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Abstract—We deal with interference channels with (i) delayed
channel state information at the transmitter (CSIT), and (ii)
delayed output feedback at the receiver and no CSIT. We extend
the algorithm by Maleki et al. [8] for M = 3 users to any
M ≥ 3 under the constraint that all the transmitter/receiver
pairs are active simultaneously. We propose a retrospective
interference alignment algorithm achieving M2/(M2−1) degrees
of freedom (DoF) in the case (i) and an algorithm attaining
⌈M/2⌉M/(⌈M/2⌉(M − 1) + 1) DoF in the case (ii). However,
larger DoF - 9/8 in (i) and 6/5 in (ii) - are easily achievable, for
any M, when orthogonal channels (e.g. in time, frequency, etc.)
are shared by triplets of transmitter/receiver pairs, and within
each subchannel the algorithm by Maleki et al. [8] is applied.
Hence, our work suggests that, for all M and both in the case (i)
and in the case (ii), the strategy maximizing the DoF entails that
three transmitter/receiver pairs are simultaneously active on the
same channel.

I. INTRODUCTION

The capacity of the most recent network architectures, such
as femtocells, is severely limited by interference. This has
spurred an intense research on the M -user interference chan-
nel, in which M transmitter/receiver pairs interfere with each
other. A long lasting pessimistic belief about the interference
channels (e.g. [1]) assumed that the rate per user in the high
signal to noise ratio (SNR) regime scales as M−1, i.e. the
total degrees of freedom (DoF) could not be higher than the
degrees of freedom of a point-to-point channel. Very striking
recent results [2]–[4], though, disproved it by showing that
the degrees of freedom per user in the interference channel
scale as 1/2 independently of the number of interferers
when a transmission scheme called interference alignment
(IN) is applied. These very promising results presuppose a
complete knowledge on the channel state information at the
transmitters (CSIT). This assumption can be very costly in
terms of required feedback frequency band. Additionally, it
becomes unrealistic and impractical when the channel fades
too rapidly and the feedback becomes rapidly stale. This is
fueling intensive works to investigate fundamental questions
on the practical applicability of IA such as (a) the impact
of imperfect [5], partial or no CSI [6], [7], on rate and
reliability performance of IA systems, (b) the obsolescence
of the feedback [8], and (c) robustness to imperfect and/or
delayed feedbacks. The tradeoff between achievable degrees
of freedom and required feedback has been studied when the
network nodes are equipped with multiple antennas and IA

schemes are applied to spatial dimensions in [9] and [10].
For limited feedback, the full DoF is sustained in constant
(non-fading) channels if the number of feedback bits grow
logarithmically with SNR. The effective DoF achieved by IA
with limited training and feedback is investigated in [11]. The
issue of the feedback obsolescence was addressed first for
the broadcast channel in [12]. Extensions to the interference
channel appeared in [8]. Here, some communication schemes
based on (i) delayed CSI and (ii) delayed output feedback
and no CSI at the transmitter (CSIT) are proposed for single-
antenna 3-user interference channels and X channels. They are
referred to as retrospective IA.

In this paper we generalize the two algorithms proposed
in [8] to M ≥ 3 users, under the constraint that all
the transmitter/receiver pairs are active at the same time. In
Section III, we present an algorithm that achieves M2/(M2−1)
DoF in the delayed CSIT case. In Section IV, we prove that
our second algorithm attains ⌈M/2⌉M/(⌈M/2⌉(M − 1)+ 1)
DoF in the delayed output feedback setting.

Some notation remarks. Boldface upper (A) and lower case
(a) denote matrices and column vectors, respectively. We refer
to (·)T as the matrix transpose. The index vector i = a : b,
with a ≤ b, stands for [a, a + 1, . . . , b − 1, b]T . The matrix
B = (A)i,j is obtained by jointly selecting only the rows
and the columns of A indexed by i and by j, respectively, i.e.
(B)p,q = (A)ip,jq . The symbol ∗ indexes either all the rows or
all the columns of a matrix. For the sake of conciseness, (a)j ≡
(a)j,1. The matrix [A,B] is the juxtaposition of matrices A,B.
The acronym “w.p.1” stands for “with probability one”. The
indicator function is referred to as 1I.

