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ABSTRACT
Malicious web pages that host drive-by-download exploits have
become a popular means for compromising hosts on the Internet
and, subsequently, for creating large-scale botnets. In a drive-by-
download exploit, an attacker embeds a malicious script (typically
written in JavaScript) into a web page. When a victim visits this
page, the script is executed and attempts to compromise the browser
or one of its plugins. To detect drive-by-download exploits, re-
searchers have developed a number of systems that analyze web
pages for the presence of malicious code. Most of these systems
use dynamic analysis. That is, they run the scripts associated with
a web page either directly in a real browser (running in a virtual-
ized environment) or in an emulated browser, and they monitor the
scripts’ executions for malicious activity. While the tools are quite
precise, the analysis process is costly, often requiring in the order of
tens of seconds for a single page. Therefore, performing this anal-
ysis on a large set of web pages containing hundreds of millions of
samples can be prohibitive.

One approach to reduce the resources required for performing
large-scale analysis of malicious web pages is to develop a fast and
reliable filter that can quickly discard pages that are benign, for-
warding to the costly analysis tools only the pages that are likely to
contain malicious code. In this paper, we describe the design and
implementation of such a filter. Our filter, called Prophiler, uses
static analysis techniques to quickly examine a web page for ma-
licious content. This analysis takes into account features derived
from the HTML contents of a page, from the associated JavaScript
code, and from the corresponding URL. We automatically derive
detection models that use these features using machine-learning
techniques applied to labeled datasets.

To demonstrate the effectiveness and efficiency of Prophiler, we
crawled and collected millions of pages, which we analyzed for
malicious behavior. Our results show that our filter is able to reduce
the load on a more costly dynamic analysis tools by more than 85%,
with a negligible amount of missed malicious pages.
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1. INTRODUCTION
The world wide web has become an integral part in the lives of

hundreds of millions of people who routinely use online services to
store and manage sensitive information. Unfortunately, the popu-
larity of the web has also attracted miscreants who attempt to abuse
the Internet and its users to make illegal profits.

A common scheme to make money involves the installation of
malicious software on a large number of hosts. The installed mal-
ware programs typically connect to a command and control (C&C)
infrastructure. In this fashion, the infected hosts form a botnet,
which is a network of machines under the direct control of cyber
criminals. As a recent study has shown [29], a botnet can contain
hundreds of thousands of compromised hosts, and it can generate
significant income for the botmaster who controls it.

Malicious web content has become one of the most effective
mechanisms for cyber criminals to distribute malicious code. In
particular, attackers frequently use drive-by-download exploits to
compromise a large number of users. To perform a drive-by-down-
load attack, the attacker first crafts malicious client-side scripting
code (typically written in JavaScript) that targets a vulnerability in
a web browser or in one of the browser’s plugins. This code is in-
jected into compromised web sites or is simply hosted on a server
under the control of the criminals. When a victim visits a mali-
cious web page, the malicious code is executed, and, if the victim’s
browser is vulnerable, the browser is compromised. As a result, the
victim’s computer is typically infected with malware.

Drive-by-download attacks have become pervasive over the last
few years, and real-world examples show that legitimate (and pre-
sumably well-maintained) web sites are frequently compromised
and injected with malicious code [7, 8].

Given the rising threat posed by malicious web pages, it is not
surprising that researchers have started to investigate techniques to
protect web users. Currently, the most widespread protection is
based on URL blacklists. These blacklists (such as Google Safe
Browsing) store URLs that were found to be malicious. The lists
are queried by a browser before visiting a web page. When the
URL is found on the blacklist, the connection is terminated or a
warning is displayed. Of course, to be able to build and maintain
such a blacklist, automated detection mechanisms are required that
can find on the Internet web pages containing malicious content.

The tools of choice for the identification of malicious web pages
are (high-interaction) honeyclients. These honeyclients, such as the
MITRE HoneyClient [13], Microsoft’s HoneyMonkey [30], Cap-
ture-HPC [25], or Google Safe Browsing [22], run a web browser



on a real operating system inside a virtual machine. The browser
is pointed to a URL that should be analyzed. After the correspond-
ing page is loaded, the honeyclient system checks for artifacts that
indicate a successful attack, such as executable files on the file sys-
tem or unexpected processes. While the presence of such artifacts
is strong evidence that a page is malicious, the drawback of high-
interaction honeyclients is the fact that the analysis is expensive.
While parallelization can help in processing multiple pages more
efficiently, still the HTML page needs to be rendered and active
content (such as JavaScript) needs to be executed. Moreover, after
each successful exploit, the virtual machine needs to be restored,
since the analysis platform can no longer be trusted. As a result,
the analysis of a single URL can easily require several minutes.

In addition to high-interaction honeyclients, researchers have pro-
posed alternative detection approaches for malicious web pages. In
particular, a number of tools were proposed (such as Wepawet [4],
PhoneyC [20], JSUnpack [15]) that rely on instrumented JavaScript
run-time environments to detect the execution of malicious scripts,
or only a certain kind of attacks (such as NOZZLE [23], a tool
for the detection of heap-spraying on malicious web pages). Com-
pared to high-interaction honeyclients, these systems provide more
insights into the inner working of malicious scripts, and they re-
quire less effort to configure with a wide range of vulnerable plug-
ins. However, they are not substantially faster, with analysis times
ranging from seconds to a few minutes for a single page [4].

Unfortunately, the analysis time directly limits the scalability of
these systems. As a result, it becomes very costly (if not impossi-
ble) to analyze millions of URLs in a day. This is problematic, both
for organizations that try to maintain blacklists with good coverage
(such as Google), but also, more generally, for everyone whose goal
is to obtain a detailed and broad understanding of the malicious ac-
tivity on the Internet with limited analysis resources.

One approach to address the limited scalability of current anal-
ysis systems is to devise an efficient filter that can quickly discard
benign pages. By using such a filter as a front-end to a more so-
phisticated but resource-intensive back-end analysis system, one
could save a large amount of resources, since the costly (but pre-
cise) back-end analysis is performed only on those pages that are
likely to contain malicious content. Of course, one should be able
to tune the sensitivity of the filter depending on the available analy-
sis capacity and the acceptable level of false negatives (missed de-
tections). In this context, false positives are less critical because
even though they result in a waste of resources (that is, benign
pages are analyzed using costly procedures), they are not increasing
the exposure of users to threats.

