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Abstract. After a decade of existence, still, Cross-site scripting, SQL
Injection and other of Input validation associated security vulnerabili-
ties can cause severe damage once exploited. To analyze this fact, [14]
conducted an empirical study, while OWASP and SANS defined their re-
spective risk-based approaches. Taking these results into consideration,
three deficiencies can be highlighted: a lack of up skilling developers, a
high ratio of false positive findings in security code scanners and an er-
roneous planning of security corrections. In this paper, we present how
using the Eclipse platform and the JDT compiler, a proper tooling can
be provided to overcome these deficiencies. We present a static analyzer
that assists developers to report these security vulnerabilities. We show
as well how we integrate an Aspect Oriented tool for semi-automated
correction of these findings. Both tools are designed within an architec-
ture that is monitored by security experts and particularly adequate for
agile development.

1 Introduction

Fixing security vulnerabilities before shipment can no more be considered op-
tional. Most of the reported security vulnerabilities are leftovers forgotten by
developers, thought to be benign code. Such kind of mistakes can survive unau-
dited for years until they end up exploited by hackers.

While computer security is primarily a matter of secure design and architec-
ture, it is also known that even with best designed architectures, security bugs
will still show up due to poor implementation. Different techniques have been de-
veloped to identify security bugs along the software development lifecycle, from
code review to penetration testing. In this paper we focus on static code analy-
sis, an automated approach to perform code review. This technique analyzes the
source code and/or binary code without executing it and identifies anti-patterns
that leads to security bugs. Modern static analysis tools, similarly to compilers,
build an Abstract Syntax Tree - a tree representation of the abstract syntac-
tic structure - from the source code and analyze it. Static analysis can report



security bugs even when scanning small pieces of code. Another family of code
scanners is based on dynamic analysis techniques that acquire information at
runtime. Unlike static analysis, dynamic analysis requires a running executable
code. Static analysis scans all the source code while dynamic analysis can verify
certain use cases being executed. The major drawback of static analysis is that it
can report both false positives and false negatives. The former detects a security
vulnerability that is not truly a security vulnerability, while the latter means
that it misses to report certain security vulnerabilities. Having false negatives
is highly dangerous as it gives one sensation of protection while vulnerability
is present and can be exploited, whereas having false positives primarily slows
down the static analysis process.

This paper focuses on security vulnerabilities caused by missing input val-
idation, and presents how static analysis with semi-automatic fixing can help
developers to make more secure software. More in detail we focus on three vul-
nerabilities caused by missing input validation, or mis-validation of the input :
SQL Injection, Cross Site Scripting (also called XSS) and Path Traversal. Input
validation refers to the process of validating all the input to an application be-
fore using it. The paper is structured as follows : Section 2 presents an overview
of how static analysis can be integrated into an agile software development life-
cycle. Section 3 gives an overview of the architecture of the static analysis tool,
while Section 4 gives some explanation of how our static analysis process works.
Section 5 presents how semi-automated correction of detected security issues
can improve developers work. Section 6 presents related work and we finish with
Section 7 that presents our conclusions and ideas for future works.

2 Static analysis into the Secure Development Lifecycle

Agile approaches to software development require that the code is refactored,
reviewed and tested at each iteration of the development lifecycle. While unit
testing can be used to check if functional requirements are fulfilled during it-
erations, checking emerging properties of software such as security or safety is
more difficult. Several approaches were presented in order to integrate security
into agile development lifecycle. As example the Agile version of the Microsoft
Security Development Life Cycle [15], i.e. A-SDL, presents static analysis tools
as means to fulfill certain security requirements. Those security requirements
are expected to be checked during every Sprint of Scrum project. Without auto-
mated tools, the verification would not scale to be accomplished in every Sprint.
The current static analysis tools, mostly separated from the development en-
vironments, require in most cases deep knowledge of security vulnerabilities to
distinguish false positives from true positives. Typically security experts are the
dedicated team that analyse projects for all of the company. An adoption of such
an agile security development approach would not be feasible in such settings as
it would be against Scrum principles.

