ Zq, g(0) ∈ Zq (49)

and
K−1∑
k=0

bk = 0 (mod s), (50)
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Fig. 7. An Example of Application of Proposition 15 with q = 9.

bk+ns = bk + c2ns (mod q), ∀k ∈ Zs,∀n ∈ Zq/s, (51)

where c2 is any integer relatively prime to q.
Proposition 15: Let h(k) = f(k)−g(k) be a function over

Zq . Then h(k) is a bent function in Zq if c1− c2 is relatively
prime to q.

For the proof, we refer the reader to Appendix J.
Corollary 16: Let q = Πn

j=1pj
rj such that pmin =

min {pj}nj=1, where pj is a prime number. Then the maximum
size is pmin − 1.

Proof: Suppose maximum size ≥ pmin. Then ci and cj
will exist such that

ci = cj (mod pmin).

Hence, we can say that pmin divides ci − cj . Hence, ci − cj
is not relatively prime to q, which is a contradiction.

Corollary 17: Let q = pr, where p is a prime and r ≥ 2.
Then the maximum size is p− 1.

Proof: Follows from above.
Example 5: Fig. 7 shows the application of the construction

of Proposition 15, where p = 3, r = 2, s = 2, q = pr = 9,
ω0 = π

4 , ∆ω = π
10 , (a0, a1, a2) = (1, 3, 5) and (b0, b1, b2) =

(3, 5, 7). For this system, f(0) = 1 and g(0) = 1. In this
figure, the output of the MLL as it is seen after the photo
detector is denoted by the graph that has its maxima around
80 (continuous curve, which is colored red in the soft copy).
The dotted curve with its maxima around 20 (colored blue in
the soft copy) shows |Θnm(τ)|2 at the output. Here, the small
circles around 10 are the samples of |Θnm(τ)|2 for τ = 2πj

q(∆ω) .
As can be seen, all these values are equal to 9. It can be
observed that |Θnm(τ)|2 is low for all values of τ and hence
these phase sequences are good for asynchronous transmission.

X. CONCLUSION

In this paper, we presented 9 families of 2-D OOCs. One
of these families is optimal and the rest are asymptotically
optimal with respected to the Johnson bound or with respect
to the new bounds proposed in this paper. A novelty of
our constructions is the large size. This was achieved by
constructing optimal families for large values of the MCP since
the optimal family size increases exponentially in the MCP.
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APPENDIX A
NONBINARY JOHNSON BOUND

(Proof of Proposition 2)

The proof is along the lines of the proof of the Johnson
bound in the case of binary codes.

Assume a constant weight (Λ, ω, κ) code C of size
AT (Λ, ω, κ). If we arrange all the codewords along the rows
of a matrix, the total weight of the matrix is ωAT (Λ, ω, κ),
and thus each non-zero symbol is repeated on an average
ωAT (Λ,ω,κ)

T times. Thus, there is a symbol α which occurs
at least ωAT (Λ,ω,κ)

T times, and this symbol is repeated on an
average ωAT (Λ,ω,κ)

ΛT times in each column. It follows that there
exists a column c with at least ωAT (Λ,ω,κ)

ΛT occurrences of the
symbol α. However, the number of occurrences of α in column
c cannot exceed AT (Λ−1, ω−1, κ−1). This is because if we
select all the rows containing α in column c, and then delete
this column c from all these rows, we will obtain a constant-
weight code of length Λ− 1 and weight ω− 1 with Hamming
correlation ≤ κ− 1.

It must therefore be that:
ωAT (Λ, ω, κ)

ΛT
≤ AT (Λ− 1, ω − 1, κ− 1)

⇒ AT (Λ, ω, κ) ≤
⌊

ΛT

ω
AT (Λ− 1, ω − 1, κ− 1)

⌋
. (52)

By repeating this procedure recursively κ times, we arrive
at:

AT (Λ, ω, κ) ≤ (53)⌊
TΛ

ω

⌊
T (Λ − 1)

ω − 1
· · ·

⌊
T (Λ − κ+ 1)

ω − κ+ 1
AT (Λ − κ, ω − κ, 0)

⌋⌋⌋
.