In this paper, we present the design and implementation of a
filtering system, called Prophiler, to quickly distinguish between
likely malicious and likely benign web pages. Prophiler statically
analyzes features of the HTML page, of the embedded JavaScript
code, and of the associated URL using a number of models that
are derived using supervised machine-learning techniques. Pages
that are found to be likely malicious by Prophiler can then be fur-
ther analyzed with one of the more in-depth (and costly) detection
tools, such as Wepawet.

Since the web page being analyzed is not rendered and no scripts
are executed, the analysis is fast. Compared to previous work that
attempts to detect malicious web pages based on page content, our
analysis uses a significantly more comprehensive set of features,
and, as a result, delivers more precise results. Researchers have also
suggested identifying malicious pages based on features extracted
from URLs alone. This approach delivers good results for scam
and phishing pages, since the corresponding URLs are often crafted
by attackers to mislead users. However, when malicious content

(such as a drive-by-download exploit) is injected into a legitimate
page, the URL is not affected. Hence, systems based exclusively on
URL features suffer from a substantial amount of false negatives,
as shown in our experiments.

The need for a fast filter to enable the large-scale analysis of ma-
licious web pages was previously recognized by Provos et al. [22]
(some of the authors are also involved in Google’s Safe Browsing
efforts). Unfortunately, for obvious reasons, very few details have
been revealed about Google’s filter. In particular, the authors only
provide examples of three page features and report that they use
a proprietary machine-learning framework. Of course, the exis-
tence of Google’s blacklist provides evidence that the overall sys-
tem (combining the filter with the back-end analysis tools) works.
Nevertheless, we feel that there are significant benefits in describ-
ing the technical details of our filtering approach in the literature:
First, we introduce a comprehensive set of page and URL fea-
tures for identifying malicious web pages. This allows others to
build similar filters, making better use of their available analysis
resources. Second, we discuss the trade-offs between false nega-
tives and false positives, and we compare the performance of our
filter to a number of previous systems. Third, we demonstrate that
our filter allows us to dramatically improve the scale of the analy-
sis that can be performed in the case of a publicly-available system,
called Wepawet.

2. RELATED WORK
In the last few years, the detection of web pages that launch

drive-by-download attacks has become an active area of research
and several new approaches have been proposed.
Dynamic approaches. Dynamic approaches use honeyclient sys-
tems to visit web pages and determine if they are malicious or
not. In high-interaction honeyclients, the analysis is performed
by using traditional browsers running in a monitored environment
and detecting signs of a successful drive-by-download attack (e.g.,
changes in the file system, the registry, or the set of running pro-
cesses) [18,22,25,30]. In low-interaction honeyclients, the analysis
relies on emulated browsers whose execution during the visit of a
web page is monitored to detect the manifestation of an attack (e.g.,
the invocation of a vulnerable method in a plugin) [4, 20].

Both high- and low-interaction systems require to fully execute
the contents of a web page. This includes fetching the page itself,
all the resources that are linked from it, and, most importantly, in-
terpreting the associated dynamic content, such as JavaScript code.
These approaches usually yield good detection rates with low false
positives, since, by performing dynamic analysis, they have com-
plete “visibility” into the actions performed by an attack. The
down-side is that this analysis can be relatively slow, because of the
time required by the browser (either simulated or real) to retrieve
and execute all the contents comprising a web page, taking from
a few seconds to several minutes, depending on the complexity of
the analyzed page.

Scalability issues with today’s honeyclient systems (relatively
slow processing speed combined with relatively high hardware re-
quirements) motivated our work on a filtering system. Our filter
achieves higher performance by forgoing dynamic analysis (e.g.,
the interpretation of JavaScript code), and relying instead on static
analysis only.
Static approaches. Static approaches to the detection of drive-
by-download attacks rely on the analysis of the static aspects of a
web page, such as its textual content, features of its HTML and
JavaScript code, and characteristics of the associated URL. Table 1
compares our approach to other relevant work in this area, in terms
of the features used to evaluate web pages.



Class of features Number of features
Prophiler [27] [16] [5] [17] [26]

HTML 19 5 0 0 0 0
JavaScript 25 3 16 4 0 0
URL 12 0 0 0 4 0
Host 21 0 0 0 16 6
Total 77 8 16 4 20 6

Table 1: Comparison of the features, divided in four different feature
classes, considered by our work and by the related approaches.

String signatures (i.e., string patterns that are common in ma-
licious code) are used by traditional antivirus tools, such as Cla-
mAV [2], to identify malicious pages. Unfortunately, signatures
can be easily evaded using obfuscation. Therefore, these tools suf-
fer from high false negatives rates (earlier studies report between
65% and 80% missed detections [4,24]), which make them unsuit-
able for filtering likely malicious pages. Our filter is also based on
static techniques, but it achieves better detection rates by relying
on a combination of several characteristics of a web page based
on its HTML content, JavaScript code, and other URL and host
features, rather than simple static string patterns. Moreover, our
filter can be more aggressive in labeling a page as malicious. The
reason is that incorrect detections are discarded by the subsequent
(dynamic) back-end analysis, and hence, false positives only incur
a performance penalty.

Several systems have focused on statically analyzing JavaScript
code to identify malicious web pages [5,16,27]. The most common
features extracted from scripts are the presence of redirects (e.g.,
assignments to the location.href property), the presence of func-
tions commonly used for obfuscation/deobfuscation (such as from-
CharCode()), calls to the eval() function, large numbers of string
manipulation instructions, abnormally long lines, and the presence
of shellcode-like strings. In our filter, we considerably extend the
set of JavaScript features used for detection: for example, we detect
the presence of sections of code resembling deobfuscation routines,
we take into consideration the entropy of both the entire script and
of the strings declared in it, we identify the number of event at-
tachments, and we analyze both Document Object Model (DOM)
manipulation functions and fingerprinting functions (such as navi-
gator.userAgent()).

Seifert et al. [27] also use the characteristics of the HTML struc-
ture of a web page as indicators of maliciousness. For example,
they consider the visibility and size of iframe tags and the num-
ber of script tags referencing external resources. We extend this
analysis by adding more than ten new features, such as the num-
ber of out-of-place elements (e.g., scripts outside <html> tags),
as well as the percentage of the page occupied by JavaScript code.