Even when static analysis tools discover security vulnerabilities, determining
which of these reported vulnerabilities are false positives and which are true
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positives, in addition which from the true positives can actually be exploitable,
required deep knowledge in the code being scanned. From a planning perspective,
a conflict can be highlighted between the need of certain security expertise to
analyse the reported results and the expertise of the product development. This
expertise mismatch would cause a considerable waste of resources since the teams
expected to verify security vulnerabilities, i.e. the code analysis team, would be
looking into leftovers, possibly vulnerabilities, without knowing the expected
behaviour and especially external interactions.
Maintaining the separation of roles between the security experts performing the
code scanning and the team members developing the application raise a critical
complication, typically, from a time perspective, due to the human interaction
between security experts and developers. If such an approach would have to scale
to what most of the agile approaches describe, the amount of iteration between
developers and experts would need to be reduced. That could be reduced by
upskilling the developers and reducing the interaction between them and the
security experts for the analysis of the security scans of the project.
While a centralized team for the static analysis that analyse full projects at
the end of the security development lifecycle is useful, including static analysis
into an agile approach is a way to improve the efficiency and to reduce the
cost of the static analysis process. A deep analysis has been conducted in [11]
representing error introduction, detection and repair costs along the software
lifecycle. Whereas issues are introduced early in the lifecycle, from conceptual
design with a peak at the programming phase, they are detected from unit
testing to operational phase. The cost to repair errors prior to testing is rather
low. But it significantly increases over the last phases with a maximum peak
during system operation [1].

This work aims to provide to each developer a simple way to do daily static
analysis on his code. That would be properly achieved by providing a centralized
architecture that allows the security experts to assist the developers in any of the
findings. Typically that would include verifying a false positive and adjusting the
code scanner test cases, or assisting in reviewing the solutions for the fixes. This
approach has some advantages over the approach in which the static analysis
stays only at the end:

1. The development group has the expertise of the context with which the
project works.

2. Security experts, in charge of the code scanning, can interact with the de-
velopment team on a case by case basis to fine tune the code scanner test
cases and algorithm.

3. Fixing the bug into the development phase requires less time since the find-
ings and the corrections are undertaken by the development team that wrote
the code.

4. Solving security issues into the development phase can reduce the number of
issues that the security experts should analyse, in this way we could reduce
the costs.
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3 Architecture

The previous section explains the advantages acquired by using our approach
in an agile and decentralized static analysis process early in the software devel-
opment lifecycle. It raises security awareness for the developers at the time of
development and thus reduces cost expected for the after development fixes. In
order to take advantages of static analysis support into daily work, we found
that our prototype must fulfill the following requirements:
1. It must be user friendly especially for users that are not security experts.
2. It must be integrated into the developers’ daily development environment,

to maximize adoption and avoid additional steps to run the tool.
3. It must run with a reduced number of lines of code (as expected to be daily

scans), but also must scale to large amount of code.
4. It must have access to a security knowledge database, created and maintained

by security experts. Developers can help build up the knowledge database by
reporting their experience about classes, methods and packages. Generally,
developers can tag such element as trusted or not.

5. It must support developers in correcting issues. Also, the prototype can
educate developers to understand why this error happen and what are the
steps to mitigate the error and avoid it in future development.

Fig. 1. Architecture

Figure 1 represents the architec-
ture of our prototype. First of all,
we consider two main stakeholders in-
volved in the configuration and usage
of the prototype. Security experts re-
group different profile whose role is
to provide and configure Knowledge
Database in order to avoid false pos-
itives and negatives. They have three
main tasks. First, they update the
Knowledge Base, adding to it classes
or methods that can be considered
as trusted for one or more vulnera-
bilities. Second, they are in charge of
running the static analysis at the end
of the Software Development Lifecy-
cle using standard commercial tools.
If the results of the final static analysis highlight some false negatives, vulner-
abilities that our tool did not catch before, security experts must modify the
Knowledge Base accordingly. In this way we can have a double check on the
results of static analysis and on the accuracy of the trustiness definitions. Third,
they receive feedback from developers on possible trusted objects for one or more
security vulnerabilities; they must analyse them more in detail and, if these ob-
jects are really trusted they tag them as trusted into the Knowledge Base. The
second role is the developer, interacting directly with the static analysis engine
to verify vulnerabilities in application, code and libraries under its responsibility.
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The knowledge base is shared among developers that can enhance it over time,
by reporting feedbacks to security experts. It contains all the security knowledge
about trustiness : objects that don’t introduce security issues into the code.
Security experts maintain and keep under control the definitions used by all de-
velopers in an easy way using web application or Web-Services. In this way the
code scanner testing rules will be harmonized for all the application or even the
company. The knowledge base allows developers to run static analysis. In the
context of this paper, we are interested in the prototype that allows daily scan
for developers. It is a plugin integrated into the Eclipse IDE that developers use
to write code. It uses the Abstract Syntax Tree generated by JDT compiler to
simplify the static analysis process, and it accesses the Knowledge Database via
Web-Services. The Eclipse plugin is made of different components, that leverage
decentralized approach for static analysis :
Static analysis engine It is the main component of our prototype and provide

developers with a static analyser that detects security issues related to input
validation problems. We will explain in detail our static analysis process in
Section 4.