The proof is then completed by noting that

AT (Λ− κ, ω − κ, 0) ≤
⌊

(Λ− κ)T

ω − κ

⌋
. (54)

To see this, let us arrange all the codewords of a (Λ −
κ, ω−κ, 0) constant weight code C along the rows of a matrix.
To satisfy the constraint of zero Hamming correlation, each
alphabet can occur only once in each column. Thus, there
are at most T non-zero entries in each column. Since there
are Λ − κ different columns, the entire matrix can have at
most (Λ−κ)T non-zero entries. On the other hand, each row
has exactly ω − κ non-zero entries, so that there are at most⌊

(Λ−κ)T
ω−κ

⌋
rows in the matrix and the assertion is proved.

APPENDIX B
BOUND ON AM-OPPW CODE SIZE

(Proof of Proposition 3)

Let C be an AM-OPPW 2-D OOC of size Φ(Λ× T, ω, κ).
Create a code C′ that consists of all T columnar cyclic shifts
of each code in C. This code is of size Φ′(Λ × T, ω, κ) =
TΦ(Λ× T, ω, κ).

By identifying each row of a code matrix in C′ having a 1 in
the t-th column with the symbol t belonging to {1, 2, . . . , T},
and a blank row with the symbol 0, we obtain from the 2-D

OOC, a 1-D constant weight code over the alphabet ZT+1.
This 1-D constant weight code has parameters (Λ, ω, κ) and
is of size Φ′(Λ× T, ω, κ) over an alphabet of size T + 1.

It follows from our bound above in Proposition 2 that

Φ′(Λ× T, ω, κ) ≤
⌊
TΛ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋

⇒ Φ(Λ×T, ω, κ) ≤
⌊

1

T

⌊
TΛ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋⌋

≤
⌊

Λ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋
.

APPENDIX C
ASYMPTOTIC OPTIMALITY OF CONSTRUCTION P2

The number of codewords in this code are

1

T

∑
d|(Λ−1)

(
Λd

κ+1
d e − 1

)
µ(d).

Consider the largest term in the summation - this corre-
sponds to d = 1 and evaluates to

Λκ+1 − 1

T
.

Hence, the total number of codewords |C| is given by

|C| = Λκ+1 − 1

T
+

1

T

∑
d|(Λ−1), d>1

(
Λd

κ+1
d e − 1

)
µ(d).

For Λ and T tending to infinity, we get

lim
Λ,T→∞

|C| ≥ Λκ+1

T
. (55)

Since ω = T for this construction, the two-dimensional
Johnson bound given by Theorem 1 specializes to

Φ(Λ× T, ω, κ) ≤
⌊

Λ

T

⌊
ΛT − 1

T − 1
· · ·
⌊

ΛT − κ
T − κ

⌋⌋⌋
≤ Λ

T

(
ΛT − 1

T − 1
· · ·
(

ΛT − κ
T − κ

))
.

For Λ and T tending to infinity, we get

lim
Λ,T→∞

Φ(Λ× T, ω, κ) ≤ Λ

T

(
ΛT

T
· · ·
(

ΛT

T

))
=

Λκ+1

T
. (56)

From (55) and (56), we can see that construction P2 is
asymptotically optimal. The proof for asymptotic optimality
of constructions P4 and P5 is along similar lines, since the
expression for the total number of codewords is similar.
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APPENDIX D
ASYMPTOTIC OPTIMALITY OF CONSTRUCTION P3

The number of codewords |C| in this code are

|C| =
(T + 1)κ+1 − 1

T

≥ Tκ+1 − 1

T
.