Characteristics of URLs and host information have been used
in the past to identify sites involved in malicious activity, such as
phishing and scams. Garera et al. use statistical techniques to clas-
sify phishing URLs [6]. Ma et al. [17] use lexical properties of
URLs and registration, hosting, and geographical information of
the corresponding hosts to classify malicious web pages at a larger
scale. Later in the paper, we discuss the issues involved in applying
this approach to detecting pages involved in drive-by-downloads
(opposed to threats such as phishing and scam pages), and propose
a number of new features that are effective in this context.

It is important to observe that we did not simply introduce new
detection features for the sake of being able to point to a longer fea-
ture list. As our experiments demonstrate, adding these additional
features significantly contributes to the improved accuracy of our
system.

Several of the detection tools described here have been used
as components of crawler-based infrastructures designed to effec-
tively find malicious web pages, e.g., [14, 18, 22]. In Section 4, we
describe a similar setup, where Prophiler is used as a fast filtering
component.

3. APPROACH
The goal of Prophiler is to classify pages collected by a web

crawler as either likely malicious or likely benign, i.e., as likely to
launch a drive-by-download attack or not, respectively. To perform
this classification task, Prophiler uses a set of models that evaluate
the features extracted from a page. These models are derived us-
ing supervised machine-learning techniques. In the following, we
first describe the features extracted from a web page, and then we
discuss how models are derived.

3.1 Features
The features extracted from a web page are the basis to deter-

mine if a page is malicious or not. Because, by design, our filter
does not execute any code associated with the web page, the col-
lected features are derived statically. By doing this, it is possible
to perform the analysis faster than in the case of currently-used dy-
namic approaches.

We inspect two main sources of information for features: the
page’s contents (both its HTML and JavaScript code) and the page’s
URL (both its lexical and host-based characteristics). Some of the
features we use have been proposed before (either for the detec-
tion of drive-by-download attacks or for the identification of other
threats, such as phishing). In this work, we introduce and evalu-
ate 48 new features specifically designed for identifying pages in-
volved in drive-by-download attacks.

3.1.1 HTML features
HTML features are based both on statistical information about

the raw content of a page (e.g., the page length or the percentage
of whitespaces) and on structural information derived from parsing
the HTML code (e.g., the location of specific elements in the page).
To parse HTML pages, we use the Neko HTML Parser [3] because
of its versatility and speed in parsing HTML code. Since some of
our features detect anomalies in the structure of a web page (e.g.,
out-of-place tags), which are silently corrected by Neko, we also
parse web pages with HTMLparser [21], which performs no error
correction. We do not currently extract features from CSS files,
even though some exploits rely on malicious style sheets. This is
left as future work.

More precisely, we extract the following 19 features from HTML
content: the number of iframe tags, the number of hidden el-
ements, the number of elements with a small area, the number of
script elements (both included via the src attribute, and inline), the
presence of scripts with a wrong file name extension, the percent-
age of scripting content in a page, the percentage of unknown tags,
the number of elements containing suspicious content, the number
of suspicious objects, the percentage of whitespace in the page, the
presence of meta refresh tags, the number of embed and object
tags, the number of elements whose source is on an external do-
main, the number of out-of-place elements, the number of included
URLs, the presence of double documents, the number of known
malicious patterns, and the number of characters in the page.

These features capture characteristics that are commonly found
in pages that have been compromised: the presence of injected
content pointing to external domains, the use of obfuscation, and
the presence of side effects (e.g., out-of-place tags) of the attacks
used to compromise a web page. Notice that some of these fea-



tures are particularly difficult to evade for an attacker. For example,
in SQL injection attacks (which are often used to inject malicious
content in vulnerable web pages), attackers do not generally have
complete control of the resulting page, and, as a consequence, can-
not avoid the anomalies (such as malformed documents or repeated
tags) that are detected by our features. Most of the features are
self-explanatory. Below, we discuss some of the features that re-
quire additional discussion.

Number of elements with small area. Most of the elements used
to carry out a drive-by-download infection are hidden, on purpose,
by the attacker. However, most drive-by-download exploits do not
use visibility attributes to hide their elements, and instead set ex-
plicitly the width and height of the elements used to deliver the
attack to very small values. So, we included a feature that records
the number of elements of type div, iframe, or object, whose
dimension is less then a certain threshold (30 square pixels for the
area, or 2 pixels for each side).
Number of elements containing suspicious content. This feature
takes into account the number of elements whose content is “sus-
picious,” i.e., the content between the start tag and the end tag of
the element could be shellcode. We consider this content to be sus-
picious if it is longer than a certain threshold (128 characters) and
contains less than 5% of whitespace characters. Note that we could
use more sophisticated techniques to determine if specific content
represents executable shellcode, but, in this case, we prioritize per-
formance over precision.
Number of suspicious objects. Suspicious objects are object
elements that are included in the document and whose classid
is contained in a list of ActiveX controls known to be exploitable.
This list is taken from the PhoneyC tool [20] and has been expanded
with a number of other ActiveX controls commonly found in real-
world exploits.
Number of included URLs. This feature counts the number of el-
ements which, being not inline, are included specifying their source
location. Elements such as script, iframe, frame, embed,
form, object are considered in computing this feature, because
they can be used to include external content in a web page. The
img elements and other elements are not considered, as they can-
not be used to include any executable code.
Number of out of place elements. This feature counts the num-
ber of elements that reside out of their natural positioning in the
HTML document. This feature is useful to detect web pages that
have become malicious as the result of a stored XSS or SQL injec-
tion attack. In these cases, it is common to see scripts or iframes
included in strange positions, such as between title tags or af-
ter the end of the document (outside the body or html elements).
iframe, frame, form, script, object and embed el-
ement positions are checked according to the allowed positioning,
as defined by the HTML DTD specifications.
Presence of double documents. This feature indicates whether
a web page contains two or more html, head, title, or body
elements. This is not allowed by the HTML specification, but can
be seen in certain malicious web pages as a side-effect of the com-
promise of a web site.
Number of known malicious patterns. This feature counts
the number of occurrences of specific patterns commonly found
in drive-by-download campaigns. The pattern list is compiled and
updated by a human analyst. We currently identify only one of such
patterns: the presence of a meta tag that causes the refresh of the
page, pointing it to index.php?spl=, as this is very common in
pages redirecting to exploit servers.