II. INTERFERENCE CHANNEL MODEL

We focus on M ≥ 3 users interference channels. We assume
that each user achieves multidimensional signalling by coding
only over time, i.e. the transmitters/receivers pairs have only
one antenna and one frequency carrier at their disposal. More-
over, no inter-symbol interference is present. The transmission
occurs over blocks of N time slots. We call with H[j,m] the N -
by-N complex diagonal channel matrix between transmitter m
and receiver j, whose diagonal coefficients are i.i.d. and drawn
from a continuous distribution. Furthermore, let x[m] ∈ CNx1

be the complex signal sent by transmitter m over N time slots.



The received vector y[m] ∈ CNx1 at receiver m can be written
as

y[m] =
M∑
j=1

H[m,j]x[j] + z[m], ∀m = 1, . . . ,M, (1)

where z[m] is the vector of complex additive white Gaussian
noise at receiver m with zero mean and given variance.

Throughout this work, we assume perfect channel state
information at the receiver (CSIR). Furthermore, we expect
that the Shannon theoretic definitions of achievable rates,
capacity, degrees of freedom etc. are known. The interested
reader can refer to [3] for their definition and relation to the
system model.

III. INTERFERENCE CHANNEL WITH DELAYED CSIT

In this section we introduce the first of the two classes of
interference channel considered in this paper. We assume that
transmitter m precodes its n independent complex information
symbols u

[m]
1 , . . . ,u

[m]
n over N time slots, i.e.

x[m] =

n∑
i=1

u
[m]
i v[m](i), m = 1, . . . ,M,

where v[m](i) ∈ CNx1 is the complex precoding vector
associated to the i-th symbol of transmitter m. We consider
here the following two assumptions.

Assumption 1 (Delayed CSIT). At time t ≥ 2, each trans-
mitter has knowledge about all the channel coefficients up to
time t − 1, i.e. {(H[j,m])i,i}j,m, for all j,m ∈ [1,M ], and
i ∈ [1; t− 1].

Assumption 2 (Global beamforming knowledge). Each trans-
mitter knows the precoding vectors of all the other users.

In the following we will see that Assumption 2 is actually
very loose in our specific case. Now, we present our main re-
sult on the achievable degrees of freedom under Assumptions
1,2.

Proposition III.1. In the M -user interference channel, under
Assumptions 1 and 2, and with CSIR, DoFdC degrees of
freedom are achievable w.p.1 by the algorithm described in
Section III-A, where

DoFdC =
M2

M2 − 1
. (2)

This result is based on the communication scheme described
in the following subsection and relies on Conjecture III.1 (see
Section III-B).

A. Retrospective IA Algorithm

We now describe the communication scheme apt to achieve
DoFdC degrees of freedom under Assumptions 1 and 2. Set
the positive integers n,K such that

K ≤ ⌊n/M⌋. (3)

The reader will understand the importance of the inequality
(3) in the following. The transmission of the block of symbols
u
[m]
1 , . . . ,u

[m]
n , for every user m, lasts for N time slots, where

N = Mn−K. (4)

We define the precoding N -by-n matrix for transmitter m =
1, . . . ,M as

V[m] =
[
v[m](1), v[m](2), . . . , v[m](n)

]
.

where the column vector v[m](i) is the i-th precoding vector
for transmitter m. The two phases of our retrospective
alignment algorithm are described in the following.

Phase I: The Phase I of the algorithm lasts for N1 time
slots, where

N1 = (M − 1)n−K.

Let us define the N1-by-N1 submatrix H
[i,j] ≡

(H[i,j])1:N1,1:N1
; let the N1-by-n submatrix V

[m] ≡
(V[m])1:N1,∗ and let the N1-by-1 subvector y[m] ≡
(y[m])1:N1 , for all possible i, j,m.

Phase I of the algorithm is straightforward, and it consists
in each transmitter drawing the components of its precoding
vectors from a continuous distribution, such that the entries of
the following matrix:[

V
[1]
, V

[2]
, . . . , V

[M ]
]

are independent and identically distributed. At the end of Phase
I, the signal seen at receiver m = 1, . . . ,M is

y[j] =

M∑
m=1

H
[j,m]

V
[m]

[u
[m]
1 , u

[m]
2 , . . . , u[m]

n ]T ,

and the interference vector space at receiver j is spanned by
the columns of the matrix G