Security Requirements evaluator Coding standards and guidelines can help
developers writing more secure code, also if they are not considered as silver
bullet solution for the security problem. In the state of the art a lot of
different standards exist, both from research and from software companies.
We focus on the Common Weaknesses Enumeration, developed by MITRE 1,
which is a list of software weaknesses. This component implements an engine
that checks if a small set of these weaknesses are present into the code.
Instead of creating a new policy language we choose OVAL [4], also from
MITRE, as a way to express the weaknesses as rules to be fed our code
scanner prototype. The existing tools for OVAL language aren’t focused at
source code level and thus we defined an extension of the language to support
programming concepts such as methods, fields, variables and so on and an
engine that evaluate our policies.

Semi-Automatic correction This component guide developers through the
correct and semi-automatic correction of vulnerabilities previously detected.
It uses information from the static analysis engine to know what vulnera-
bilities have to be corrected. Then it requires, through the plugin, inputs
from the developer to extract knowledge about the context. These steps al-
low to gather places in the code where to inject security correction, and
the concrete mechanisms to be called. The security correction injection uses
Aspect-Oriented Programming (AOP) paradigm that we further explain in
Section 5.

4 Static analysis process

Our approach is a static information flow analysis that does not consider context
sensitivity. Clearly our approach for the code scanner is expected, theoretically,
1 MITRE Corporation - http://www.mitre.org
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to be less performing than some of the related work but it showed comprehensive
results in practice. As already explained in Section 2, our static analysis tool does
not have the goal to substitute standard static analysis but only improve it and
integrate it into daily development lifecycle.

We define an input as a data flow from any external class, method or pa-
rameter into the code being programmed. So an untrusted input can be defined
as an input that we don’t know if it was validated for one or more security
vulnerabilities, while a trusted input can be defined as an incoming input from
a standardized implementation or from an unknown class or package that has
been tagged as validate for one or more security vulnerabilities. We define as
entry point any point into the source code where an untrusted input enters to
the program being scanned. In an analogous way we define as output any data
flow that goes from the code being programmed into external objects or method
invocations. We divide output in untrusted output, that is an output that we
don’t know if it will be validated for one or more security vulnerabilities from
the receiver, and in trusted output, that is an outcoming output to a standardize
implementation or to an unknown class or package that has been tagged as vali-
date for one or more security vulnerabilities, and finally we define exit point any
point into the source code where an untrusted output goes out of our program.
A trusted object is a class or a method that can sanitize all the information flow
from an entry point to an exit point for one or more security vulnerabilities.

Fig. 2. Code Analysis phase

The problem of identifying security vulnerabilities caused by errors in input
validation can be translated to finding an information flow connecting an entry
point and an exit point that does not use a trusted object for the considered vul-
nerabilities. Our approach rely on our trusted object definition, that impacts the
detection accuracy. We implemented the trustiness definitions into the central-
ized knowledge base presented in the previous section. The knowledge database
represents the definitions using a trusting hierarchy that follows the package hi-
erarchy. Security experts can tag classes, packages or methods as trusted for one
or more security vulnerabilities, accordingly to their analysis, feedbacks from
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developers or static analysis results. Obviously defining as trusted an element
into the hierarchy trust also all the elements below it (i.e. trusting a package
trust all the classes and methods into it and trusting a class trust all the fields
and methods in it). A trusted object can sanitize one or more security vulner-
abilities (e.g. sanitization for SQL Injection 2 is different from sanitization for
XSS). Thus users can tag an object as trusted for specific vulnerabilities. Using
this approach let users and security experts define strong trustiness policies. It
is the major contribution to bring deep knowledge of security for the success of
the process.

Fig. 3. Code Analysis result

Defining a trusted object is a strong assertion as it taints a given flow as
valid and free for a given vulnerability. The definition process to trust a class,
a package or a method is rigorous. The object must not introduce a specific
vulnerabilities into our code. This is the reason why developers report feedback
and security experts decide. The experts can also analyse, manage and update
the base, if the class, package or method is considered trusted. This phase allows
system tuning that is related to a given organization and leads to lesser false
positives while ensuring no false negatives.

The integration into Eclipse (cf Figure 2) means the developer can run it
anytime to verify code validity with regards to aforementioned vulnerabilities. It
also allow the usage of the Abstract Syntax Trees generated by the JDT compiler
during the static analysis process. The process can be divided into the following
phases:
Entry Points detection It starts with entry points identification from the

source code. It lists all inputs from the program and select untrusted ones.
Construction of the information flow It builds the information flow repre-

sentation from the source code, and detects all the statements that could
propagate input.