Prophiler extracts also a hash of the content of every HTML doc-
ument (namely, an MD5 hash of the page), to avoid analyzing again

a page that has already been analyzed, as well as a signature of the
structure of the document, i.e., a signature of the tree representing
its Document Object Model. This signature is used to determine
if the page has a structure similar to one or more pages that have
been analyzed before and determined to be malicious. If a match is
found, the page is considered potentially malicious, and sent to the
dynamic analysis tool.

3.1.2 JavaScript features
JavaScript features result from the static analysis of either a Java-

Script file (such as the ones commonly served with a content type
of text/javascript and similar), or of each script included in
a web page via an inline <script> element. As for the HTML
features, JavaScript features are both statistical and lexical.

Most malicious JavaScript scripts are obfuscated and packed, to
make their analysis difficult. In some cases, malware authors adopt
encryption schemes and techniques to prevent code debugging. To
detect these characteristics, we implemented the extraction of some
statistical measures (such as string entropy, whitespace percentage,
and average line length). We also consider the structure of the Java-
Script code itself, and a number of features are based on the anal-
ysis of the Abstract Syntax Tree (AST) extracted using the parser
provided by Rhino [19]. For example, we analyze the AST of the
code to compute the ratio between keywords and words, to identify
common decryption schemes, and to calculate the occurrences of
certain classes of function calls (such as fromCharCode(), eval(),
and some string functions) that are commonly used for the decryp-
tion and execution of drive-by-download exploits.

We extract a total of 25 features from each piece of JavaScript
code: the number of occurrences of the eval() function, the number
of occurrences of the setTimeout() and setInterval() functions, the
ratio between keywords and words, the number of built-in func-
tions commonly used for deobfuscation, the number of pieces of
code resembling a deobfuscation routine, the entropy of the strings
declared in the script, the entropy of the script as a whole, the
number of long strings, the maximum entropy of all the script’s
strings, the probability of the script to contain shellcode, the max-
imum length of the script’s strings, the number of long variable
or function names used in the code, the number of string direct
assignments, the number of string modification functions, the num-
ber of event attachments, the number of fingerprinting functions,
the number of suspicious objects used in the script, the number of
suspicious strings, the number of DOM modification functions, the
script’s whitespace percentage, the average length of the strings
used in the script, the average script line length, the number of
strings containing “iframe,” the number of strings containing the
name of tags that can be used for malicious purposes, the length of
the script in characters. Hereinafter, we provide some details about
a subset of these features.

Keywords-to-words ratio. This feature represents the ratio be-
tween the number of keywords (i.e., reserved words) and other
strings occurring in a piece of JavaScript code. This feature is use-
ful to detect malicious pages because in most exploits the number
of keywords (e.g., var, for, while and few others) is limited
while there are usually a large number of other operations (such as
instantiations, arithmetical operations, function calls). This usually
does not happen in benign scripts, where the occurrence of key-
words is usually higher.
Number of long strings. This feature counts the number of “long”
strings used in this script. A string is considered long if its length is
above a certain threshold. This threshold is learned during the train-
ing phase by examining the length of strings in both known benign
and known malicious pages (40 characters in our experiments).



Presence of decoding routines. This feature expresses whether
the JavaScript script contains snippets of code that resemble decod-
ing routines. More precisely the AST of the JavaScript segment is
analyzed to identify loops in which a “long” string is used (where
“long” is defined according to the feature described before). This
feature is very effective in detecting routines used to decode obfus-
cated scripts.
Shellcode presence probability. This number expresses the prob-
ability that a JavaScript script contains shellcode. We analyze the
long strings contained in the script to check if their structure resem-
bles shellcode. We use three methods to determine if the string is
likely to represent shellcode. The first method considers the num-
ber of non-printable ASCII characters in the string. The second one
detects shellcode composed only of hexadecimal characters, i.e., it
checks if the string is a consecutive block of characters in the ranges
a-f, A-F, 0-9. The third method checks if certain characters are
repeated at regular intervals in the string, because sometimes the
bytes of the shellcode are concatenated using custom separators, so
that decryption routines can split the string over the specified sepa-
rator(s) for further processing. The final shellcode probability for a
certain script is set to the maximum of the results produced by the
three individual detection methods.
Number of direct string assignments. This feature counts the
number of string assignments in the script. To extract this feature,
we analyze the structure of the AST generated by the parser. We
consider a number of ways in which a JavaScript program can in-
stantiate a string. More precisely, we count string assignments done
through direct assignment, setting of properties, direct string decla-
ration, instantiations inside the conditional operator ‘?’, and arrays.
The rationale behind this feature is that malicious scripts tend to
have an unusually large number of string assignments, as a side
effect of deobfuscation and decryption procedures.
Number of DOM-modifying functions. This feature counts the
number of functions used to modify the Document Object Model
that are referenced in the source code. Drive-by-download exploits
usually call several of these functions in order to instantiate vul-
nerable components and/or create elements in the page for the pur-
pose of loading external scripts and exploit pages. We consider the
most-commonly-used DOM functions implemented in all the ma-
jor browsers, plus a small set of functions which are only available
in Microsoft Internet Explorer’s JavaScript engine, such as clearAt-
tributes(), insertAdjacentElement(), and replaceNode(). Note that
we perform some limited static (data flow) analysis to identify cases
where basic DOM elements (e.g., the document variable) are as-
signed to other variables that are later modified.
Number of event attachments. This is the number of calls to
functions used to set event handlers on certain actions. Not all
events are interesting for us, as drive-by-download attacks usually
need only to be triggered as the page loads or to disable error report-
ing in case something goes wrong. So, we only count event attach-
ments related to these events: onerror, onload, onbeforeunload,
onunload. The functions that can be used to attach an event han-
dler are addEventListener(), attachEvent(), dispatchEvent(), and
fireEvent().
Number of suspicious object names. This feature represents the
number of objects with a suspicious name. These objects are iden-
tified using the list of exploitable objects already used by HTML
features (see Section 3.1.1). However, since most of the exploits
dynamically insert objects and ActiveX controls into web pages
using JavaScript, we have to check for these components also in
the JavaScript code.
Number of suspicious strings. This feature has been added after
manually analyzing several dozens of malicious scripts and notic-

ing that most of them, if not obfuscated, tend to use certain strings
as variable or function names. Thus, we check whether a script con-
tains such tell-tale signs (common strings are, for example, “evil,”
“shell,” “spray,” and “crypt”), and we count how many occurrences
of these strings are found.
Number of “iframe” strings. This feature counts how many
strings containing “iframe” are present in a script. This feature
is motivated by the fact that malicious scripts often inject several
iframes into a web page, and, if the script is not obfuscated, it is
possible to identify when the script modifies the DOM to inject an
iframe element.
Number of suspicious tag strings. Similarly to the previous fea-
ture, this feature counts the number of times that certain tag names
appear inside strings declared in JavaScript code. In fact, instead of
injecting iframes, sometimes malicious scripts write other scripts
or objects inside the page. This feature counts the appearance of
script, object, embed, and frame inside JavaScript strings.