[j]
, defined as

[
H

[j,1]
V

[1]
, . . . , H

[j,j−1]
V

[j−1]
,H

[j,j+1]
V

[j+1]
, . . . ,H

[j,M ]
V

[M ]
]
,

having N1 rows and N1+K = (M−1)n columns. From the
rank nullity Theorem, we know that the null space of matrix
G

[j]
, for all j = 1, . . . ,M , spans at least K dimensions. Then,

it is possible to find K independent (M−1)n-by-1 complex
vectors, namely α

[j]
1 , . . . ,α

[j]
K , such that

G
[j]
α

[j]
i = 0N1

, ∀ i = 1, . . . ,K, (5)

for all j = 1, . . . ,M , where 0N1 is the N1-by-1 null vector.

Phase II: In Phase II we deal with the remaining n channel
uses, from time slot N1 + 1 = (M − 1)n − K + 1 to
time slot N . As in Phase I, we define the n-by-n ma-
trix H̃[i,j] ≡ (H[i,j])N1+1:N,N1+1:N and the n-by-n matrix
Ṽ[m] ≡ (V[m])N1+1:N,∗, for all i, j,m.
Similarly to the definition of G

[j]
, we write G̃[j] as[

H̃[j,1]Ṽ[1], . . . , H̃[j,j−1]Ṽ[j−1], H̃[j,j+1]Ṽ[j+1], . . . , H̃[j,M ]Ṽ[M ]

]
,



for all j = 1, . . . ,M . Since relation (5) already holds, in
order for the interference to span at most N1 = (M−1)n−K
dimensions, the following relations must be satisfied:

G[j]α
[j]
i =0N , ∀ i = 1, . . . ,K, ∀ j = 1, . . . ,M,

G[j] =

[
G

[j]

G̃[j]

]
, ∀ j = 1, . . . ,M.

At the beginning of Phase II, each transmitter has at its
disposal all the channel coefficients up to the N1-th time
slot. For Assumption 2, each transmitter gets to know also the
precoding vectors randomly chosen by the other transmitters
up to time N1. This is easily achievable, for example, by
sharing among the users the random seeds used to generate
the precoding vectors. Hence, all the vectors {α[j]

i }i∈[1;K], for
all j = 1, . . . ,M , are computed by all the transmitters at the
beginning of Phase II. In order to align interference, we must
set, for all i = 1, . . . ,K and j = 1, . . . ,M ,

G̃[j]α
[j]
i = 0n. (6)

We now probe how to ensure the validity of (6). Let us stack
the vectors α’s in such a way to build the following full rank
K-by-(M−1)n matrix, for all j = 1, . . . ,M :

A[j] ≡
[
α

[j]
1 , α

[j]
2 , . . . , α

[j]
K

]T
.

Since the feedback on the channel is delayed at the trans-
mitter and (6) must hold, then each transmitter is compelled
to compute its own precoding vectors in such a way that (6) is
satisfied for any value of the channel coefficients H̃[i,j]. To do
so, it is sufficient to set up the following system of equations
for transmitter m, in the n unknowns stacked in Ṽ

[m]
t,∗ :

Θ[m][Ṽ
[m]
t,∗ ]

T = 0, (7)

for all t ∈ [1;n] and for all m = 1, . . . ,M , where

Θ[m] ≡
[
[A

[1]
∗,(m−2)n+1:(m−1)n]

T , . . . , [A
[m−1]
∗,(m−2)n+1:(m−1)n]

T ,

[A
[m+1]
∗,(m−1)n+1:mn]

T , . . . , [A
[M ]
∗,(m−1)n+1:mn]

T
]T

.

Now, we will find a suitable way to choose the precoding
vectors. During Phase II, transmitter m has to find the vectors
Ṽ

[m]
1,∗ , . . . , Ṽ

[m]
n,∗ satisfying (7). Since expression (3) holds and

the rank of the (M − 1)K-by-n matrix Θ[m] is rm ≤ (M −
1)K, then m-th linear system is solved by a null subspace
spanning Dm dimensions, where

Dm ≥ n− (M − 1)K ≥ n− M − 1

M
n =

n

M
≥ 1. (8)

We choose a vector dm of rm indices such that the rm-by-rm
matrix (Θ[m])∗,dm is full rank. Let us call with dm the column
indices which are complementary to dm, i.e. dm ∩ dm =
∅, dm ∪ dm = 1 : n, for all m = 1, . . . ,M . From basic
linear algebra, we can express the components of vector Ṽ[m]

t,∗
indexed by dm as a linear function of its components indexed
by dm, i.e.

