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ABSTRACT
Home clients can use their access to the Internet for different
purposes such as file sharing via P2P applications, gaming,
or Web browsing; the last one is the focus of this work.
When browsing the Web, the time elapsed between the click
on a URL and the rendering of the Web page, referred to as
page load time, is the key performance metric. When the
page load time is higher than a few seconds, the user expe-
rience suffers significantly. We have developed a three-tier
system that (i) captures in the browser the events necessary
to measure the page load time (ii) captures at the network
access all incoming and outgoing packets, and (iii) correlates
the measurements made at different machines. The capture
at packet level allows us to compute the contribution of the
various steps that affect the page load time such as DNS
resolution, server response time, data transfer time. Cor-
relating the observations made at different machines that
share a major part of the network elements can help iden-
tifying the root causes for high page load times. We will
present the architecture of our system and some examples
that illustrate its use.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Measure-
ment techniques

General Terms
Measurement, Experimentation

Keywords
Web Browsing, Performance Evaluation, Troubleshooting

1. INTRODUCTION
“The only way to know how customers see your business

is to look at it through their eyes.”

Daniel R. Scroggin
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Web browsing is a very common way of using the Internet
access as it allows to access to a wealth of information. Ex-
amples for Web browsing are consulting a Wikipedia entry,
accessing a news site, doing some on-line shopping, or view-
ing user generated content such as YouTube or Dailymotion.
In all these cases a low response time is key for good user
experience. Low level metrics such as packet loss or round
trip times are not able to measure user experience, but may
be useful to explain performance problems. For this reason,
we propose a methodology that puts an ‘eye’ on the user’s
screen while browsing the web page, and combines informa-
tion obtained from a web browser plugin with a low level
packet capture system.

While the measurements at browser level allow us to de-

tect problems, the measurements at packet level allow us
to explain problems if they are caused by network elements
along the path from the client to the server or by the server
itself.

2. TROUBLE SHOOTING SET-UP

2.1 Browser Plugin
As shown in Fig. 1, our troubleshooting setup is composed

by three parts: a plugin for the web browser; a packet-level
capture and a database repository (DBMS). We use Firefox
as our web browser due to its rich APIs [3]. The browser
plugin tracks some critical events during a web session that
are related to the user’s perceptual experience. We track
paint events of the browser to measure the waiting time
that elapses between the user clicking on a Web page and
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Figure 2: Information Logged

the content of the Web page being displayed. We use the
plugin to add event-listeners inside the browser:

• The first painting event by the browser tells how
long the user needs to wait for the first visual impact.
We call the time interval between the user clicking on
the URL until the first painting event the first im-
pression time. A large first impression time means
that the user has to wait for a long time until he sees
anything of the Web page, which will result in a poor
user experience.

• The full page load event measures how long it takes
until the entire content of a Web page, which may
consist of several tens of different elements is displayed.
We call the time interval between the user clicking on
the URL until the full page load event the full load
time Tfull .

We use the term waiting time to refer to either the first
impression time or the full load time and we use the term
web session to the time interval between the user clicking
on a URL and the requested Web page being fully loaded.

For each Web element that is loaded, the plugin records
a certain number of additional information such as URI etc.
that we do not explain here for space reasons.

2.2 Packet level capture
We perform a network level capture using wireshark or

tcpdump to record all the data packets exchanged during
a web session. For convenience we write all the raw data
packets into a database management system. We use Post-
greSQL [4] as our DBMS, the PL/PgSQL as its program-
ming language, and the Intrabase system shown in Fig. 2(b)
for TCP connection analysis is developed by Siekkinen [15].

Figure 3: Metrics for downloading one Web element.

Since the plugin and packet capture are working simulta-
neously but independently, we need a way of “splicing to-
gether” the observations made: each time an HTTP request
is initiated by the browser, the plugin randomly generates
a number called httpid that is inserted into the HTTP re-
quest header. Since the httpid value will be recorded both,
by the plugin and packet capture, it can be used to correlate
the information obtained from plugin and packet trace. The
details of how to reconstruct a web session from the packet
trace are discussed in the next section.