Each piece of JavaScript code is also characterized by a hash of
the content (to avoid analyzing a previously-seen script) and a sig-
nature of the AST of the document. This is used to identify similar
scripts that have been already analyzed and that have been found
to be malicious. If a match is found, the web page is considered
malicious, and it is sent to the dynamic analysis tool for further
processing. To prevent simple obfuscation techniques from hiding
the similarity with other scripts, this AST signature does not take
into account variable names and the structure of arrays, and it is
invariant to the place where functions are declared.

3.1.3 URL and host-based features
As shown by previous work [17], it is often possible to predict if

a certain web page is malicious by looking only at its URL. Even
though detecting drive-by-download pages using URL features is
more complex than in the case of phishing pages or scam pages,
some information contained in the URL and associated with the ref-
erenced host can be used to help in the detection of malicious web
pages. For example, malware campaigns are often hosted on un-
trusted hosting providers, and the corresponding whois informa-
tion reveals short registration time frames or sanitized (anonymized)
registration information. Also, it is very common for malicious
web pages to include content from sites with no DNS name, or
hosted on domains with a certain TLD (e.g., .cn, .ru).

The collected features are syntactical (the domain name length,
whether the original URL is relative, the presence of a suspicious
domain name, the TLD of this URL, the presence of suspicious pat-
terns, the length of the file name appearing in the URL, the presence
of a suspicious file name, the absence of sub-domain, the presence
of an IP address in the URL, the presence of port number, the ab-
solute and relative length of this URL), DNS-based (resolved PTR
record, whether the PTR record is equal to the A record for this
IP, and, for each of the A, NS, MX records for this host: first IP
address returned, number of corresponding IP addresses, TTL of
the first IP address, Autonomous System number of the first IP),
whois-based (registration date, update date, expiration date), and
geoip-based (country code, region, time zone, netspeed). We use
a total of 33 features derived from the analysis of URL and host
information. Below, we discuss some details about a subset of the
features.
Number of suspicious URL patterns. Analyzing the URLs of
several pages launching drive-by-download exploits, we observed
that many of them shared common names or recurring patterns in
their paths (we speculate that this is an indication that different at-
tacks are performed using the same exploit toolkits, e.g., MPack,
Eleonore, and CrimePack). Some examples of these patterns are



file names such as swfNode.php or pdfNode.php. Thus, we
use this feature to count how many patterns from a list of known
bad patterns appear in the URL. We derive known bad patterns from
known exploit kits. We currently identify 10 different suspicious
URL patterns.
Presence of a subdomain in URL. We noted that, frequently,
malicious web pages refer to the domains serving malware with-
out specifying a subdomain (e.g., example.com instead of www.
example.com). This feature keeps track of whether a subdomain
is present in the URL.
Presence of IP address in URL. Some web sites hosting malware
are not associated with domain names but are addressed by their
IPs instead. A common reason for this is that the malware is hosted
on a victim machine on a public network that was compromised.
This feature records if an IP address is present as the host part in
the URL.
Value of the TTL for the DNS A record. This feature examines
the Time To Live (TTL) of the DNS entry of the first IP address
returned by the DNS A query for a host name. Shorter TTLs are
usually associated with services that are likely to be moved to an-
other IP address in the near future. This can be the case for DNS
entries associated with malicious (fast-flux) hosts.
Value of the TTL for the DNS NS record. This feature ex-
amines the Time To Live of the first NS entry for the host name
under analysis. This feature is useful for identifying malicious web
pages because criminals often use different DNS records to redirect
requests to a different IP address once one of their command-and-
control servers is shut down.
Relationship between PTR and A records. This feature indi-
cates whether the resolved PTR record equals the IP address for
the host under examination. For benign web servers, the values
should be consistent.
Registration date. This feature examines the registration date
for the host name (domain), if it is available via the Whois ser-
vice. Registration dates are commonly used to distinguish between
benign and malicious domains, since most of the command-and-
control and exploit servers reside on domains whose registration
date is recent and/or whose expiration date is in the near future.
This is because attackers often buy domain names for short time
frames, since they expect that those names will be blocked quickly.
Country Code. This feature leverages the country code to which
the IP address of the host belongs. This feature is extracted via a
geoip query1.

Unlike previous work [17], we do not consider the domain reg-
istrar as one of our features. Even though we extract and store this
information, the models we derived during the training process did
not identify the registrar as a relevant feature for determining if a
web page is malicious or not.

3.2 Discussion
Models and classification. In Prophiler, a model is a set of proce-
dures that evaluate a certain group of features. More precisely, the
task of a model is to classify a set of feature values as either likely
malicious or likely benign. A model can operate in training or de-
tection mode. In training mode, a model learns the characteristics
of features as found in sets of web pages that are known to be either
malicious or benign. In detection mode, the established models are
used to classify pages as either likely malicious or likely benign.

1Geoip queries are used to retrieve location information about an
IP address. Usually, this information includes the country, region,
and city to which the IP address belongs, as well as some other
information such as the Internet Service Provider of this address,
depending on the geoip service in use.