Ṽ
[m]
t,dm

= −[(Θ[m])∗,dm ]−1(Θ[m])∗,dm
Ṽ

[m]

t,dm
. (9)

Finally, we can describe what Phase II consists in, in practice.
For all t = 1, . . . , n, the transmitter m, m = 1, . . . ,M ,
draws independently from a continuous distribution the Dm

precoding components Ṽ
[m]

t,dm
, and computes the remaining

coefficients {Ṽ[m]
t,dm

}t=1,...,n as in (9).

B. Feasibility of Interference Alignment

By combining (5) and (6), from the rank-nullity Theorem
we claim that the total interference seen at each receiver spans
at most N1 = (M − 1)n−K dimensions. For example, at
receiver 1,

rank
[
H[1,2]V[2] , . . . , H[1,M ]V[M ]

]
≤ N1, w.p.1.

Hence, at each receiver, the interference subspace shrinks by
K dimensions.

We conjecture that, at each receiver, the vector subspace
spanned by the useful signal is disjoint (except for the null
vector, of course) from the subspace spanned by interference,
w.p.1.

Conjecture III.1. If relation (3) holds, at receiver j, the
following (Mn−K)-by-Mn matrix:

S[j] ≡

[
H

[j,1]
V

[1]
, . . . , H

[j,M ]
V

[M ]

H̃[j,1]Ṽ[1], . . . , H̃[j,M ]Ṽ[M ]

]
(10)

is full rank, w.p.1.

We remark that all the simulations carried out by the authors
confirm conjecture III.1.

The validity of conjecture III.1 is sufficient to prove Propo-
sition III.1 as the following argument shows.

If S[j] is full rank, then the interference subspace is disjoint
from the useful signal, which can be retrieved by zero-forcing
the interference. It follows from (3) that the value of K which
optimizes the DoF is K̄ = n/M , for which the degrees of
freedom achieved by our retrospective interference alignment
algorithm are

Mn

N
=

M2K̄

(M2 − 1)K̄
=

M2

M2 − 1
= DoFdC.

We now state that the condition (3) is necessary for con-
jecture III.1 to hold. Moreover, if (3) holds, then the second
horizontal block of matrix (10) is full rank w.p.1.

Lemma III.2. For all j = 1, . . . ,M , the following n-by-Mn
matrix:

S̃[j] ≡
[
H̃[j,1]Ṽ[1], . . . , H̃[j,j]Ṽ[j], . . . , H̃[j,M ]Ṽ[M ]

]
(11)

is full rank (= n) w.p.1 if and only if condition (3) holds.

The proof of Lemma III.2 is in the Appendix. The
intuition behind this Lemma is that, even if the matrix
[Ṽ[1], . . . , Ṽ[M ]] is not full rank, the introduction of
multiplicative independent diagonal matrices H̃[j,i] allows to
achieve full rank w.p.1. Nevertheless, if condition (3) fails to



holds, i.e. the sum over i of the ranks of the matrices Ṽ[i] is
strictly less than n, then the rank of S̃[j] cannot be equal to
n.

IV. INTERFERENCE CHANNEL WITH DELAYED OUTPUT
FEEDBACK

In this section we will deal with a second class of inter-
ference channel. With respect to Section III, we still assume
CSIR, but we drop Assumptions 1 and 2 and we consider the
following ones.

Assumption 3 (No CSIT). The transmitters have neither
current nor past channel state information.

Assumption 4 (Delayed output feedback). Each transmitter
receives a delayed version of the signal received by the
respective receiver, i.e. at time t ≥ 2 user m has at its disposal
the signals y

[m]
p , for all p = 1, . . . , t− 1, m = 1, . . . ,M .

Because of Assumption 3, the precoding vectors technique
will not be utilized, since there is no hope for the interfering
signals to be aligned. In [8], Maleki, Jafar, and Shamai
proposed an algorithm achieving 6/5 DoF in M = 3 user
interference channels under Assumptions 3,4. Here we extend
their approach to any M ≥ 3 and we obtain the following
result.