3. MEASUREMENT
We first explain which performance measures we extract

from a packet level trace and then report on two different
experiments where we repeatedly access the same Web page
(www.youtube.com) during one day.

3.1 Metrics and Methodology
A typical web page normally contains tens, up to hundreds

of elements that make up the whole page. To fully render the
Web page, the browser needs to load all these elements; in
the extreme case, this will require as many name resolutions
and TCP connections as there are elements. In the case of
YouTube, the whole web page consists of about 30 elements
stored on about 10 distinct servers. The typical procedure
for loading one element is shown in Fig. 3: The time elapsed
can be broken down into the following metrics:

• Name Resolution (DNS): The time elapsed between
the first DNS query and first corresponding response
with valid IP address(es) defines tDNS .

• TCP Handshake RTT (SYNACK RTT): Since our mea-
surement point is at the client side and all of TCP con-
nections are initiated by the client, we define tTCPRTT

as the time between the first SYN packet sent by the
client and its corresponding first SYN-ACK packet re-
ceived from the server.

• Network RTT (Net.RTT): The time between the first
data packet (normally carrying a GET request) sent by
the client and its first corresponding ACK is referred
to as tNetRTT .



• Service Offset: When the ACK packet from the server
in response to the data packet that carried the GET
request does not contain any payload, there will be a
time-gap between this ACK and the first data packet
from the server, which is referred to as tOffset . Since
this gap between client request and data reception is
normally caused a delay due to server processing, we
call this gap as service offset.

• Data Transfer Period: The time between the reception
of the first and last data packet containing the data of
a Web element is referred to as tDataTrans .

We measure two types of RTT, namely the TCP hand-
shake RTT and the Net.RTT, which is useful in situations
such as the following:

• In a whole web session, one TCP connection can be re-
used to fetch multiple elements, in which case we will
not obtain a sample for tTCPRTT for all of the element
downloads.

• If the client is not directly communicating to the server
because of an intermediate proxy, the SYNACK packet
is usually come from the proxy and not the server and
tTCPRTT does not measure the round trip time between
client and server.

When we analyze the the packet trace for one Web session
we get a time series of values t

i
m where m denotes any of the

metrics defined above (e.g. DNS, TCP Handshake RTT,
NetRTT, etc.) and i refers to the i-th element loaded in
that Web session, Given such a time series, we define the
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Based on the above weight definition, we use the full
page load time Tfull measured by the plugin to compute the
weighted breakdown for metric m as:

breakdownm = Tfull × wm

where m is a metric such as DNS, Net.RTT, etc. From
this breakdown definition, we can easily visualize the to-
tal ‘weighted’ contribution of each metric. This breakdown
definition is similar to the one in [11]. However, [11] uses
different metrics and solely relies on the packet trace.

3.2 Measurement Results
In this section, we illustrate our approach via two experi-

ments.

3.2.1 Wireless vs. Wired Client
The experiments are done in a private home on both, a

wired and wireless Linux PC sharing the same network ac-
cess. We run the tests on the two PCs simultaneously. We
use firefox version 3.6.12, and configure the DNS query with
IPv4 and leave the other settings of firefox as default ones.
In order to make the client fetch the web content from the
server, we automatically clear the browser cache after each
browsing.

Load times of the YouTube sessions, where the main page
of YouTube is requested, are shown in Fig. 4(a)-(b). We see
that most of the YouTube web sessions in both, the wireless

and wired cases, achieve load times of two seconds or less;
However, in the wireless case, there are some outliers with
very high values: The first impression time sometimes being
larger than 5 seconds and the page full load time as large as
10 seconds. In Fig. 4(c)-(d) (best viewed in color), we see
that data transfer period dominates in these wireless sessions
and some of them also have large handshake time. The
explanation for these large values can be obtained looking
at Fig. 4(e) and Fig. 4(f), which depict the Net.RTTs. For
the wired case we see very stable values in the range between
20 – 100 msec. However, in the wireless case these values
increase to 3 seconds. There are two possible explanations:
(i) the wireless access point is overloaded or (ii) the quality
of the wireless link is poor, which results in many link layer
retransmissions.

