
Secure Automotive On-Board Protocols:
A Case of Over-the-Air Firmware Updates

Muhammad Sabir Idrees1, Hendrik Schweppe1, Yves Roudier1, Marko Wolf2,
Dirk Scheuermann3, and Olaf Henniger3

EURECOM1, Escrypt GmbH2, Fraunhofer SIT3

{muhammad-sabir.idrees,hendrik.schweppe,yves.roudier}@eurecom.fr
marko.wolf@escrypt.com,{dirk.scheuermann,olaf.henniger}@sit.

fraunhofer.de

Abstract. The software running on electronic devices is regularly up-
dated, these days. A vehicle consists of many such devices, but is operated
in a completely different manner than consumer devices. Update opera-
tions are safety critical in the automotive domain. Thus, they demand
for a very well secured process. We propose an on-board security archi-
tecture which facilitates such update processes by combining hardware
and software modules. In this paper, we present a protocol to show how
this security architecture is employed in order to achieve secure firmware
updates for automotive control units.

Keywords: Security protocols; security architectures; over the air firmware
updates; software functionality

1 Introduction

Current research activities in vehicular on-board IT architectures basically fol-
low two key trends: unification of network communication and centralization of
functionality. Recent on-board IT architectures comprise a very heterogeneous
landscape of communication network technologies, e.g., CAN, LIN, FlexRay
and MOST. Internet Protocol (IP) based communication is currently being re-
searched as a technology for unifying the interconnection of electronic control
units (ECUs) in future on-board communication systems [9]. In addition, there
is a shift towards multipurpose ECUs and usage of flash memory technology in
the microcontrollers. Besides these trends in the design of automotive on-board
IT architectures, new external communication interfaces, fixed and wireless, are
becoming an integral part of on-board architectures. One key factor for this
development is the integration of future e-safety applications based on V2X
communications (external communications of vehicles, e.g. with other vehicles
– V2V, or with the infrastructure – V2I) [13,3] which have been identified as
one promising measure for increasing the efficiency and quality of operational
performance of all vehicles and corresponding intelligent transportation systems.

Firmware updates are crucial for the automotive domain, in which recalls are
a very costly activity and thus should be avoided where possible. The practica-
bility of remotely updating devices has been shown by Google for their Android

2 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

telephones. With this, they have a powerful tool to react on discovered security
flaws in very short time [21]. In the automotive domain, update intervals are cal-
culated in quarters of a year and not quarters of a day right now. This paradigm
is about to change and security mechanisms within the car provide the necessary
building blocks. With the arising “always-connected” infrastructure, it will be
possible to perform over-the-air (OTA) diagnosis and OTA firmware updates
(see Fig. 1), for example. This will provide several advantages over hardwired
access, such as saving time by faster firmware updates, which improves the effi-
ciency of the system by installing firmware updates as soon as they are released
by the car manufacturer. However, adding new in-vehicle services does not only
facilitate novel applications, but also imposes stringent requirements on security,
performance, reliability, and flexibility. As discussed in [8], in-vehicle components
need not only be extremely reliable and defect free, but also resistant to the ex-
ploitation of vulnerabilities. Although on-board bus systems are not physically
accessible (apart from via diagnostic interfaces), this provides only a limited
degree of security for vehicles that are in wireless communication with other
vehicles and devices (e.g., consumer devices connected to the vehicle).

Fig. 1. Over-the-Air Firmware Updates

As seen in [8,5], attacks on the in-vehicle network have serious consequences
for the driver. If an attacker can install malicious firmware, he can virtually
control the functionality of the vehicle and perform arbitrary actions on the
in-vehicle network [18]. Furthermore, since the ECU itself is an untrusted envi-
ronment, there exist challenges in how to securely perform cryptographic oper-
ations (i.e., encryption/decryption, key storage). Thus, it does not make much
sense if the verifier software runs from the same flash as the software to be
verified. In this paper we present a generic firmware update protocol, that can
be used for both hardwired and remote wireless firmware flashing. The proto-
col has especially been designed with respect to the above mentioned functional
and non-functional requirements. Our approach is based on hard security mech-

Secure Over-the-Air Firmware Updates 3

anisms. Hardware security measures are required in order to raise the security
level of specific security services, e.g. for the storage of security credentials. We
present a hardware security module design, which protects most critical parts
of the architecture during firmware updates, such as secure key storage, secure
operation of cryptographic algorithms, etc.

2 Secure On-Board Network Architecture

We believe that the combination of software and hardware based security so-
lutions is necessary for meeting the requirements of on-board network security.
However, depending on the risk level it should be analyzed for which use cases
a security level using pure software security mechanisms is sufficient. Based on
the security levels identified in [5], we focused on how to use hardware secu-
rity services during firmware updates. Hardware security measures provided
by hardware security modules (HSMs) are primarily used as root of trust for
integrity measurement and responsible for performing all cryptography appli-
cations including symmetric/asymmetric encryption/decryption, symmetric in-
tegrity checking, digital signature creation/verification, and random number gen-
eration.