Proposition IV.1. In the M -user interference channel, under
Assumptions 3 and 4, DoFdO degrees of freedom are achiev-
able w.p.1 by the algorithm described in Section IV-A, where

DoFdO =
⌈M/2⌉M

⌈M/2⌉ (M − 1) + 1
. (12)

The proof of Proposition IV.1 follows from a communica-
tion scheme described in the next section. The reader should
note that the degree of freedom DoFdC obtained in the delayed
CSIT case in (2) is strictly lower than DoFdO, for any value
of M ≥ 3.

A. Algorithm for Delayed Feedback

In this section we will present an algorithm achieving
DoFdO (12) degrees of freedom w.p.1 in interference
channels, under Assumptions 3,4. Each transmitter m sends
n = ⌈M/2⌉ independent information symbols denoted by
u
[m]
1 , . . . ,u

[m]
n . Again, we split the algorithm into two main

phases.

Phase I: The Phase I of the algorithm lasts for M time
slots. Let us show how to construct the vector of transmitted
symbols x[m], for all transmitters m = 1, . . . ,M , in the first
M time slots. We stack all the nM information symbols into
a nM -by-1 column vector w, such that its k-th element wk

is the i = ⌈k/M⌉-th information symbol of transmitter m =

[mod(k − 1,M) + 1], i.e. wk = u
[m]
i .

In the k-th slot, k = 1, . . . ,M , the n symbols, belonging
to n distinct communication flows,

w(k−1)n+1, w(k−1)n+2, . . . , wkn, (13)

are sent by the respective transmitters. We call
T (k) = {T1(k), T2(k), . . . , Tn(k)} the set of n transmitters
sending information at time slot k, and T c(k) is the
complement of T (k), i.e. the set of indices of the users being
silent at time step k. The vector x is built up accordingly to
the transmission rule in (13), and x

[m]
k = 0 if m ∈ T c(k).

Figure 1 illustrates this communication scheme for M = 5.
In this case, the transmitted vector x is such that in the first
time slot, x[1]

1 = w1, x[2]
1 = w2, x[3]

1 = w3, x[4]
1 = x

[5]
1 = 0.

u
[1]
1 u

[2]
1 u

[3]
1 u

[4]
1 u

[5]
1 u

[1]
2 u

[2]
2 u

[3]
2 u

[4]
2 u

[5]
2 u

[1]
3 u

[2]
3 u

[3]
3 u

[4]
3 u

[5]
3

k = 1 k = 2 k = 3 k = 4 k = 5

Figure 1. Graphic representation of 15-by-1 vector w in Phase I with M = 5.
In the time slot k = 1, . . . , 5, 3 symbols are sent at the same time.

Phase II: Let us first introduce some useful notation. If
M is odd, let F be the set of all the received signals of
the type {y[m(k)]

k }, for all m(k) ∈ T c(k), k = 1, . . . ,M .
In other words, F is the set of the signals overheard by
the transmitters not communicating over each time slot
associated to Phase I. If M is even, then F is defined as
for M odd but it does not include one arbitrary received
signal for each receiver. Then, the set F has cardinality
(n − 1)M in both cases. Let us stack the elements of F , to
be sent during Phase II, into the (n − 1)M -by-1 vector f ,
such that the m-th block of f of dimension n− 1 collects all
the signals received by receiver m and belonging to the set F .

Phase II lasts for (n − 1)M − n + 1 time slots. By the
delayed output feedback Assumption 4, when Phase II starts,
every transmitter has at its disposal all the signals received by
the respective receiver during Phase I. During the k-th time
slot of Phase II, the signals

fk, fk+1, . . . , fk+n−1 : k = 1, . . . , (n−1)M−n+1, (14)

are sent by the concerned transmitters. Transmitters having
more than one signal to transmit will send their sum. Figure
2 illustrates the transmission rule for M = 5.

y
[1]
3 y

[1]
5 y

[2]
2 y

[2]
5 y

[3]
2 y

[3]
4 y

[4]
1 y

[4]
4 y

[5]
1 y

[5]
3

k = 1, 2, 3, 4, 5, 6, 7, 8

Figure 2. Graphic representation of the 10-by-1 vector f . In each of the 8
time slots assigned to Phase II, 3 output feedback signals are sent at the same
time.

The vector x[m] transmitted by each transmitter m during
Phase II is built up accordingly with the transmission rule in
(14). Helped by Figure 2, one can see that in the first time slot
of Phase II, x[1]

6 = f1 + f2, x[2]
6 = f3, x[3]

6 = x
[4]
6 = x

[5]
6 = 0.