3.2.2 Student residence
In the second experiment we have a client PC in a student

residence. The client is connected via Ethernet and is shar-
ing the access link from the residence to the Internet with a
large number of other clients.

Fig. 5(a) depicts the page load times as experienced by
the client. We see that the full load times are in the order
of 5 seconds or higher. Some of the first impression times
are also in the order of several seconds.

Fig. 5(b) shows the contributions of the different metrics
that make up the load time of a Web page. What is strik-
ing are the high values for tDNS and tTCPRTT relative to the
time tDataTrans it takes to download the data of the element.
In Fig. 5(c) we plot the DNS response time and TCP hand-
shake time values. We see that the values are either below
200 msec or above several seconds. Since the default timeout
value for DNS and TCP SYN retransmission in the Linux
client is 5 seconds and 3 seconds respectively, we can infer
that the high values observed are due to packet loss and
retransmission after timeout. Fig. 5(d) shows the retrans-
mission rate for all the YouTube sessions. All sessions suf-
fer from packet retransmissions, with a retransmission rate
ranging from 1% up to 8%. Also, not shown here, most of
the retransmissions are triggered by timeout and not by fast
retransmit.

Indeed, packet retransmissions do not only happen to YouTube
sessions in the student residence. Fig. 6(a) shows the re-
transmission rate of browsing www.dailymotion.fr measured
at the same time period as YouTube case. We can find a
retransmission behavior similar to the one for the YouTube
sessions. Fig. 6(b) also shows the CDF of retransmission rate
for some other selected French web sites tested in the same
student residence on another day. These measurements last
over 9 hours. From the CDF, we can easily discover a similar
retransmission behavior among all web sessions of different
domains, and lasting over the whole measured period.

4. RELATED WORK
Our approach is inspired by the work of Agarwal et al. [6]

and Siekkinen [15]. Agarwal et al. developed the WebProfiler
system that is composed of a browser plugin, WebProfiler
service, a local and central database to diagnose problems
in the web service access. Siekkinen [15] developed the In-
trabase system that uses database technology to efficiently
post-process packet level traces. However, the aim of our
work is different, namely we try to explain why Web access
is slow, while the Intrabase system does a root cause anal-
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(a) Wireless Perceptual Results
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(b) Wired Perceptual Results
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(c) Wireless Weighted Breakdown
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(d) Wired Weighted Breakdown
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(e) Wireless Net.RTT
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Figure 4: YouTube Sessions of wired and wireless client.(starting around 2011-02-22 17:30)

ysis of long TCP connections. In our case the connections
are typically short and we simply use Intrabase to analyze
the loss and retransmission behavior of TCP connections.

Huang et al. [11] perform experiments in a controlled en-
vironment to study the performance of Web browsing on a
smart-phone. There are also some related works that instru-
ment the Web browser using a plugin such as dynatrace [1]
and firebug [2]. These plugins can easily visualize the web
page structure and browser’s behavior in rendering the page.
The concepts of first impression and full load are also pro-
posed in dynatrace [1]. However, both systems do not per-
form any packet level analysis.

Plenty of systems are also proposed for home network
management and trouble shooting. Joumblatt et al. [12]
propose HostView, which collects a set of end-host data
such as network traffic, basic network configurations, and
subjective user feedback to study the performance degrada-
tions. Calvert et al. [8] propose their a system called HNDR
for“general-purpose”management and trouble shooting, and
describe challenges and requirements for such system. Ag-
garwal et al. [7] propose NetPrints and Karagiannis et al. [13]
HomeMaestro. Both systems are based on sharing knowl-

edge between home users to solve problems. NetPrints fo-
cuses on the network configuration errors. HomeMaestro
addresses performance issues caused by contention within
home-networks, and combines observation with control in
the sense of modifying the resource allocation to the differ-
ent flows.