Fig. 2. HSM Architecture Overview

Considering the constraints of current vehicular on-board networks and the
trend towards an increasing centralization of functions, a very flexible and scal-
able on-board HSM is required. The design of the HSM needs to consider the
different available resources on sensors and actuators, ECUs and bus systems. We
have decided to create three different variants of our HSM: The full, the medium
and the light HSM. The simplest HSM is designed for sensors/actuators (see
Fig. 1). At the ECU level, a more complex architecture can be applied (i.e.,
medium HSM), which for instance provides services for managing keys for the
on-board system and for protecting the ECU itself. In order to satisfy the perfor-
mance requirements for signing and verifying messages for V2I communications
(i.e., OTA firmware updates), a very efficient asymmetric cryptographic engine is
required. Thus, the full HSM architecture is applied in this case, which provides
the maximum level of functionality, security, and performance. Table 1 presents
security features of the different HSM variants and comparison with other exist-
ing HSM approaches. These variants offer different levels of security functionality.

4 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

The components of the HSM are divided into mandatory and optional compo-
nents because, depending on the use case, different security requirements have
to be fulfilled. The optional components are represented in Fig. 2 with dashed
lines. Furthermore, it has been defined in compliance with the Secure Hardware
Extension (SHE) specification proposed by the automotive HIS consortium [15].
All HSM modules (full to light) are able to understand and process SHE com-
mands [4] accordingly.

Table 1. Components of different HSMs.

Security Hardware Security Module - HSM SHE TPM Smart
Features Full Medium Light card
Boot Integrity
protection

Auth & Secure Auth & Secure Auth & Secure Secure Auth None

HW crypto
algorithms
(incl. key
generation)

ECDSA,
ECDH,
AES/MAC,
WHIRLPOOL
/ RSA, SHA1
HMAC

RSA, SHA1,
AES/ MAC

AES/ MAC AES/
MAC

RSA,
SHA1 /
HMAC

ECC, RSA,
AES, 3DES,
MAC, SHA x..

HW crypto
acceleration

ECC, AES,
WHIRLPOOL

AES AES AES None None

Internal CPU Programmable Programmable None None Preset Programmable
RNG TRNG TRNG PRNG w/ext.

seed
PRNG
w/ext. seed

TRNG TRNG

Counter 16x64bit 16x64bit None None 4x32bit None
Internal
NVM

Yes Yes Optional Yes Indirect
(Via
SRK)

Yes

Internal
Clock

Yes w/ext
UTC Sync

Yes w/ext
UTC Sync

Yes w/ext
UTC Sync

No No No

Parallel Ac-
cess

Multiple
sessions

Multiple
sessions

Multiple
sessions

No Multiple
sessions

No

Tamper Pro-
tection

Indirect (pas-
sive, part of
ASIC)

Indirect (pas-
sive, part of
ASIC)

Indirect (pas-
sive, part of
ASIC)

Indirect
(passive,
part of
ASIC)

Yes
(mfr.dep.)

Yes (active, up
to EAL5)

There exist different approaches for intrgrating the HSM with the micro-
controller: i). HSM in the same chip as the CPU with a state machine and
ii). HSM in the same chip as the CPU but with a programmable secure core.
In the solution we propose, a programmable CPU core is inside the same chip
as the main microcontroller to perform cryptography operations (see Fig. 2).
Note that when a software-based cryptography implementation is used, it can
be easily modified (possibly not a highly efficient solution) but changing a state
machine requires that hardware to be redesigned and is very expensive. It is nec-
essary that the HSM be in the same chip as the application CPU and contains
a microprocessor, to protect it from physical tampering.

3 Implementing Security Primitives

In this section we briefly review the hardware interface for the invocation of
cryptographic hardware security blocks, higher-level security functionality and
security management functionality (e.g., key import/export, signature, and mes-
sage authentication code) that are required during OTA firmware update. More
details about HSM functional calls/descriptions can be found in [6].

Secure Over-the-Air Firmware Updates 5

Signature: This function is used for demonstrating the authenticity and in-
tegrity of a message. A valid signature gives a recipient reason to believe that
the message was created by a known sender, and that it was not altered in
transit. For signature generation, a signature generation scheme sig(m)Sk

takes
as input a key k, and message m, outputs a signature σ̂; we write sig(m)Sk

=
{σ̂}Sk

. Where k is the security parameter, outputs a pair of keys (Sk;Vk). Sk is
the signing key, which is kept secret, and Vk is the verification key which is made
public. We also assume that a time stamp (UTC Time) is generated and then
also covered by the signature calculation, and write −→m = (m + Ts) to denote
the message and a time stamp whose signature is σ̂. For the signature verifica-
tion, ver sig(−→m , σ̂)Vk

→ α function is defined, takes as input the signature σ̂,
the signature verification public key part Vk, and outputs the answer α which is
either succeed (signature is valid) or fail (signature is invalid). As a precondition,
the Vk must be loaded and enabled for verification.

