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Abstract—The processing of nowadays wireless com-
munication standards requires the design of Software
Defined Radio platforms to minimize area and costs.
One interesting use case can be found in the automotive
industry where the multimodal processing of the DAB and
802.11p standards are of major interest. In this paper,
we analyze their resource consumption on the OpenAir-
Interface platform and show that both standards fulfill
their realtime requirements. Based on a detailed runtime
analysis, we will also give guidelines for a sophisticated
scheduling algorithm.

I. INTRODUCTION

Today, the increasing number of wireless standards
in mobile communications requires the design of high
performance technologies supporting nowadays and fu-
ture standards. Therefore, highly configurable Software
Defined Radio (SDR) platforms are needed, which are
able to cope with the challenging task of multimodal
standard processing. For industry, SDR platforms are
of high interest as only one hardware architecture is
designed that acts as a transceiver for a wide range of
different standards. Thus, hardware cost and integrational
complexity are reduced compared to former technolo-
gies.

One interesting use case of such platforms can be
found in the automotive industry. The combination of
local environment data and traffic data enables not only
new safety functions like informing the driver about
critical situations within its local environment, but also
keeps him up to date with regional traffic information.
Standards of interest are Car-to-Car/Infrastructure com-
munication (IEEE 802.11p [1]) and TPEG information
(Digital Audio Broadcasting, ETSI-DAB [2]). A major
project in this domain is the German SimTD project [3]
where Car-to-X communication is implemented not only
on the PHY but also on the MAC layer. Furthermore
this project includes a real test case using cars, traffic

lights, etc. In contrast to our approach, the transceivers
for DAB and 802.11p are separated, thus facilitating
the implementation of the standards as no sophisticated
resource management is needed.

The necessary task scheduling on SDR platforms is
still an open research topic. For its design, it is of main
importance to have performance key figures at hand.
Their interpretation in order to derive first guidelines for
the design of an adequate scheduling algorithm is the
main target of this paper.

We have chosen the OpenAirInterface platform being
developed by Eurecom and Telecom ParisTech [4] as
our target platform. Its baseband design is split over
independent DSP engines than can be processed si-
multaneously. Other advantages include the effective
use of spectrum, mobility, increased network capacity,
maintenance of cost reduction, faster deployment of
new standards and faster development of new services.
More details about the architecture of this platform are
provided in Section II-A. An efficient scheduling of
the two standards according to their specification leads
to a different resource consumption on the platform.
The derivation of the performance figures is detailed
in Section II-B, the results of this runtime distribution
analysis are explored in Section III. Considering only
the processing time, both standards fulfill their realtime
requirements. In Section IV, we additionally consider
a control flow and we show the differences between a
global control of the baseband processing by a LEON3
microprocessor from Gaisler and a distributed control by
additionally using microcontrollers. Finally, guidelines
for a sophisticated scheduling algorithm are provided in
Section III-C.



II. OPENAIRINTERFACE PLATFORM

A. Architecture

The OpenAirInterface Platform being developed by
Eurecom and Telecom ParisTech [4] is a prototype SDR
architecture designed to support a wide range of different
standards like WLAN, WiMAX, GSM, UMTS and also
LTE in the near future. Its baseband design (Figure 1)
is split over several independent DSP engines (Front-
End Processor, Channel Decoder, ...) being controlled
by a SPARC LEON3 processor from Gaisler - Aeroflex
[5]. This design allows an easy component replacement
in case updates are required. The connection between
the DSP engines is established via a generic Advanced
Virtual Component Interface (AVCI) crossbar ( [6], [7] ).
In this paper we consider only the relevant DSP engines
needed to process the DAB and 802.11p standard, which
are the Preprocessor responsible for signal allocation, the
Front-End Processor including a DFT and a vector pro-
cessing unit, the Channel Decoder and the Deinterleaver.

The architecture of the DSP engines is based on the
standardized IP shell shown in Figure 2. It is composed
of

• a Memory Sub-System (MSS) depending on the
functionality of the DSP engines. It contains the
input / output data space and local memories

• a Processing Unit (PU) containing the functionality
of the DSP engine

• a Control Sub-System (CSS) that is common to all
DSP engines. It is specialized through parameters
and contains a local micro-controller (UC), a DMA
engine (DMA), a set of control and status registers
plus several arbiters and FIFOs for input-output
requests and responses. The CSS can be seen as
a gateway responsible for the communication with
the entire system. It has two 64-bits wide interfaces:
a slave interface used for read and write requests to
the MSS and to the internal control and status regis-
ters plus a master interface used for DMA transfers.
Both interfaces are AVCI compliant. Furthermore
several input and output interrupt lines are used for
signaling and synchronization with the host system.

