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ABSTRACT
Since the very beginning of space exploration, cosmonauts
have suffered from weight losses which need to be particu-
larly monitored during long term missions in space stations
to insure their health and well being. In 1965-6 Thornton
successfully built a device able to measure the body mass
of cosmonauts in the micro-gravity space environment using
passive linear spring-mass oscillators. Since then, space sta-
tions have been equipped with labs containing, among others,
bulky devices like Thornton’s. In this work we report recent
advancements in computer vision algorithms allowing us to
estimate the weight of a person within 4% error using 2D and
3D data extracted from a low-cost Kinect RGBD camera out-
put.

Index Terms— Body mass estimation, anthropometry,
soft biometrics, Kinect

1. INTRODUCTION

On April 12, 1961, the Soviet cosmonaut Yuri Alekseyevich
Gagarin orbited the Earth, for the first time in the history of
mankind; since then, in the last 40 years more than 500 cos-
monauts [1] have been sent to the space.

One of the findings throughout the history of spaceflights
concerns the loss of body mass that affects cosmonauts [2].
Typically, these losses are small (about 2%), but they can
reach up to 10 to 15 percent of preflight body mass in par-
ticular cases. Most of the observed loss of body weight is
accounted for by loss of muscle and adipose tissue [3]. As
a matter of fact, micro-gravity severely changes the human
physiology leading to loss of muscle mass and muscle vol-
ume, weakening muscle performance, especially in the legs.

To avoid some of these phenomena, since the 70’s, cosmo-
nauts are given precise exercises and feeding routines which
were, in the following years, gradually adjusted and incre-
mented to the current levels [3]. As a result, in a typical day
on board of the International Space Station, crew members
spend twelve hours working, two exercising, two preparing
and eating meals, and eight hours sleeping. Weight, or more
generally body mass, has been always considered as a good
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Fig. 1. The images shows the Thornton first experimental
device (a), and the last and still used Russian BMMD device
(b).

indicator of correct nutritional status and well being; however,
a problem still exists on how to measure and track cosmo-
nauts’ weight in micro-gravity conditions.

Over the centuries, two main methodologies have been
adopted to measure the weight of an object: the spring scale
and the balance. Unfortunately, both of these techniques
make the assumption that a relatively strong and constant
gravity acceleration field is affecting the object we want to
weigh.

Because in space this assumption is not true, in order
to measure mass during spaceflights, an acceleration field
must be artificially generated. In 1965/66 the US cosmonaut
and researcher William Thornton, developed and tested a de-
vice (Fig. 1.a) that, making use of a passive calibrated linear
spring, was able to estimate mass of objects by computing
their characteristic frequency of vibration. Since then, simi-
larly designed devices are sent into space to measure the mass
of cosmonauts, garbage containers, and scientific specimens.

The current technology for weighing cosmonauts involves
a precisely calibrated spring attached to a support to which
the cosmonaut is rigidly fastened and which is moved several
times to estimate the kinematics of the structure and thus the
mass of the cosmonaut (see Fig. 1.b).

Such a system assumes the cosmonaut to be a rigid body
during accelerations and decelerations, and it requires both
space and energy, two resources which are quite scarce in
space explorations. The precision of such a system, has been
recently debated [4, 5, 6], especially due to deviation from the



baseline which can be in the order of 6 to 7 kilograms for the
latest NASA device, the SLAMDD, and in the order of 2 kilo-
grams for the latest Russian BMMD device currently serving
the European International Space Station.

2. VISION BASED WEIGHT ESTIMATION

Vision is a very interesting way to estimate the weight of a
subject; in fact, such approach is used in hospitals during
emergencies. In space, cameras (possibly 3D) could easily be
integrated into the walls and automatically record cosmonauts
in their daily life autonomously tracking their weight several
times a day unobtrusively, accurately, and even without the
need for cooperation.

To the best of our knowledge only two works have tried
to exploit vision based algorithms to estimate the weight of
a subject. In [7] the authors use the evidences from crime
scenes to collect footprints and link them with the weight of
the suspects. The study concludes that the body weight has a
strong correlation with the footprint.

In [8], Velardo and Dugelay demonstrate that it is feasible
to estimate the mass/weight of a person by means of soft bio-
metric analysis through computer vision techniques with rea-
sonable error ratios. Velardo’s technique makes use of 7 an-
thropometric measures (height, upper leg length and circum-
ference, upper arm length and circumference, waist and calf
circumferences) to estimate the mass of the body by means of
multiple linear regression methods.

The system elaborates pictures to estimate people weight.
The estimate differs from the true value with an average error
of 4.3%. Supposing a 80 kilograms average weight of cosmo-
nauts this translates into an error of ±3.44 kilograms which
is in-line with the results of the much more expensive, energy
and space consuming, NASA SLAMDD device [4, 5, 6].

The main limit of [8] is that features are computed off-line
by manually tagging subjects’ anthropometric measures.