The transmission ends in the 13-th time slot, i.e. the 8-th time
slot of Phase II, with x

[1]
13 = x

[2]
13 = x

[3]
13 = 0, x

[4]
13 = f8,

x
[5]
13 = f9 + f10.



For the assumption of perfect CSIR, by a straightforward
sequential detection, each receiver can identify the whole
output feedback vector f , w.p.1. Then the generic receiver k,
for each symbol u[k]

i , i = 1, . . . , n, can now build a n-by-n
linear system of equations, where the unknowns are u

[k]
i

itself and the n − 1 symbols that were sent by the other
transmitters simultaneously with u

[k]
i . The matrix of the

(channel) coefficients is full rank w.p.1. Note that, for each
symbol, one equation out of n comes from Phase I.

Returning to our example for M = 5, the three linear
systems of equations for receiver 1 to retrieve u

[1]
1 ,u

[1]
2 ,u

[1]
3 ,

respectively, are
y
[1]
1

y
[4]
1

y
[5]
1

 =


H

[1,1]
1,1 H

[1,2]
1,1 H

[1,3]
1,1

H
[4,1]
1,1 H

[4,2]
1,1 H

[4,3]
1,1

H
[5,1]
1,1 H

[5,2]
1,1 H

[5,3]
1,1



u
[1]
1

u
[2]
1

u
[3]
1

 ,


y
[1]
2

y
[2]
2

y
[3]
2

 =


H

[1,1]
2,2 H

[1,4]
2,2 H

[1,5]
2,2

H
[2,1]
2,2 H

[2,4]
2,2 H

[2,5]
2,2

H
[3,1]
2,2 H

[3,4]
2,2 H

[3,5]
2,2



u
[1]
2

u
[4]
1

u
[5]
1

 ,


y
[1]
4

y
[3]
4

y
[4]
4

 =


H

[1,1]
4,4 H

[1,5]
3,4 H

[1,2]
4,4

H
[3,1]
4,4 H

[3,5]
3,4 H

[3,2]
4,4

H
[4,1]
4,4 H

[4,5]
3,4 H

[4,2]
4,4



u
[1]
3

u
[5]
2

u
[2]
3

 .

Hence, each receiver can decode all the symbols sent by
the respective transmitter w.p.1. It is straightforward to check
that DoFdO (12) degrees of freedom are achieved w.p.1.
Hence, Proposition IV.1 is proved.

V. REMARKS

The DoF achievable by our two algorithms, in which all
the transmitter/receiver pairs are active at the same time,
attain their maximum at M = 3, which is the case probed
by Maleki et al. in [8]. Since the DoF of our algorithms
find their maximum at M = 3, it is straightforward to see
that larger DoF - 9/8 in (i) and 6/5 in (ii) - are easily
achievable, for any number M of users, by letting triplets of
transmitter/receiver pairs orthogonally sharing the channel and
subsequently applying the algorithms in [8], which coincide
with ours for M = 3, within each orthogonal subchannel.
Hence, our work suggests that, for all M and in the two
cases (i) and (ii), the strategy maximizing the DoF entails
that exactly three transmitter/receiver pairs are simultaneously
active.
Nonetheless, there seems to be room for improving our results.
At first glance, the case of delayed CSIT seems to be more
promising: Phase I might be shortened in order to start
exploiting in advance the information about the past channel
state. Hence, an additional middle phase should be devised.
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APPENDIX

Proof of Lemma III.2
Proof: (⇒) Take D = minm Dm ≥ 1. Suppose that

condition (3) holds. We want to prove that the rank of matrix
S̃[j] is n, w.p.1. Let us set j ∈ [1;M ]. By construction, for all
m = 1, . . . ,M , w.p.1

a) the rank of the n-by-n matrix Ṽ[m] is at least D;
b) any subset of D rows of Ṽ[m] forms a submatrix with

rank D.
Let us call with Ω the event that conditions a) and b) are
jointly satisfied. We call with {H̃} and {Ṽ} the collection of
all the elements of matrices H̃[j,i] and Ṽ[i] respectively, with
i = 1, . . . ,M . Let Ψ({H̃}, {Ṽ}) be the event that the matrix
S̃[j] is full rank when {H̃} and {Ṽ} are fixed. Let fH,V(.)