When Λ and T tend to infinity, we get

lim
Λ,T→∞

|C| ≥ Tκ+1

T
= Tκ. (57)

Since this construction is AM-OPPW, we use the bound
given by Proposition 3 to get

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋
≤ Λ

ω

(
T (Λ− 1)

ω − 1
· · ·
(
T (Λ− κ)

ω − κ

))
=

Λ

Λ− κ

(
T (Λ− 1)

Λ− κ− 1
· · ·
(
T (Λ− κ)

Λ− κ− κ

))
since ω = Λ− κ. When Λ and T tend to infinity, we get

lim
Λ,T→∞

Φ(Λ× T, ω, κ) ≤ Λ

Λ

(
TΛ

Λ
· · ·
(
TΛ

Λ

))
= Tκ. (58)

Comparing (57) and (58), we can see that this construction
is asymptotically optimal.

APPENDIX E
ASYMPTOTIC OPTIMALITY OF CONSTRUCTION R1

The number of codewords |C| in this code is

|C| = c(κ′)

T
+ 1,

where

c(κ′) =

{
q2κ′+1 − q, κ′ = 1, 2, 3, 4, 5, 6

≥ q2κ′+1 − q2κ′−6

7 , κ′ ≥ 7.

We consider the two cases separately: κ′ ≤ 6 and κ′ ≥ 7.
For κ′ ≤ 6, we have

|C| =
c(κ′)

T
+ 1

≥ c(κ′)

T
(59)

=
q2κ′+1 − q

T

=
(T − 1)2κ′+1 − T + 1

T
.

In the limit Λ, T tending to infinity, we get

lim
Λ,T→∞

|C| ≥ T 2κ′

= Tκ. (60)

For κ′ ≥ 7, we have

|C| =
c(κ′)

T
+ 1

≥ c(κ′)

T
(61)

≥
q2κ′+1 − q2κ′−6

7

T

=
(T − 1)2κ′+1 − (T−1)2κ′−6

7

T
.

In the limit Λ, T tending to infinity, we get

lim
Λ,T→∞

|C| ≥ T 2κ′

= Tκ. (62)

We can see that (60) and (62) are the same. Hence,

lim
Λ,T→∞

|C| ≥ Tκ (63)

for all values of κ′, i.e., for all even values of κ.
The two-dimensional Johnson bound given by Theorem 1

is

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
ΛT − 1

ω − 1
· · ·
⌊

ΛT − κ
ω − κ

⌋⌋⌋
≤ Λ

ω

(
ΛT − 1

ω − 1
· · ·
(

ΛT − κ
ω − κ

))
=

Λ

Λ

(
ΛT − 1

Λ− 1
· · ·
(

ΛT − κ
Λ− κ

))
since ω = Λ for this construction. In the limit Λ, T tending

to infinity, we get

lim
Λ,T→∞

Φ(Λ× T, ω, κ) ≤ Tκ. (64)

By comparing (63) and (64), we can see that this construc-
tion is asymptotically optimal.

APPENDIX F
ASYMPTOTIC OPTIMALITY OF CONSTRUCTION R2

The number of codewords |C| in this code is

|C| =
M(d, T )

T

=
1

T

∑
h(x)

µ̂(h(x))N(d− deg(h(x)), T ).

Note that N(·) is an increasing function in its first argument,
which gets maximized when the degree of h(x) is 0. Moreover,
for h(x) = 1, µ̂(h(x)) achieves its maximum value of 1. Since
the summation above is greater than the largest term of the
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summation (which corresponds to h(x) = 1), we conclude
that

|C| ≥ 1

T
N(d, T ).

Since we are interested in proving the asymptotic optimality,
it is sufficient to work with the highest order term. Substituting
the value of N(·), the above sum simplifies to

|C| ≥ u(1)

T (q − 1)
.