Exit Points detection and evaluation It analyses the data through infor-
mation flow history and detect non-sanitized flow. Upon detection of infor-
mation flow connecting entry points and exit points with no trusted objects,
it detects one or more vulnerabilities.

2 SQL Injection is best solved using parametrized queries, but in some cases that is
infeasible and therefore we try to detect those cases.
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The detected vulnerabilities are mainly caused by lack of input validation,
namely SQL Injection, Directory Path Traversal and Cross Site Scripting. The
engine detects also a more general Malformed Input vulnerability that represent
a general input that is not validated using a standard implementation. The
engine can be easily extended to support new kinds of vulnerabilities caused by
missing input validation, simply adding the definition of the new vulnerability to
the centralized knowledge base (and, if exist, adding trusted objects that sanitize
it), and creating a new class, that extends the securitytools.Test interface, that
implements the checks to do on the result of the static analysis to detect the
vulnerability.

Figure 3 shows the results of the static analysis on a given project. The
project contains several files that have incorrect treatment that leads to er-
rors from Malformed Input to Cross-Site Scripting. Regarding the file RestSer-
vices2.java, shown in Figure 2, the Security Errors View show that at line 36
the variable query is initialized with the parameter query from an HttpServletRe-
quest object that is considered as untrusted entry point generating a Malformed
Input vulnerability. The tool detects also that at line 69 the same variable is
passed as argument to the method write of a PrintWriter object without proper
validation, thus causing a Cross Site Scripting Vulnerability. Providing such a
view allow developers to track errors on their code and quickly jump from one to
another to correct them. As the correction is error prone, we though as a good
idea to provide a semi-automatic correction to assist the developer in mitigate
vulnerabilities.

5 Automation on security vulnerability correction

The approach we describe comprises the automatic discovery of vulnerability
and weaknesses in the code. In addition, we propose to integrate a protection
phase after the static analysis process. This approach distinguish our work from
state of the art, and is a natural continuation to fix issues : once vulnerabilities
have been discovered, we can immediately apply mechanisms to mitigate risk. In
this section, we present first the concepts behind the automatic correction that
leverage AOP usage, then we explain how automation is made possible thanks
to the agile approach with developer involvement.

To begin with, Aspect-Oriented Programming [9] (AOP) is a paradigm to
ease programming concerns that crosscut and pervade applications. The term
has been coined around 1995 by a group led by Gregor Kiczales, with the goal to
bring proper separation of concerns for cross cutting functionalities. The aspect
concept is composed of several advice/pointcut couples. Pointcuts allow to de-
fine where (points in the source code of an application) or when (events during
the execution of an application) aspects should apply modifications. Pointcuts
are expressed in pointcut languages and often contain a large number of aspect-
specific constructs that match specific structures of the language in which base
applications are expressed, such a pattern language based on language syntax.
Advices are used to define modifications an aspect may perform on the base
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application. Advices are often expressed in terms of some general-purpose lan-
guage with a small number of aspect-specific extensions. The process to inject
aspects into the base application is called weaving. The main advantage using
this technology is the ability to intervene in the execution without interfering
with the base program code, thus facilitating maintainability.

Fig. 4. Gathering context for vulnerability protection

AOP is a good candidate to correct security concerns, and we have decided
to adopt it in our approach. As we explain in previous section, requirements
specific to this technology have to be respected : definition of the code advice to
mitigate a vulnerability and definition of the pointcut to link the aspect to the
base application. The former is facilitated by the Static Analysis Engine that
detects a definite set of vulnerabilities. From each vulnerability, it is possible to
come with a correction library that is specific and known in advance. The latter
is linked to the Static Analysis results, that indicates which vulnerability occurs,
at specific places across the application.

The developer does not need to be security expert to correct vulnerabilities
as the plugin provides interactive steps to understand the context. The developer
decides to apply a patch at a specific place for a given vulnerability. It generates
automatically a piece of code which is a patch to be applied at runtime. This
patch system is managed thanks to AspectJ, and the security plugin takes care
of dynamically generate aspects snippets. The red square depicted in Figure 4
highlights plugin’s integration with developer’s workbench. The marker provides
link to more information on the security vulnerability and how to correct it
manually. But it also guides developer step by step towards correction. More
precisely, the developer is able to dig into a specific vulnerability and observe
impacted code. The corresponding Abstract Syntax Tree is shown to let the
user decide the most appropriate location where to apply the correction. For
instance, the developer needs to mitigate a malformed input risk (Figure 4).
To mitigate it, the developer has the choice to provide early correction through
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input validation, and late correction with proper encoding to avoid further client
side misinterpretation. For the latter, the user decides which encoding function
has to be applied.