Using a training dataset, we derived a number of models to de-
tect likely malicious web pages, based on the features described
earlier. The model learning process is further explained in Sec-
tion 5. After training, we evaluated the effectiveness of our models
on a validation dataset. Once we were confident that the models
were able to effectively classify malicious web pages, we deployed
them as a filter for our dynamic analysis tool (Wepawet). This re-
sulted in a tenfold increase in the amount of web pages that the
system can process with a given set of resources.
Machine learning. As with all classification problems, our learn-
ing-based approach to the detection of malicious web pages faces
several challenges [28]. Here, we discuss in particular the assump-
tions at the basis of our analysis and the techniques we used to
ensure that these assumptions hold in our setting. First, we assume
that the distribution of feature values for malicious examples is dif-
ferent from benign examples. To ensure this, we carefully selected
the features that we use in our system on the basis of the manual
analysis of a large number of attack pages. We note that individ-
ual feature values may appear in both malicious and benign pages
(e.g., some benign pages are obfuscated, thus they would “trigger”
features that capture obfuscation). However, it is unlikely that the
combination of all the features we consider is similar in benign and
malicious pages. A second assumption is that the datasets used for
model training share the same feature distribution as the real-world
data that is evaluated using the models. We address this issue by
training our models with large datasets of recent malicious and be-
nign pages, and by continuously evaluating the effectiveness of our
filter in detecting web pages with respect to the results provided by
(more costly) dynamic analysis tools. A final requirement is that
the ground truth labels for the training datasets are correct. To this
end, we use state-of-the-art tools and manual inspection to ensure
that our labeled datasets are correct.
Evasion. The attentive reader will notice that some of our fea-
tures could be evaded by malicious scripts. For example, the de-
tection of tags with a small area (one of our HTML features) could
be thwarted by dynamically generating these elements (e.g., via an
obfuscated call to eval()). However, our set of features is compre-
hensive and covers characteristics that are common to malicious
scripts (e.g., the use of obfuscated code). As a consequence, as our
experiments show, our system is not easily evaded by current ma-
licious web pages. Moreover, it is easy to extend Prophiler with
additional features to cover future attacks. We always send to the
back-end analysis (honeyclient) a small fraction of random pages
that our system has classified as benign. This allows us to detect
systemic false negatives, and to update our feature sets and models
accordingly.

Even with full knowledge of our feature set, it is not trivial for
an attacker to disguise his malicious code. First, in certain cases,
the freedom of an attacker is limited with regard to the parts of
the infected web page that he can modify. In particular, this is
true when attackers use SQL injection vulnerabilities, which often
result in out of place HTML elements that cannot be cleaned up
(and which are picked up by our system). Second, many of our
features do not target specifics of particular exploits, but general
properties of entire classes of attacks. For example, artifacts that
are the result of obfuscated JavaScript are hard to disguise. Of
course, an attacker could opt to send the exploit code in the clear,
but in doing so, he risks that signature-based solutions detect and
block the malicious code.

Attackers could also try to fingerprint, detect, and consequently
evade, our tool when it visits a malicious website. This is a prob-
lem every malware detection tool faces, and we address it in two
ways. First, we configure our system so that it closely mimics a



real browser (for example, by setting the user-agent of the crawler
component as described in Section 4). Second, we try to detect fin-
gerprinting attempts by using features that check for the presence
of JavaScript routines commonly used for this task (as discussed in
Section 3.1).

Trade-offs. Even though we put great care in the selection of the
features and the derivation of models, we do not expect our filter
to be as accurate as honeyclients, which can rely on the dynamic
characteristics of a web page for the detection of malicious behav-
ior. Instead, we expect the filter to provide useful information that
can be used to quickly discard benign web pages, and to send likely
malicious pages to dynamic analysis tools, which can perform more
detailed analysis.

In this context, it is critical to minimize false negatives, i.e.,
missed detections. In fact, if a page that is indeed malicious is
incorrectly classified as benign by our filter, it will be immediately
discarded without being further analyzed. Therefore, the malicious
page will evade the detection of the combined filter/honeyclient
system. Conversely, false positives are not as problematic: If a
benign page is incorrectly flagged as likely malicious by our filter,
it will simply be forwarded for analysis to the honeyclient, which
(we assume) will ultimately mark it as benign. The net effect is that
resources are wasted (because the back-end honeyclient has to an-
alyze a benign page). However, in this case, no incorrect detection
will be made by the overall detection system.

4. IMPLEMENTATION AND SETUP
We implemented Prophiler, and we used it as a filter for our

existing dynamic analysis tool, called Wepawet [4] (which is pub-
licly available at http://wepawet.cs.ucsb.edu/). How-
ever, Prophiler can be used unchanged as a filter for any of the
other, publicly available honeyclient systems. The overall architec-
ture of the system is shown in Figure 1.

Figure 1: Architecture of the system.

Prophiler is fed by a modified instance of Heritrix [10], which
crawls2 a list of seed URLs fetched daily from three search engines
(namely, Google, Yahoo, and Bing). The crawls are seeded by us-
ing the current Twitter, Google, and Wikipedia trends as search
terms. These trends are used as a basis for the searches because
most malware campaigns use Search Engine Optimization (SEO)
techniques to increase their ranking in the search engines’ results
associated with popular terms [11,12]. Another source of seeds for
our crawler is a list of links extracted from a feed of spam emails.
The list of links is updated daily and provides us with an average
of 2,000 URLs per day.

We modified the crawler to be able to set the “Referer” header
when fetching a seed URL. This header has to be set to the search
engine from which the seed URL was extracted. This is necessary
because some malicious web pages deliver malicious content only
when the request appears to be the result of a user clicking on the
search results.

The crawler fetches pages and submits them as input to Pro-
philer, which analyzes each page and extracts and stores all the fea-
tures. Once all features have been extracted from a page, Prophiler
uses the models learned in the previous training phase to evaluate
its maliciousness. If a page has been identified as likely malicious,
it is forwarded to the dynamic analysis tool (Wepawet, in our case).
This tool then confirms that the page is indeed malicious or it flags
it as a false positive.

The system was installed on a server running Ubuntu Linux x64
v 9.10, with an 8-core Intel Xeon processor and 8 GB of RAM.
The crawler and the analysis system are both running on this ma-
chine. The system in this configuration is able to analyze on aver-
age 320,000 pages/day. Taking into account that a single page can
contain multiple links to JavaScript programs, frames, and objects
(which are all automatically included by the browser when render-
ing the page), the analysis must examine around 2 million URLs
(objects) each day.

5. EVALUATION
In this section, we evaluate the effectiveness and performance of

Prophiler. More precisely, we first discuss how the models used to
detect malicious pages were automatically derived from a training
dataset. Then, we evaluate Prophiler on a number of datasets, both
labeled and unlabeled, adding up to almost 20 million web pages.
Finally, we quantitatively compare our approach with those that
were proposed in the past.