From the definition of u(1) in (22), we notice that its
maximum term corresponds to l = 1. This is so because
y(·) decreases exponentially with l. Moreover, µ(l) attains its
maximum value of 1 for l = 1. Substituting the value of (the
largest term in the summation of) u(1) from (22) into the
above summation, we get

|C| ≥ y(1)

T (q − 1)
. (65)

We now compute an approximation for y(1) and then
substitute it back in the above inequality. We do this by
substituting l = 1 in (22) to get the following approximation
for y(1)

2

d∑
e1=0

{
qd−e1+1 − 1

} e1∑
c=1

{
qd−e1+c+1 − 1

}
+

d∑
e1=0

{
qd−e1+1 − 1

}2
.

Each summation in this expression is a geometric progres-
sion. Summing the series and approximating (by neglecting
the lower-order terms in the summation), we get

2qd+1qd+1 + q2d+2.

Substituting this value of y(1) into (65), we get

|C| ≥ 3q2d+2

T (q − 1)

=
3(Λ− 1)κ+2

TΛ

≥ Λκ+1

T
. (66)

Comparing this with (56), we see that construction R2 is
asymptotically optimal.

APPENDIX G
ASYMPTOTIC OPTIMALITY OF CONSTRUCTION CP1

(Proof of Proposition 6)

⌊
Λ

ω

⌊
Λ− 1

ω − 1

⌊
Λ− 2

ω − 2
· · ·
⌊

Λ− κ
ω − κ

⌋⌋⌋⌋
≥(

Λ

ω

(
Λ− 1

ω − 1

(
Λ− 2

ω − 2
· · ·
(

Λ− κ
ω − κ

− 1

)
· · · − 1

)
− 1

)
− 1

)
⇒ lim

Λ→∞

⌊
Λ

ω

⌊
Λ− 1

ω − 1

⌊
Λ− 2

ω − 2
· · ·
⌊

Λ− κ
ω − κ

⌋⌋⌋⌋
≥

Λκ+1

ω(ω − 1) · · · (ω − κ)

⇒ lim
Λ→∞

| Ccw | Tκ ≥
TκΛκ+1

ω(ω − 1) · · · (ω − κ)
.

On the other hand, from the bound in Proposition 3:

Φ(Λ× T, ω, κ) ≤
⌊

Λ

ω

⌊
T (Λ− 1)

ω − 1
· · ·
⌊
T (Λ− κ)

ω − κ

⌋⌋⌋
≤

Λ

ω

T (Λ− 1)

ω − 1
· · · T (Λ− κ)

ω − κ
≤ TκΛ(Λ− 1) · · · (Λ− κ)

ω(ω − 1) · · · (ω − κ)

⇒ lim
Λ→∞

Φ(Λ× T, ω, κ) ≤ TκΛκ+1

ω(ω − 1) · · · (ω − κ)
,

which establishes what we need to prove.

APPENDIX H
PROOF OF PROPOSITION 12

∣∣∣∣Θnm

(
2πj

K(∆ω)

)∣∣∣∣ =

∣∣∣∣∣
K−1∑
k=0

e−i[k(∆ω) 2πj
K(∆ω)

+
2πf(k)
K ]

∣∣∣∣∣ =

∣∣∣∣∣
K−1∑
k=0

e−i
2π
K jke−i

2π
K f(k)

∣∣∣∣∣ =

∣∣∣∣∣
K−1∑
k=0

w−jkw−f(k)

∣∣∣∣∣ = F (j),

where w = ei
2π
K . Since the function f(x) is a bent function:

1√
K
F (j) = 1⇒ F (j) =

√
K

so for all j,
∣∣∣Θnm( 2πj

K(∆ω) )
∣∣∣ =
√
K, and by Theorem 8 this

is the minimum value
∣∣∣Θnm( 2πj

K(∆ω) )
∣∣∣ can take.

By Theorem 9, this sequence is good for all values of τ .