The whole baseband processing can be emulated using
the C++ library for Express-MIMO baseband (libembb).
Although the work on this library is not finished yet, it
is already applied in different European projects. The
source code will soon become open source. Thanks
to this library, the receiver code can easily be tested
in a pure SW environment or can be used to access
the different DSP engines on the platform. In the first
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case, each DSP engine is represented by its own set
of bit-accurate C++ functions. These functions include
the representation of the PU as well as error messages
and memcopy access functions to represent the DMA
transfers. Porting the application to the target platform,
the code skeleton remains unchanged, thus resulting in
an optimized development process.

B. Performance Estimation

A detailed performance evaluation and runtime dis-
tribution analysis of the two standards is necessary to
determine whether the wireless standards can actually
run in realtime on the platform and to have a basis for
further discussions on an adequate scheduling. For this
analysis, several factors have to be considered:

• Execution time on the LEON3 processor, includ-
ing control-flow, rarely-used trigonometrical func-
tions as well as time for configuration and start
of the baseband DSP engines. The estimation on
the development host would require a software
simulator, such as TSIM for LEON3 [8].

• Execution time of the DSP engines which is easier
to estimate as their internal structure is already
known.

• Communication time to transfer data between the
LEON3 and the baseband processing. Time can be
estimated by the amount of transferred data between
the LEON3 DDR and the baseband memory space
at a certain bus speed.

Common receiver design typically starts with the
development of purely functional C models to analyze
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the untimed algorithmic part of the transceiver. Therefore
both receivers have been first modeled using libembb.
For the DAB receiver, we adapted the solution presented
in [9] to our needs. A major advantage of this approach
is that the basic algorithm relying on libembb primitives
does not have to be reworked to run on the target
platform.

To obtain first estimates of the receiver performance,
a common approach is the cycle accurate HW/SW
co-simulation, e.g. in Modelsim. This solution is
appropriate for transceivers with a short packet or
frame length. But for standards like DAB, it is too time
consuming as results are obtained on a cycle accurate
level. For instance only the initialization of the LEON3
takes already a significant amount of time in the order of
1e5 cycles. Therefore we annotated libembb with timing
information by implementing a flexible cycle counter.
The necessary equations to calculate the processing
time of the different DSP engines are shown in Table I.
The vector length n is given in units of bytes. Not listed
is the Preprocessor which provides the received samples
in real-time and who raises an interrupt after k received
samples (802.11p: k = 640 corresponding to 64us).
Although the LEON3 processing time is disregarded
in this model, it provides the user with efficient means
to assess the transceiver’s real-time behavior on the
OpenAirInterface platform.

TABLE I
CYCLE COUNTS FOR DIFFERENT VECTOR LENGHTS n FOR

EXPRESSMIMO PERFORMANCE MODEL

Operation Cycles
FEP-FFT n · log4(size)/8 + 16
FEP-Vector Operations n/2 + 16
(De)Interleaver n + 16
Channel Decoder (Viterbi) n/2 + 16
Memcopy between DSP Engines n/8 + 24
Memcopy between LEON3 and DSP n/4 + 24

III. RUNTIME DISTRIBUTION ANALYSIS

Although all wireless systems must be real-time ca-
pable, the actual requirements depend on the type of the
wireless system:

• Latency critical: For bidirectional packet-based
communication systems, such as WLAN IEEE
802.11, the acknowledgement packet must be sent
within a specified time. Thus the decoding time for
the incoming packet from baseband up to higher
layers is bound by a strict latency requirement.
Processing time depends on packet size, modulation
scheme and interarrival time.

• Non-latency critical: Unidirectional or frame-
based wireless systems have no latency require-
ments, but all incoming data must be processed at
the frame-rate, i.e. all processors and DSP engines
used for decoding must stay under 100% load
to fulfill realtime-requirements. Broadcast systems
provide a continuous data stream with deterministic
timing and processing



In the following, we investigate in a a detailed runtime
analysis of the 802.11p and the DAB standard as well
as the comparison of the obtained results. For all esti-
mations, the DSP engines and the DMAs are assumed
to run at 150 MHz.