5. DISCUSSION
In this paper, we propose a method to combine observa-

tions captured at Web browser level with observations at
packet level to detect and explain high web access times.
However, so far we have done only the first step and more
work is needed to better understand the limitations and the
potential for extensions of the approach.

5.1 Scope and limitations
We use two browser events to estimate the user satisfac-

tion. We need to do some end user studies to confirm that
real user’s satisfaction can be measured this way. Since a
user already sees some of the content of a Web page before
the full load time has elapsed, we need to deeper investigate
the relationship between the full load time and the subjec-
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(b) Weighted Breakdown
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Figure 5: YouTube Sessions at student residence.(starting around 2011-02-20 00:00)
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Figure 6: Data retransmissions at student residence

tive user experience. For this purpose, we have already im-
plemented a user feedback bottom (c.f. Fig. 2(a)) that allows
the user indicate whether he is satisfied or dissatisfied with
the speed at which the current Web page was displayed.
With the user feedback we also record the timestamp to
be able to relate the feedback to the events preceding the
feedback.

We have positioned our work as trouble shooting in a home

environment. We think the home is a very good starting
point, since in many homes we have multiple networked de-
vices such as PCs, laptops, smart phones or tablets that can
all be used to access the Web. Correlating the observations
made on the different devices in the same home poses not
much of an issue in terms of privacy. However, sharing in-
formation for trouble shooting among devices in different

homes requires first a careful evaluation of potential privacy
violations. In this context, the work on differential privacy
by Drowk [9] can provide a solid foundation for reasoning
about how to share information among clients in different
homes while maintaining privacy guarantees.

Our model of how a Web page is loaded is quite simple
and we currently do not consider issues such as (i) caching,
(ii) two clients having different browser configurations, and
(iii) the impact of parallel TCP connections or pipelining.

Packet traces only allow us to “observe” the path between
client and server but do not provide insights into events at

the client itself. However, CPU overload or main memory
shortage leading to disk thrashing, which are not captured
in our approach, can also cause large page load times.

As pointed by Yahoo!1, the scripting style in css or javascript
can affect the browser rendering behavior and impact la-
tency. In the experiments presented in this paper, we sidestep
this issue by downloading the same Web page over again.

5.2 Extensions
Our work is part of an ongoing European project called

Figaro on the design of the home network of the future.
This project foresees the deployment of a so called home
gateway that mediates between the home and the external

1http://developer.yahoo.com/performance/rules.html



world. In this case it will be interesting to study how much
of the data collection can be moved to the home gateway.
If all the data collection could occur in the home gateway,
there may be no need for browser plugins and packet capture
in the end-devices; However, it remains to be determined if
all the metrics defined in this paper can be measured in such
a gateway centric approach.

6. CONCLUSION AND FUTURE WORK
We have presented the architecture of a tool for trouble

shooting performance problems in Web access. The tool re-
lies on measurements at browser and at network level to
identify problems and explain their possible causes. The
measurements of different end-devices can be correlated to
help reduce the number of possible causes and to improve
the explicative power. Via two experiments we have demon-
strated the use of the tool and the insights it can provide.

However, much work remains to be done:

• The development of such a tool must go hand in hand
with more experiments. We need more controlled ex-
periments to validate some of our assumptions and ex-
periments in the “wild” to evaluate the usefulness of
the tool.

• Since we want to correlate observations from multiple
vantage points (clients), we need to define a distributed
architecture for data collection and data sharing. So
far, a client collects browser events and packet traces
that will be loaded into a central database for post-
processing. Such an approach has obvious performance
and scalability limitations; therefore, as soon as we
have consolidated all the metrics needed for trouble
shooting, we plan to compute these metrics “on the
fly”at the client side, instead of storing packet headers.
We are currently evaluating the feasibility of tstat [5]
for this purpose.

• Given a set of performance metrics and measurements,
we need to automate the diagnosis task. For this pur-
pose, we have started using clustering algorithms to
group different Web sessions and identify a small and
meaningful set of classes that allow to explain all ma-
jor performance problems observed. Another approach
we plan to explore is the use of probabilistic rational
models for root cause analysis [10] [14].
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