be the joint probability density function associated to {H̃, Ṽ}.
Then we can write prob[Ψ] as∫

{Ṽ}

∫
{H̃}

1I
[
Ψ({H̃, Ṽ})

]
fH,V({H̃, Ṽ})dH̃dṼ =∫

{Ṽ}:Ω

∫
{H̃}

1I
[
Ψ({H̃, Ṽ})

]
fH({H̃})fV({Ṽ})dH̃dṼ, (15)

since {H̃} and {Ṽ} are independent and Ω is verified almost
surely. So we suppose that conditions a) and b) are valid for
sure, and we want to prove that∫

{H̃}
1I
[
Ψ({H̃, Ṽ})

]
fH({H̃}) dH̃ = 1, (16)

for all the coefficients {Ṽ} such that Ω is verified. Indeed,
if (16) is verified, then evidently prob[Ψ] = 1 from (15).
Therefore, in the following we will fix {Ṽ} and we will find
a minor of S̃[j] which is nonnull almost surely. Consider the
following set of indices:

im = (m− 1)D + 1 : min(n,mD), m = 1, . . . , ⌈n/D⌉.

For condition b), the rows of the submatrix Ṽ
[m]
im,∗ are lin-

early independent, hence thanks to relation (3) there exist a
collection of indices cm with the same cardinality as im such
that

det
(
Ṽ

[m]
im,cm

)
̸= 0, ∀m = 1, . . . ,M. (17)

Let us build the following n-by-n submatrix of S̃[j]:

L[j] ≡
[
H̃[j,1]Ṽ

[1]
∗,c1 , H̃[j,2]Ṽ

[2]
∗,c2 , . . . , H̃[j,⌈n/D⌉]Ṽ

[⌈n/D⌉]
∗,c⌈n/D⌉

]
.

We prove now that the matrix L[j] is non singular w.p.1.
The determinant of L[j] can be expressed as a polynomial
whose (independent random) variables are the diagonal chan-
nel coefficients of H̃[j,m], with m = 1, . . . , ⌈n/D⌉, and whose
(deterministic) multiplicative coefficients are {Ṽ}. We will
show that such a polynomial is not identically zero, i.e. there
is at least one coefficient which is nonnull.



By the Laplace Expansion Theorem [13], it is easy to see that
one of the terms of the polynomial determinant of L[j] is

⌈n/D⌉∏
m=1

det
(
H̃

[j,m]
im,im

Ṽ
[m]
im,cm

)
=

⌈n/D⌉∏
m=1

det
(
H̃

[j,m]
im,im

) ⌈n/D⌉∏
m=1

det
(
Ṽ

[m]
im,cm

)
. (18)

Hence, the first productory in (18) becomes the product of
polynomial variables, while the second productory is the
deterministic multiplicative coefficients, which is nonnull by
(17). Therefore, expression (16) holds and the rank of matrix
S̃[j] is n.
(⇐) Conversely, let us suppose that K > n/M . In order to
ensure that Phase II is still feasible, we also need to impose
D ≥ 1, i.e. n/M < K ≤ n/(M − 1). We want to prove that
the matrix S̃[j] is rank deficient with nonnull probability. We
will show that, for any m = 1, . . . ,M ,

rank
(
S̃[m]

)
≤ MD = M(n− (M − 1)K) < n, (19)

with nonnull probability. It is sufficient to prove that, with
nonnull probability,

rank
(
H̃[i,j]Ṽ[j]

)
≤ D, ∀ i, j. (20)

With probability ϵ > 0, the rank of matrix Ṽ[j] is D and then
there exist n − D independent and nonnull n-by-1 vectors
β
[j]
1 , . . . , β

[j]
n−D such that

β[j]T

k Ṽ[j] = 0T
n , k = 1, . . . , n−D, j = 1, . . . ,M.

Since H̃[i,j] is non singular w.p.1, then we can write equiva-
lently

β[j]T

k [H̃[i,j]]−1H̃[i,j]Ṽ[j] = 0T
n , k = 1, . . . , n−D.

The vectors {β[j]T

k [H̃[i,j]]−1}k are independent and nonnull
w.p.1, therefore relation (20) holds and the rank of S̃[j] is
strictly less than n with nonnull probability, q.e.d..
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