A. IEEE 802.11p

The work on the IEEE 802.11p standard [1] was
launched in November 2004 to make the IEEE 802.11a
standard suitable for vehicular communication. The re-
sulting standard includes the communication between
two different vehicles (car-to-car - C2C - communica-
tion) as well as the communication of a vehicle with
its surrounding area (car-to-infrastructure - C2I - com-
munication). It operates in the licensed ITS band of 5.9
GHz (5.85-5.925 GHz). Table II shows the modulation
parameters for a 10 MHz channel spacing.

TABLE II
802.11P SPECIFICATION PARAMETERS (10 MHZ CHANNEL

SPACING)

Parameter Value
Number data subcarriers 48
number pilot subcarriers 4
subcarrier frequency spacing 10 MHz/64
Packet length 1 - 1366 DATA symbols
Modulation BPSK, QPSK, 16/64-QAM
Coding rates 1/2, 2/3, 3/4
Data rates 3, 4.5, 6, 9, 12, 18, 24, 27 Mb/s

The 802.11p packet structure can be seen in Figure
3. It is composed of a constant part and a variable
part. The constant part has a length of 40us and is
composed of a Short Training Symbol (STS) used for
packet synchronization, a Long Training Symbol (LTS)
used for Channel Estimation and the SIGNAL Field con-
taining information about how to decode the transmitted
message. In contrast, the length of the DATA Field is
variable and depends on the length of the transmitted
message. The number of octets in the MPDU requested
by the MAC layer varies between 1 and 4095, thus
resulting in a DATA Field length of 1 and 1366 Data
symbols, each with a length of 80 complex samples.

Packet synchronization (SYNC) and the calculation
of the channel estimate (CE) are done on the FEP.
To detect the beginning of the packet, a sliding FFT
window over 256 complex samples is used. For the
Signal field detection (SIG) three different DSP engines
(FEP, Deinterleaver and Channel Decoder) are needed.
The required tasks cannot be processed in parallel to the
Data field detection as the necessary parameters for the
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Fig. 3. 802.11p Packet Structure and mapping of the receiver on
the OpenAirInterface Platform

latter are coded in the Signal field. These parameters
are among others the number of data symbols in the
Data field, the modulation scheme and the coding rate.
The execution and memcopy runtime for the constant
part is shown in table III. In contrast to the FEP, the
Deinterleaver and Channel Decoder operations represent
only one task.

TABLE III
TASK RUNTIME FOR DSP ENGINES AND MEMCOPY / CONSTANT

PART

Task DSP Memcopy total
SYNC 12920 ns - 12920 ns
CE 653 ns 333 ns 986 ns
SIG (FEP) 1053 ns 855 ns 1900 ns
SIG (DEINTL) 667 ns 403 ns 1000 ns
SIG (CHDEC) 267 ns 365 ns 632 ns

The variable part of the 802.11p packet comprises the
Data symbols which can be modulated in eight different
ways: BPSK (rate 1/2, 3/4), QPSK (rate 1/2, 3/4) 16-
QAM (rate 1/2, 3/4) and 64-QAM (rate 2/3, 3/4). Like
for the Signal field, FEP, Deinterleaver and Channel
Decoder are used to decode each of the symbols. Due
to the tail-biting option of the Channel decoder, the
three DSP engines can be processed in parallel, thus
reducing the overall processing time. In contrast to the
constant part, the processing time depends now on the
modulation scheme and on the coding rate. Table IV
gives an overview of the DSP processing time per sym-
bol including possible memcopy operations. In case of
QAM modulation, the FEP has to calculate some values
first before the Data field detection starts. These times
are denoted as FEP (init). In contrast to the FEP, the
Deinterleaver and Channel Decoder operations represent



only one task while the FEP operations include channel
compensation as well as data detection.