APPENDIX I
PROOF OF PROPOSITION 13

For any two different sets of phases Φ(n),Φ(m) from the
given set of phase sequences, we have

φ
(m)
k = (k3 + amk

2 + bmk + cm)
2π

K

and
φ

(n)
k = (k3 + ank

2 + bnk + cn)
2π

K
.

So

φ
(n)
k − φ(m)

k =(
(an − am)k2 + (bn − bm)k + (cn − cm)

) 2π

K
.
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Since we assume an 6= am, it implies that

(an − am)k2 + (bn − bm)k + (cn − cm)

is a bent function by Theorems 10 and 11. So the given set
of sequences satisfies the conditions of Proposition 12 and is
good to be used with asynchronous phase encoding sequences.

For any two different set of phases Φ(i),Φ(j) from the above
set of phases, we have: φ(i)

k = (k3 + aik
2 + bik + ci)

2π
K and

φ
(j)
k = (k3 + ajk

2 + bjk + cj)
2π
K . Then

φ
(i)
k − φ

(j)
k =

(
(ai − aj)k2 + (bi − bj)k + (ci − cj)

) 2π

K
. (67)

Since we assume ai 6= aj , it implies that (ai − aj)k2 + (bi −
bj)k + (ci − cj) is a bent function by Theorems 10 and 11.
Hence, ∣∣∣∣∣ 1√

K

K−1∑
k=0

w(ai−aj)k2+(bi−bj)k+(ci−cj)wλk

∣∣∣∣∣ = 1,

w = ei(
2π
K ), λ = 0, 1, . . . ,K − 1

⇒

∣∣∣∣∣
K−1∑
k=0

ei[(ai−aj)k
2+(bi−bj)k+(ci−cj)]( 2π

K )ei(
λ2π
K )k

∣∣∣∣∣ =
√
K

⇒

∣∣∣∣∣
K−1∑
k=0

ei(
λ2π
K )kei(φ

(i)
k −φ

(j)
k )

∣∣∣∣∣ =
√
K. (68)

So |Θnm(τ)| for all τ = λ2π
K is equal to

√
K. Using

Theorem 8 we have met M (K)
d . In addition, using Theorem

9, we can conclude that |Θnm(τ)| is almost equal to
√
K for

all values of τ . So the sequences described above are good
asynchronous phase encoding OCDMA sequences.

APPENDIX J
PROOF OF PROPOSITION 15

We know that

h(k) = f(k)− g(k)

⇒ h(k + 1) = f(k + 1)− g(k + 1).

Using equations (46) and (49), we get

h(k + 1) = (f(k) + ak)− (g(k) + bk)

= (f(k)− g(k)) + (ak − bk) .

Hence, we can say that

h(k + 1) = h(k) + pk,

where pk = ak − bk.
For h(k) to be bent, pk should satisfy the dual conditions.

Consider

K−1∑
k=0

pk =

K−1∑
k=0

(ak − bk)

=

K−1∑
k=0

ak −
K−1∑
k=0

bk.

From equations (47) and (50), we know that both these sums
are equal to 0, and so is the difference.

We next need to show that pk satisfies the second condition:

pk+ns = ak+ns − bk+ns. (69)

Using equations (48) and (51), the above equation can be
rewritten as

pk+ns = (ak + c1ns(mod q))− (bk + c2ns(mod q))

= (ak − bk) + (c1 − c2)ns(mod q)

= pk + (c1 − c2)ns(mod q).

Hence, pk satisfies the dual conditions provided that c1 c2
is relatively prime to q. Hence, h(k) is a bent function. Hence,
the given set of sequences satisfies the condition of Proposition
12 and is good to be used with asynchronous phase-encoded
OCDMA.
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[42] L. Tančevski, I. Andonovic, M. Tur, and J. Budin, “Massive optical
LANs using wavelength hopping/time spreading with increased secu-
rity,” IEEE Photon. Technol. Lett., vol. 8, pp. 935–937, July 1996.