In this work we present our preliminary results as well
as our plans for the development of next generation vision
based weighing device. Similarly to Velardo and Dugelay
we took inspiration from the anthropometric measures con-
tained in the National Health and Nutrition Examination Sur-
vey (NHANES) database 1.

The NHANES data set was collected from a large pop-
ulation of individuals (more than 28000 people), over a pe-
riod of 6 years (from 1999 to 2005) by the U.S. Centers for
Disease Control and Prevention. The purpose of the survey
was monitoring American population, and assessing health
and nutritional conditions of adults and children in the United
States. From all the measurements available in the database,
we retained only the ones that are directly measurable on the
subject (i.e. discarding values like the skin-fold’s measures).

The paper is organized as follows: in Section 3 we discuss

1www.cdc.gov/nchs/surveys.htm

Table 1. Gender estimation confusion matrix.
Male Female

Male 83.4% 16.6%
Female 22.3% 77.7%

our improvements on the estimation from anthropomeasures,
in Section 4 we introduce our automatic system to estimate
measures from 3D data, and we will present our results. In
Section 5 we summarize our work and present our future re-
search.

3. FROM ANTHROPOMEASURES TO WEIGHT

In order to understand the limits of a vision-based system for
human weight estimation the first part of this work is dedi-
cated to push the estimates of weight further than it was done
by Velardo and Dugelay [8] by limiting the sex and age of the
subject and by testing more complex classification methods.

In the future a biometric system such as face recognition
could recognize the subject and give us the exact age, sex,
expected anthropometric measures, and many other a-priori
knowledge that could help the weight estimate. At present
we are constraining the database to represent as closely as
possible the space environment. In particular, considering that
about 65% of the cosmonauts are selected by the US and age
between 26 and 46 years (the average age being 34 years) 2

we notice that the algorithm can be designed and targeted to
work by exploiting such prior information.

To top that, we can exploit the visual appearance of the
subject to figure out the sex of the cosmonaut using computer
vision algorithms. As an example, by using a binary Artificial
Neural Network (ANN) classifier that learns how to recognize
the gender of subjects from the limited set of anthropometric
measures represented by NHANES, we can achieve a prelim-
inary accuracy of over 80% (see Tab. 1). Possible improve-
ments in that direction may be introduced by increasing the
set of measures, or, for example, by coupling other modalities
(e.g. RGB image analysis).

We report here the weight estimation result obtained by
selecting (from the 28.000 subjects of the NHANES database)
entries corresponding to the two separated male and female
classes which only includes people older than 20 years. For
the sake of brevity we will discuss only the results for the
male class, the considerations are equal for the female class
since the performance do not vary considerably.

The results shown in Fig. 2 are obtained using an ANN
with a single hidden layer consisting of 5-neurons and a hy-
perbolic tangent sigmoid transfer function. We obtain that,
over the entire male class, the mean absolute relative error is
0.023, thus in average the system error falls within the range
of ±2.3%.

2http://astronauts.nasa.gov/content/faq.htm
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Fig. 2. In our theoretical test a subset of people divides the
database respectively by age (older than 20 years), and by
gender. Figure (a) shows the probability density function of
the error as percentage over the actual weight of the subject,
while figure (b) depicts the cumulative density function.

In figure 2.a the probability density function is Gaussian
shaped with a standard deviation of 0.032 meaning that 95.5%
of estimates fall into the range of 2×σ = 6.4% relative error.
This is better visible in figure 2.b that shows the cumulative
density function of the absolute relative error. For the male
class the entire dataset is covered considering a relative error
of 0.1 = 10% (almost 3 × σ = 9.6%, thus 99.7% of the
dataset). These results improve the ones proposed by Velardo
and Dugelay in [8], such improvement is due to a cumulation
of factors. From the one side, it is clear that being the ANN
approach a non linear regression technique, it is more capa-
ble of modeling non linear relationships among measures and
weight of the subjects. On the other hand by selecting only
a specific gender and age subset helps the regressor to find a
more suitable way of estimating weight.

The result just presented in this section is interesting be-
cause it shows us what could be a theoretical limit to weight
estimation through visual analysis. To our knowledge this
limit could be further improved if additional anthropomea-
sures are considered, thus increasing the complexity of the
computer vision algorithms and sensors.

4. AUTOMATIC VISION-BASED WEIGHT
ESTIMATION

In order to build an automatic vision-based weight estimation
we set up a system using a Microsoft Kinect sensor. We are
able to extract height, weight, and gender information from
the user according to our previous conclusions on anthropo-
metric measures.

As a first step we capture the output of the Kinect sen-
sor with the OpenNI framework from Primesense 3 and ex-
ploit the OpenCV 4 and PCL 5 open source libraries to ex-
tract the silhouette of the people moving in front of the 3D
sensor. Background subtraction and blob tracking algorithms
automatically segment and track each single user so that the
analysis can be performed separately and in parallel for each
person. The segmentation algorithm takes advantage of the
continuity of human body surface to classify vertices belong-
ing to the same object. Once the user presence is recognized,
his/her bounding volume is extracted thanks to the point cloud
coordinates. A simple sorting allow us to extract the informa-
tion about the minima and the maxima in the 3D point cloud,
which are rearranged as corners of the bounding volume.