TABLE IV
TASK RUNTIME FOR DSP ENGINES INCLUDING MEMCOPY PER

DATA SYMBOL

DSP BPSK BPSK QPSK QPSK
rate 1/2 rate3/4 rate 1/2 rate 3/4

FEP 2282 ns 2282 ns 2282 ns 2282 ns
DEINTL 1070 ns 1290 ns 1554 ns 1994 ns
CHDEC 632 ns 735 ns 837 ns 1042 ns
DSP 16-QAM 16-QAM 64-QAM 64-QAM

rate 1/2 rate 3/4 rate 2/3 rate 3/4
FEP (init) 1219 ns 1219 ns 1499 ns 1499 ns
FEP 3166 ns 3166 ns 4006 ns 4006 ns
DEINTL 2520 ns 3200 ns 4367 ns 4807 ns
CHDEC 1247 ns 1657 ns 2067 ns 2312 ns

Figure 4 gives an overview of the overall runtime
distribution for the minimum and maximum 64-QAM
decoded packet (coding rate is 3/4) under the assumption
that the packet starts with the first sample of the test
signal. For the Signal field detection, it is the FEP who is
consuming most of the processing time. In case of BPSK
processing, this trend would remain unchanged even for
the DATA field detection. But when processing a 64-
QAM modulated packet, the Deinterleaver generates up
to six times more samples compared to a BPSK packet
of similar length.

                                                                                           

 

Fig. 4. Runtime Distribution - 802.11p

B. Digital Audio Broadcast

The ETSI Digital Audio Broadcast (DAB) [2] was
launched in 1995 by the BBC as replacement for the
traditional FM radio and has been on-air in Europe since
that time. While recent adaptions, such as DAB+, update
the audio codec from MPEG1 to MPEG4 HE AAC, the
underlying physical layer processing mechanisms remain

the same. The DAB standard defines 4 transmission
modes, mode-I being the most commonly used in Band
III (174-204 MHz). Table V shows the corresponding
modulation parameters.

TABLE V
ETSI DAB SPECIFICATION: TRANSMISSION MODE I

Parameter Value
Frame duration 96ms, 76 Symbols
Symbol duration (total, useful, guard) 1.246ms, 1ms, 246us
Null Symbol duration 1297ms
Transmission bandwidth 1.536 MHz
OFDM type 2048-FFT, 1535 used
Modulation D-QPSK
Brutto Bitrate 2.4 Mbps

The DAB receiver chain consists of several tasks, as
shown in Figure 5. Functionality is briefly described
below; more details on each block can be found in [10].

A
D

RF

OFDM 
Demod.

Amplifier
Resampl

Filter
DQPSK
Demod.

(Control data)

FFT DEM

SFCSTI/TTISFF/TFF

Sync 
Freq 

(coarse)

Sync 
/Track 
Time

Sync/Trk
Freq. 
(fine)

FEP

fs = 30.78 MHz, 

baseband

INTL LEONCHDECPREPR

Digital 
Freq. 

Correct
D Demod.Filter

Viterbi
Decoder

Demod.

Time 
Deinterl.

Energy 
Deinterl.

(FIC data)

FIC 
Decoder

Audio 
Decoder

DDC AGC

TDIVIT

FIC MP2

EDI

Freq. 
Deinterl.

FDI

Un-
Punct

PNT

Correct
MIX

Fig. 5. Task model and mapping of DAB receiver on ExpressMIMO
platform

The DAB receiver has two modes: Synchronize and
Receive. After a frequency change, initial time syn-
chronization (STI), coarse (SFC) and fine frequency
estimation (SFF) find and lock to the DAB broadcast
signal. When synchronized, tracking time (TTI) and
fine frequency offset (TFF) are used to track changes,
e.g. due to variations in mobile environments. After
downsampling the complex baseband to 2.048 MSps and
tracking, the estimated fine frequency is corrected (MIX)
digitally, as the analog mixer has limited granularity
(10 Hz are required for a DAB OFDM symbol). Energy
calculation for STI and TTI and dot-product calculation
are done on the FEP as well as the demodulation
for OFDM (FFT) and for differential QPSK (DEM).
Frequency deinterleaving (FDI) of each symbol uses
the hardware interleaver. Instead, the time deinterleaver



(TDI) runs on LEON3, as the depth of 384ms spans
several frames and thus requires more memory than
available on the baseband FPGA - unpuncturing (PNT)
is again possible on the hardware interleaver. Viterbi
decoding (VIT) is again done in hardware on the channel
decoder engine. Energy dispersal (EDI), audio decoding
(MP2) and extraction of additional information from the
Fast Information Channel are also done on the LEON3.

While all tasks require runtime on the LEON3 pro-
cessor, most of them use the baseband DSP engines
for acceleration. Available memory on the DSP engines
is limited to 4x4 kSamples which corresponds to the
maximum size of the FEP memory. For this reason the
context is saved and restored in the LEON3 DDR to
decode a DAB frame. This requires intensive memcopy
operations between LEON3 DDR and the DSP block
memories and generates an overhead of 55%-85%.