[43] G. C. Yang and W. C. Kwong, “Two-dimensional spatial signature
patterns,” IEEE Trans. Communications, vol. 44, pp. 184–191, Feb.
1996.

[44] H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast
frequency-hop CDMA communications system,” IEEE Journal of Light-
wave Tech., vol. 17, pp. 397–405, Mar. 1999.

[45] A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, and
J. M. Morookian, “Strategies for realizing optical CDMA for dense,
high-speed, long span, optical network applications,” IEEE Journal of
Lightwave Tech., vol. 168, pp. 1685–1695, Dec. 2000.

[46] R. M. H. Yim, L. R. Chen, and J. Bajcsy, “Design and performance
of 2-D codes for wavelength-time optical CDMA,” IEEE Photon. Tech-
nol. Lett., vol. 14, pp. 714–716, May 2002.

[47] A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett, and
W. J. Lennon, “Design and performance analysis of wavelength/time
(W/T) matrix codes for optical CDMA,” IEEE Journal of Lightwave
Tech., vol. 21, pp. 2524–2533, Nov. 2003.

[48] W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family
of 2D variable-weight optical orthogonal codes for OCDMA systems
supporting multiple QoS and analysis of its performance,” Photonic
Network Communications, vol. 16, no. 1, pp. 53–60, 2008.

[49] K. Yu and N. Park, “Design of new family of two-dimensional
wavelength-time spreading codes for optical code division multiple
access networks,” Electronics Letters, vol. 35, no. 10, pp. 830–831, 1999.

[50] W. Kwong, G. Yang, and Y. Liu, “A new family of wavelength-
time optical CDMA codes utilizing programmable arrayed waveguide
gratings,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 8, pp. 1564–1571, 2005.

[51] F. Gu and J. Wu, “Construction of two-dimensional wavelength/time
optical orthogonal codes using difference family,” IEEE Journal of
Lightwave Tech., vol. 23, no. 11, pp. 3642–3652, 2005.

[52] C. Chang, G. Yang, and W. Kwong, “Wavelength-time codes with
maximum cross-correlation function of two for multicode-keying optical
CDMA,” IEEE Journal of Lightwave Tech., vol. 24, no. 3, pp. 1093–
1100, 2006.

[53] M. Morelle, C. Goursaud, A. Julien-Vergonjanne, C. Aupetit-
Berthelemot, J. Cances, J. Dumas, and P. Guignard, “2-Dimensional
optical CDMA system performance with parallel interference cancela-
tion,” Microprocessors and Microsystems, vol. 31, no. 4, pp. 215–221,
2007.

[54] J. Lin, J. Jhou, K. Lee, and J. Wen, “Construction and performance anal-
ysis of 2-D codes for M-ary OFFH-CDMA systems,” Communications,
IET, vol. 1, no. 1, pp. 113–121, 2007.

[55] G. C. Yang, W. C. Kwong, and C. Y. Chang, “Multiple-wavelength
optical orthogonal codes under prime-sequence permutations,” IEEE
International Symposium on Information Theory 2004, p. 367, Sept.
2004.

[56] A. Lempel and H. Greenberger, “Families of sequences with opti-
mal hamming correlation properties,” IEEE Trans. Information Theory,
vol. 20, pp. 90–94, Jan. 1974.

[57] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
Spectrum Communications Handbook. McGraw-Hill, Inc., 2002.

[58] G. Einarsson, “Address assignment for a time-frequency-coded, spread-
spectrum system,” Bell System Tech. Journal, vol. 59, pp. 1241–1255,
Sept. 1980.

[59] P. V. Kumar, “Frequency-hopping code sequence design having large
linear span,” IEEE Trans. Information Theory, vol. 34, pp. 146–151,
Jan. 1988.

[60] D. V. Sarwate, “Reed-Solomon codes and the design of sequences
for spread-spectrum multiple-access communications,” in Reed-Solomon
Codes and Their Applications (S. B. Wicker and V. K. Bhargava, eds.),
Piscataway, NJ: IEEE Press, 1994.