Model derivation. To derive our detection models, we collected
a labeled dataset composed of both malicious and benign pages.
We refer to this dataset as the training dataset. As shown in Ta-
ble 2, the training dataset comprises 787 pages that are known to be
triggering drive-by-download attacks. These pages were extracted
from Wepawet’s database. Furthermore, we confirmed by man-
ual inspection that these pages indeed contain malicious code used
to launch drive-by-download attacks. We also collected a set of
51,171 benign web pages by crawling the first two levels of the top
100 Alexa web sites [1]. In this case, our assumption was that these
extremely popular web sites are unlikely to have been compromised
and used for malware distribution, as they are visited daily by mil-
lions of users, as well as continuously analyzed by experts and anti-
virus programs. Furthermore, we used the Google Safe Browsing
API to remove any malicious pages from this set.

2Most drive-by-download attacks use browser fingerprinting to de-
cide whether to ‘render themselves’ as malicious or benign. We
decided to set up our crawler’s user-agent as MS Internet Explorer
6 on Windows XP, to trigger malicious behavior in most cases.



Dataset name Benign Malicious Total
pages pages pages

Training 51,171 787 51,958
Validation 139,321 13,794 153,115
Evaluation N/A N/A 18,939,908

Comparison 9,139 5,861 15,000

Table 2: Datasets used for our experiments.

We extracted our detection models from this dataset using the
WEKA machine-learning platform [9]. We experimented with a
number of standard models, such as naïve Bayes, random forest,
decision tree, and logistic regression classifiers. In order to choose
a suitable classifier (i.e., the one providing the lowest possible num-
ber of false negatives, and a reasonably small amount of false pos-
itives) we used our training dataset to build several models, each
with a different classifier and/or different parameters. The mod-
els were extracted from and tested on the training dataset, using
10-fold cross-validation.

Note that we built three different models that operate on the three
different feature sets that we defined previously (HTML features,
JavaScript features, and features related to the URL and host name).
This allows us to evaluate the effectiveness of individual feature
sets and to experiment with different machine learning models. For
the final classification of a page, the output of the three models
needs to be combined, as discussed below.

The results for the three classifiers (using 10-fold cross valida-
tion on the training set) are presented in Table 3. It can be seen that
the classifiers that produced the best results were the Random For-
est classifier for the HTML features, the J48 classifier for the Java-
Script features, and the J48 classifier for the URL- and host-based
features. In the rest of the experiments, we configured Prophiler to
use these classifiers.

Feature class Classifier % FN % FP
HTML Random Tree 30.4 0.8

Random Forest 20.5 2.4
Naive Bayes 16.4 44.1
Logistic 25.6 17.1
J48 36.6 0.8
Bayes Net 15.1 23.2

JavaScript Random Tree 22.4 0.2
Random Forest 18.1 0.5
Naive Bayes 51.5 1.0
Logistic 81.0 0.0
J48 21.4 0.3
Bayes Net 39.9 1.7

URL + HOST Logistic 9.3 1.0
J48 9.6 0.6

Table 3: False Negatives (FN) and False Positives (FP) ratios for the
tested classifiers. The class of features related to the URL and host
information has been tested against fewer classifiers because most of
them do not support date attributes.

Interestingly, as shown in Table 3, it can be seen that a single
class of features is not sufficient to reliably determine the mali-
ciousness of web pages. In fact, individual models yield both high
false positive and high false negative rates. For example, when
analyzing JavaScript features alone, even J48 (one of the best per-
forming models for this class) produces 21.4% false negatives (with
0.3% false positives). However, as we will show with a number
of tests on various datasets, combining models for all the feature
classes substantially improves the detection capability of our tool.
In Prophiler, we declare a page as malicious when one or more of

the individual classifiers declare a page as malicious. The ratio-
nale for this decision is that a page’s maliciousness may be deter-
mined by causes (e.g., an iframe tag or an HTML-based redirect)
that are modeled by only one class of features. Therefore, when-
ever the model associated with a class of features classifies a page
as likely malicious, Prophiler raises an alert. As a result, by com-
bining models, we can substantially reduce the false negatives of
the filter by accepting a minor increase in false positives (which are
much less problematic, as discussed previously).

Effectiveness of new features. In the next step, we inspected
the models generated by WEKA to determine the importance of
the new features that we added compared to previous work. We
found that some of these features were particularly effective in the
detection of web pages launching drive-by downloads. Regarding
the JavaScript features, some of the most important new features
are shellcode presence probability (which is at the first level in the
decision tree of the chosen J48 classifier), the presence of decod-
ing routines, the maximum string length, and the entropy of the
scripts and of the strings declared in it. Several new features re-
lated to HTML content appear to be very effective in the detection
of malicious or infected web pages. Such features are the number of
included URLs, the number of elements containing suspicious con-
tent, the number of iframes, the number of elements with a small
area, the whitespace percentage of the web page, the page length in
characters, the presence of meta refresh tags and the percentage of
scripts in the page. As for URL and host related information, the
most effective novel features introduced by our work are the TLD
of the URL, the absence of a subdomain in the URL, the TTL of the
host’s DNS A record, the presence of a suspicious domain name or
file name, and the presence of a port number in the URL.

Validation. After the model derivation, we validated Prophiler by
running it on a second labeled dataset, which we refer to as the vali-
dation dataset. This dataset contained 153,115 pages that were sub-
mitted to the Wepawet service by its users over a period of 15 days.
We labeled each page with the result produced by Wepawet: in to-
tal, there were 139,321 benign pages and 13,794 malicious ones.
On this dataset, Prophiler produced a false positive rate of 10.4%
and a false negative rate of 0.54%. In other words, if used as a fil-
ter on this dataset, Prophiler would immediately discard 124,906
benign pages, thus saving valuable resources of the more costly
(dynamic) analyzer.

Table 4 shows which models triggered the detection of malicious
web pages when running the system on the validation dataset. One
can see that most of the pages are considered malicious because of
their HTML features, and secondly because of the JavaScript ones.

Large-scale evaluation. We performed a large-scale evaluation of
Prophiler by running it over a 60-day period on a dataset containing
18,939,908 pages. This dataset (which we refer to as the evalua-
tion dataset) was built by leveraging the infrastructure described in
Section 4. All the pages in the evaluation dataset are unlabeled.