The total runtime required for execution and memcopy
for each function is shown in table VI and Figure 6.

TABLE VI
TASK RUNTIME FOR DSP ENGINES AND MEMCOPY FOR 1SEC

AUDIO DATA

Task DSP Memcopy total
SFF 0.1ms 0.48ms 0.58ms
STI 0.33ms 3.26ms 3.59ms
SFC 0.3ms 1.09ms 1.39ms
TTI 1.06ms 4.80ms 5.86ms
TFF 1.60ms 10.7ms 12.3ms
FFT 2.54ms 7.43ms 9.97ms
DEM 2.95ms 17.6ms 20.6ms
FDI 4.37ms 19.1ms 23.5ms
PNT 6.08ms 4.65ms 10.7ms
VIT 1.52ms 4.65ms 6.17ms

                                                                                                                          

               

Fig. 6. Runtime Distribution - DAB

C. Discussion

Most of the tasks to be performed by both receivers
run on the FEP. These tasks comprise the packet /
timing synchronization, channel compensation and data
detection. However, Deinterleaver and Channel Decoder
are activated only from time to time but run over larger
vectors if compared to the FEP. Figure 7 and 8 illustrate
the runtime distribution of the FEP tasks. For 802.11p,
the execution time varies from 0.12us to 0.96us while
they are between 0.14us to 13us for the DAB.

               

Fig. 7. Runtime Distribution (FEP) - DAB

                                                                                                                          

   

Fig. 8. Runtime Distribution (FEP) - 802.11p

Considering only the processing time, the latency re-
quirements are fulfilled if only one standard is processed.
But what if the two should be processed simultaneously?
A scheduler being able to cope with these different
standards has to be dynamical and should be based on
an earliest deadline first policy. Challenges in its design
are

• the limited local memory resulting in a context
storage when switching between the standards

• the fact that micro operations are scheduled while
the deadline is related to the macro packet level

• the consideration, that the starting time of the next
802.11p packet is not known in advance



Due to the strong latency requirements of the 802.11p
standard, it is recommended to group vector operations
to reduce the time consuming memcopy transfers and the
communication overhead. Furthermore DAB operations
have to be split to guarantee the real-time behavior of
the 802.11p. To avoid unnecessary context savings, this
has to happen at runtime only if the FEP is required by
the 802.11p. As seen in Figure 7, the longest operations
are vector operations, which can be split easily. This is
not the case of the FFT taking 9.49us.

IV. APPLICATION CONTROL

In the previous sections, the results were only based
on the pure processing time of the DSP engines and on
the time required for memcopy transfers. Not considered
was the application control on the platform which can be
established in two different ways. Considering a global
control flow, the LEON3 is responsible for the signal
processing task distribution and the synchronization of
the different DSP engines. The latter can be enabled by
writing the corresponding control registers being part
of the CSS. Once a scheduled task is performed, the
DSP engine raises an interrupt. The time between this
event and its treatment on LEON3 is about 12.5us and
is thus not an appropriate solution for standards with
strong latency requirements. An alternative could be the
polling of the status registers. Now, the time till the event
is treated on LEON3 takes less than 2us.

A better solution is the consideration of a distributed
control flow. In this case the local microcontrollers
inside the standardized IP shells are used besides the
LEON3, thus allowing the processing of complex tasks
inside the DSPs without interaction with the LEON3.
Taking the example of a data detector (16-QAM) re-
quired by the 802.11p standard, the control flow time can
be decreased by more than 100us, under the assumption
that 8-bit microcontrollers are used.

The choice of the appropriate deployment depends
on whether the performance gain justifies the increase
in synchronization complexity. However, a distributed
control flow is more suitable for standards with a short
packet or frame length to fulfill the realtime require-
ments.

A detailed analysis of the different control flows while
processing the two standards on the OpenAirInterface
platform is part of our ongoing work.

V. CONCLUSION AND FUTURE WORK

In the content of this paper we focused on the runtime
distribution of the 802.11p and the DAB standard on

the OpenAirInterface platform. Our results have shown
that considering only the processing time on the DSP
engines, the latency requirements of both standards are
fulfilled. Furthermore we investigated in the right choice
of an appropriate control flow and gave guidelines for
a sophisticated scheduling algorithm whose implemen-
tation is part of our ongoing work. Besides, further
publications about the receiver processing on the real
HW of the OpenAirInterface platform are planned.
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