Fig. 5. Correction applied

Once developer specified the context and decided to apply the correction, the
plugin generates a correction aspect that is added to an internal list of correc-
tion (cf Figure 5). The list allows developers to know how code is impacted. The
plugin uses this list at the build time, to embed security mechanisms along bina-
ries. The plugin configures Eclipse build system to automatically weave aspects
into the system, without intervention from the developer. It ensures a better
modularity with regards to the security, and allows one to correct weaknesses
discovered thanks to the previous automation.

Automatic correction integrated in an Eclipse plugin is made possible thanks
to inputs from the developer but also thanks to knowledge of vulnerabilities
location. The automation brought by the Eclipse plugin allows a broader and
consistent application of security across applications. We are yet at an early
stage of this work and would like to investigate different impacts of agile and
decentralized approach with this system. The first impact is conflict analysis
when several aspects impact a path part of the Abstract Syntax Tree. A single
application using different aspects woven at different nodes along tree-path can
invalidate the initial goal - apply protection. For instance, a web application
encoding a parameter twice leads to an improper correction. The conflict analysis
is even bigger when one consider several developers participating to a single
project. Each collaborator can introduce aspects mechanisms that can bring
side-effects. To overcome these issues, the knowledge database can be used to
optimize aspect application and requires security expert to decide when a conflict
is undecidable.

6 Related Work

The interest into static analysis field has grown over the last decades and brought
advancement in the field. Different approaches exist to perform static analysis,
from first static analysis tools that uses simple pattern matching techniques,
such as RATS or ITS4 [2], to tools that use complex techniques that relies on
data flow analysis with context sensitivity, such as the ones presented in [10] or
[12]. Different approaches, such as [7] or [16], use string analysis, presented in [3],
to detect SQL Injection vulnerabilities. Pixy, presented in [8], is a tool that use
data flow analysis to detect XSS vulnerabilities for PHP code. This work differs
from our primarily for the language and for the approach that is not integrated
into the daily development lifecycle.
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Commercial tools, such as Fortify3 or CodeProfiler4, can detect also input
validation errors, often they can work on more than one programming language,
and they are optimized to scan very large code base, such as hundreds of thou-
sands of lines of code. Their defect, for us, is that they require specific knowledge
in order to use them. Also, they don’t provide decentralized approach to embed
static analysis process in software lifecycle. Findbugs5, developed by University
of Maryland, is a static analysis tool to detect bugs into Java code. It provides
several front ends, including an Eclipse plugin. The focus is more bug oriented
rather than security flaw detection.

Several Eclipse plugins have been developed. Benjamin Livshit released-
LAPSE [13] that provides static analysis to detect vulnerabilities in Java web ap-
plication that implements results presented in [10]. CodePro Analytix, by Google
[6], provides several tools to improve software quality and a static analyzer. It
search for security bugs, such as errors caused by a lack of input validation, and
it allows the user defining what classes and methods could be considered tainted
sources or tainted sinks. SSVChecker, presented in [5], executes different static
analysis tools (in detail RATS, ExPat and Tuits4) to detect bugs into C/C++
source code. It gives to users the possibility of making operations of union and
intersection on results provided by different tools. As it uses other tools, it has
all the advantages and drawbacks of them. LAPSE and CodePro Analytix differ
from our work as they do not propose decentralized management of security
knowledge.

7 Conclusions and Future Works

In this paper, we presented an agile and decentralized approach for static anal-
ysis where developers are required to analyse code they produce with expertise
support. The code analysis process is embedded in the security lifecycle to be
maintainable by security experts while applicable by developers. We make usage
of the day-to-day development environment tools - aka Eclipse - to automate the
process and integrate a solution closer to the developer. A single environment
allows from detection to correction and track of common vulnerabilities during
the development phase.

Currently, the tool we created support major flaws in web applications, but
we oriented the architecture towards modularity. We allow ones to describe new
vulnerabilities in an inter-exchange format based on OVAL language. The tool
also guide developers towards vulnerability mitigation using Aspect-Oriented-
Programming concepts to separate correction logic from application logic when-
ever it is possible.

3 Fortify 360 - https://www.fortify.com/
4 CodeProfiler - http://www.codeprofilers.com/
5 Findbugs - http://findbugs.sourceforge.net
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