Prophiler flagged 14.3% of these pages as malicious, thus achiev-
ing an 85.7% reduction of the load on the back-end analyzer (in
our setup, the Wepawet service). With the current implementation
of Wepawet, this corresponds to a saving of over 400 days of pro-
cessing. Figure 2 shows in more detail the analysis statistics for
the 60-day analysis period. (The variation in the number of pages
processed per day depends mainly on the number of URLs used as
seeds, and the type and complexity of the visited pages, for exam-
ple, the number of external resources fetched by each page.)

After Wepawet had analyzed all the pages that were marked as
malicious by Prophiler, we could determine the false positive of
our filter. We found that the false positive rate for this dataset was



Number Reason of suspiciousness
of pages
124,906 None (classified as benign)

14,520 HTML
9,593 JavaScript
1,268 Request URL

814 JavaScript + HTML
806 Request URL + HTML
467 Included URL(s)
189 Request URL + JavaScript
181 Included URL(s) + HTML
130 Request URL + JavaScript + HTML
119 Request URL + Included URL(s)

46 Request URL + Included URL(s) + JavaScript + HTML
28 Request URL + Included URL(s) + HTML
17 Request URL + Included URL(s) + JavaScript
16 Included URL(s) + JavaScript
15 Included URL(s) + JavaScript + HTML

Table 4: Results on the validation dataset.

Figure 2: Analysis of the evaluation dataset. On average, 1,968 pages
every day were confirmed as malicious by Wepawet.

13.7%. Recall that a false positive in our filter simply determines
undesired load on the back-end analyzer (which is forced to in-
spect benign pages), but does not result in actual alert. Quanti-
fying false negatives in these settings is more challenging, since
the dataset is unlabeled and complete manual analysis is infeasible
given the sheer size of the dataset. To estimate the false negative
rate on the evaluation dataset, we processed with Wepawet 1% of
the pages that Prophiler classified as benign (the pages to be further
inspected were chosen at random). Of these 162,315 pages, only 3
were found to be malicious.

Comparison with previous work. We compared Prophiler against
a number of previously-proposed systems that rely on lightweight
analysis techniques to detect malicious web pages, and that, thus,
could be used as fast (pre)filters.

More precisely, we considered the approach presented in [27],
which relies on five HTML features and three JavaScript features to
detect drive-by-download attacks; and the approach of [17], which
analyzes URL features to detect malicious URLs. In addition, to
better understand the effectiveness of the novel features that we in-
troduced with respect to those that were proposed in the past, we
created a classifier that combines all the features previously pro-

posed in [5, 16, 17, 27]. We did not compare our system to [26]
since obtaining four out of the six features they use (the ones re-
lated to redirects) was not possible for us; the other two features
they propose are already included.

Unfortunately, we were also not able to compare our filter to the
one used by Google [22]. The reason is that their filtering frame-
work is proprietary (and not available to us) and is not publicly
described in detail. Moreover, when using Google’s Safe Browsing
API, one is only able to check whether a page has been deemed ma-
licious by Google’s entire analysis framework, which is based on
the use of honeyclients. However, no information can be retrieved
about the false positive and false negative ratios of their initial fil-
tering system.

To compare Prophiler with the above-mentioned systems, we
built a labeled dataset (the comparison dataset) of 15,000 web pages
and associated URLs. This dataset contains 5,861 pages involved
in drive-by-download attacks; the remaining pages are benign. We
modified our filter so that it would use only the features described
in [27] (to reproduce the system described therein) and those pre-
sented in [5, 16, 17, 27] (to test the detection that can be achieved
with all previously-known features combined). Finally, we asked
the authors of [17] to analyze the URLs of the comparison dataset
using their system.

Work Features
collection
time

Classifi-
cation
time

FP % FN % Considered
feature
classes

[27] 0.15
s/page

0.034
s/page

13.70 14.69 HTML,
JavaScript

[17] 3.56
s/URL

0.020
s/URL

14.83 8.79 URL,Host

Union of
[5, 16, 17,
27]

N/A N/A 17.09 2.84 HTML,
JavaScript,
URL, Host

Prophiler 3.06
s/page

0.237
s/page

9.88 0.77 HTML,
JavaScript,
URL, Host

Prophiler’s
top 3*

N/A N/A 25.74 5.43 HTML,
JavaScript,
URL, Host

Prophiler’s
top 5*

N/A N/A 5.46 4.13 HTML,
JavaScript,
URL, Host

Table 5: Comparison between Prophiler and previous work.
*These are, respectively, models built using only the top 3 and top 5
features appearing in the decision trees of Prophiler’s original machine
learning models.

The results (in terms of average URL processing and testing
time, false positives, and false negatives) are shown in Table 5. For
the approach described in [17], we report the best results, which
were achieved using an SVM classifier with an RBF kernel. Pro-
philer clearly outperforms existing approaches in terms of detec-
tion rates. In particular, it is interesting to observe that Prophiler
has lower false positives and false negatives than the system that
combines the features of [5, 16, 17, 27], indicating that the novel
features and the models we use are effective and improve detec-
tion compared to the state of the art. Finally, the experiment also
shows that Prophiler’s feature collection time is very low, despite
the fact that it extracts a larger number of features than the other
approaches. By profiling our tool, we found that the most of the
feature collection time is due to the extraction of host-based fea-
tures from the URLs (such as DNS information, Whois data, and
geoip information). Note that the value of Prophiler’s features col-
lection time refers to a “from scratch” run of the system, i.e., with



an empty database. However, we found that a few hours after de-
ployment, the database contains information about the majority of
the hosts analyzed. Therefore, in steady state, our system is con-
siderably faster, reaching a processing time of about 0.27 s/page.

6. CONCLUSIONS
As malware on the Internet spreads and becomes more sophis-

ticated, anti-malware techniques need to be improved in order to
be able to identify new threats in an efficient, and, most important,
automatic way. We developed Prophiler, a system whose aim is
to provide a filter that can reduce the number of web pages that
need to be analyzed dynamically to identify malicious web pages.
We have deployed our system as a front-end for Wepawet, a well-
known, publicly-available dynamic analysis tool for web malware.
The results show that Prophiler is able to dramatically reduce the
load of the Wepawet system with a very small false negative rate.
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