[61] O. Moreno and S. V. Maric, “A new family of frequency-hop codes,”
IEEE Trans. Communications, vol. 48, pp. 1241–1244, Aug. 2000.

[62] S. Kim, K. Yu, and N. Park, “A new family of space/wavelength/time
spread three-dimensional optical code for OCDMA networks,” IEEE
Journal of Lightwave Tech., vol. 18, no. 43, pp. 502–511, 2000.

[63] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Trans. Amer. Math. Soc., vol. 43, pp. 377–385, May
1938.

[64] J. E. McGeehan, S. Nezam, P. Saghari, A. Willner, R. Omrani, and P. V.
Kumar, “Experimental demonstration of OCDMA transmission using a
three-dimensional (time-wavelength-polarization) codeset,” IEEE Jour-
nal of Lightwave Tech., vol. 23, pp. 3282–3289, Oct. 2005.

[65] J. McGeehan, S. Nezam, P. Saghari, T. Izadpanah, A. Willner, R. Om-
rani, and P. V. Kumar, “3D time-wavelength-polarization OCDMA



23

coding for increasing the number of users in OCDMA LANs,” Optical
Fiber Communication Conference 2004, vol. 2, p. 3, Feb. 2004.

[66] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to
the Theory of Numbers. India: John Wiley & Sons, 2008.

[67] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Go-
lay complementary sequences, and Reed-Muller codes,” IEEE Trans. In-
formation Theory, vol. 465, pp. 2397–2417, Nov. 1999.

[68] K. G. Paterson and V. Tarokh, “On the existence and construction of
good codes with low peak-to-average power ratios,” IEEE Trans. Infor-
mation Theory, vol. 46, pp. 1974–1987, 2000.

[69] K. G. Paterson, “Sequences for OFDM and multi-code CDMA: two
problems in algebraic coding theory,” Proc. of SETA 2001, Lecture Notes
in Computer Science, pp. 46–71, 2002.

[70] S. Litsyn and A. Yudin, “Discrete and continuous maxima in multicarrier
communication,” IEEE Trans. Information Theory, vol. 51, pp. 919–928,
Mar. 2005.

[71] P. V. Kumar, R. A. Scholtz, and L. R. Welch, “Generalized bent functions
and their properties,” Journal of Combinatorial Theory, Series A, vol. 40,
pp. 90–107, 1985.

[72] A. Stapleton, R. Shafiiha, H. Akhavan, S. Farrell, Z. Peng, S. J.
Choi, W. Marshal, J. D. O’Brien, and P. D. Dapkus, “Experimental
measurement of optical phase in microdisk resonators,” in IEEE/LEOS
Summer Topical Meetings, pp. 54–55, June 2004.

[73] A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S. Choi,
J. OBrien, P. Dapkus, and W. Marshall, “Optical phase characterization
of active semiconductor microdisk resonators in transmission,” Applied
Physics Letters, vol. 88, 2006.

[74] P. Smith, “Mode-locking of lasers,” Proceedings of the IEEE, vol. 58,
no. 9, pp. 1342 – 1357, 1970.

[75] V. Hernandez, Y. Du, W. Cong, R. Scott, K. Li, J. Heritage, Z. Ding,
B. Kolner, and S. Yoo, “Spectral phase-encoded time-spreading (spects)
optical code-division multiple access for terabit optical access networks,”
Lightwave Technology, Journal of, vol. 22, no. 11, pp. 2671 – 2679,
2004.

[76] S. Litsyn, Peak Power Control in Multicarrier Communications. Cam-
bridge University Press, 2007.

[77] H. Chung and P. V. Kumar, “A new general construction for generalized
bent functions,” IEEE Trans. Information Theory, vol. 35, pp. 206–209,
Jan 1989.