To automatically measure height, we look for in the
upper-central part of the bounding volume where presumably
the head is located. Here we extract the 3D information for
the outermost points of the silhouette. A similar approach is
performed for the lower part were the feet are located. Height
is then measured as distance between these two extrema
(head and feet locations). Afterwards, we exploit the skele-
ton tracker embedded in the NITE framework to locate the
limbs of each user. In our system, the user has the possibility
to trigger the automatic estimation assuming the calibration
pose required by the skeleton tracker (i.e. both arms up with
the elbow flexed 90◦, also known as Ψ pose). As the calibra-
tion pose is hold for a few seconds the system immediately
triggers the measurement step which computes lengths and
estimates the required circumferences of the limbs. In order
to stabilize and filter out the outliers we apply a median fil-
tering approach, over time, for all the repeated measures; this
processing step is needed due to the noise produced around
the edges of the silhouette by the 3D sensor.

Once all the measures are extracted the weight is esti-
mated. One important factor that influences the precision
of such a system is the accuracy of the estimated measures.
While in case of direct measurements on the subjects’ body
the source of error is primarily due to the tape meter and mea-
suring pose, in a scenario that gives to the user no constraints
of movements (basically just a pose to hold) the sources of
error are numerous. Both the sensor and the slight motion
of the user concur to increase imprecision. We tried to over-
come the flickering due to the sensor error by smoothing the

3www.openni.org
4http://opencv.willowgarage.com/
5www.pointclouds.org
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Table 2. The estimation of extrapolation factors that link real
with sensed circumferences.

Measure Extrapolation factor
Arm circumference 2.7
Waist circumference 1.5
Leg circumference 2.8

Table 3. The estimation error for the automatic analysis of
10 out of 15 people of the 3D dataset we recorded using the
Kinect sensor.

Measure Absolute Relative
Error Error

Height 1.9 cm 1.1%
Arm length 3.6 cm 12.3%
Arm circumference 3.2 cm 10.7%
Waist circumference 8.4 cm 10.0%
Leg length 2.9 cm 6.2%
Leg circumference 1.7 cm 3.4%
Weight (absolute) 2.7 Kg 3.6%

depth values with an hybrid approach where both the 2D and
3D information are used together. We smooth the depth map
convolving its 2D projection with a Gaussian kernel (3 × 3)
and then we remove the outliers at the edges by taking only
the pixel belonging to the binary mask provided by the back-
ground separation algorithm.

Although the technology of Primesense’s sensor em-
ployed in the Kinect provides more resolution than an equiv-
alent time of flight camera, at a 3 meters distance (so that
the user is completely visible), does not provide much depth
resolution. This leads to the impossibility of recovering with
enough accuracy the dimensions of the arms, that at this
distance appear almost as flat surfaces.

In order to validate the results of our limb measurement
and weight estimator, and following the guidelines of [8], we
recorded a database composed of 15 different subjects. Each
of them was recorded using the Kinect sensor while perform-
ing the calibration pose. Each subject was casually dressed.
The calf circumference is not considered in the process be-
cause trousers represents a big limiting factor as they particu-
larly hide the shapes at the ankles.

For the circumferences considered in our system (arm and
leg circumferences, and waist) we have to find correspon-
dence between the sensed and the real dimensions. To do
so, a set of 5 random candidates was used to “train” our sys-
tem by computing multiplicative factors that could link ex-
tracted measures from real values. The corresponding values
are shown in table 2.

Provided the results of the “training” step, we performed
the estimation of the set of measures from the remaining 10
subjects. The resulting estimation errors are summarized in

table 3. Bigger error in the estimate of the arm dimensions
and waist circumference are understandable. The clothes for
the waist, and the limited depth precision for the arms have
a big impact in the estimation performance of this two body
parts. Nevertheless, our system is capable of providing an
error range of ±2.7 kilograms, exactly in the same range pro-
vided by its more complex equivalents and close to the theo-
retical value obtained in Section 3.

5. FURTHER WORK AND DISCUSSION

We have introduced the issue of determining the mass of peo-
ple in space micro-gravity environment and presented a solu-
tion to this challenge based solely on computer vision tech-
niques. Our technology relies on RGBD cameras such as the
Microsoft Kinect. The current development makes use of es-
timated anthropomeasures extracted from a frontal 3D view
of the user. Thanks to our algorithms we are able to extract
limbs measurements and to estimate subjects’ weight up to
2.7 kg average absolute error. Future work will focus on fur-
ther ameliorating the quality of the 3D reconstruction by both
using multiple (and therefore closer) Kinect sensors and im-
plementing algorithms specifically targeted at registering non
rigid structures like human body. In this way we plan on being
able to build a complete 3D model of a person from different
viewpoint and different body-postures. Finally, by combining
estimates from the BMMD, our Space Scale, and other tech-
nologies, we additionally plan to be able to evaluate over time
the quality of body mass lost in term of either bone, blood,
muscular, or fat masses.
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