Message Authentication Code – MAC: This function is used to protect
both the data integrity and the authenticity of a message, by allowing verifiers
(who also possess the secret key) to detect any changes to the message content.
For generating a MAC as well as the message itself, the notation MAC (m)Mk

=
{m̂}Mk

is used, so that it produces the message itself plus the cryptographic au-
thentication code based on Mk and m. Here, Mk refers to a cryptographic key for
MAC generation and m to the message to be authenticated. In the same way as
for signatures, the use of the time stamp −→m = (m + Ts) is covered by the MAC
calculation. For the verification of a MAC, the notation ver MAC(−→m, m̂)Mk

is
used. Based on the Mk, it is verified whether m̂ corresponds to the message −→m.

Key Creation: This security building block is used for the creation of a key on
a hardware module, using HSM Create_Random_Key function. All properties
of the key are determined and fixed during creation. This includes the crypto-
graphic algorithm to be used, the use and further property use flags indicating
what actions may be done with this key (i.e., sign and verify) as well as the
authorization data needed for key usage. The use_flag parameter indicates
the operations that may be performed with the key. In particular, the following
flags are present:

– sign|verify: Key can be used to generate and/or verify digital signatures
or H/MACs of any data.

– encrypt|decrypt: Key can be used to encrypt and/or decrypt any data.

– secureboot: Can be used to create/verify secure boot references.

– keycreation: Can be used for creation of new keys, e.g. via key derivation
functions (symmetric) or DH key agreement (asymmetric).

– securestorage: Can be used to realize (locally bound) secure storage

– utcsync: Can be used for synchronizing internal tick counter to UTC.

– transport: Can be used to protect transports of keys (i.e., migration,
swapping, move) between locations, according to individual transport flags
(i.e., 0 = INT, 1 = MIG ,2 = OEM, 3 = EXT)[6].

6 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

Only the use_flag may explicitly be set by the creator whereas further
property flags are set inherently. Once created, the key properties are unchange-
able. As output, the function delivers a key handle for later usage of the key.

Key Export: With this function, keys stored on an HSM are transported
to other HSMs or to other trusted parties. During transport, the key is en-
crypted (ε (k)Tk

) with a special transport key (Tk) that may be symmetric or
asymmetric. In addition, the authenticity of the key is protected by a key au-
thenticity code which consists in a MAC or a signature appended to the en-
crypted key. The key authenticity code can be an explicit symmetric key en-
abled with use_flag = verify or an implicit symmetric key derived from
a symmetric transport key or an implicit asymmetric key also enabled with
use_flag = verify. The use of this key authenticity code is mandatory. As
output, the function delivers the encrypted key together with its authentication
code. As an important precondition, the specified transport key must be loaded
and enabled to be used for transport. Furthermore, the transport flag of the key
to be exported must be appropriately marked according to the type of module
managing the transport key.

Key Import: This function is used for importing keys into another HSM or to
other trusted parties. In this way, the function provides the counterpart to the
previously described export function. The key may be imported either into the
non-volatile memory or into the main memory (RAM) of the HSM. In the same
manner as for Key Export, the use of the key authenticity code is mandatory. As
output, the function delivers a key handle to reference the key for later usage.
As a precondition, the transport key must be loaded and enabled before. In
addition, the authentication code verification key must be loaded if the key is
protected by a signature.

Key Master – KM: We introduce a new functional entity, which we call the
KeyMaster. As there exist multiple variants of the HSM, that support different
cryptographic keys (symmetric/asymmetric), we had to take this into account
for key distribution. The KM is a central element in the establishment of a
session between entities. It holds public key (Pk) and pre-shared keys (Psk) of
the individual ECUs, which are used as transport keys, to establish a secure
session. This functional entity resides on a dedicated ECU or is integrated into
another ECU. There may be more than one KM node in a vehicle for replication
purposes.

Counter: As a further instrument to control the behavior of the HSM, the pos-
sible use of counters is introduced as an additional security building block. The
concrete, central task of a counter is freshness enforcement to prevent different
kinds of replay attacks. For handling these counters, the following HSM functions
are provided: Create_counter; Read_Counter, Increment_Counter, and
Delete_Counter. Access authorization data needs to be provided as input
data, and is later necessary to create, increment or delete the counter.

Secure Over-the-Air Firmware Updates 7

4 Secure Firmware Update Protocol

Ensuring secure firmware updates requires authenticity, integrity, freshness, and
confidentiality, as identified in [5]. The specified protocol provides means to sat-
isfy these security requirements. The next section will now show how HSMs are
used and how they interact in order to ensure firmware updates are downloaded
and installed securely into the vehicle.

4.1 OTA Update Requirements

Before sketching the protocol, we describe some additional constraints and re-
quirements that have to be taken into account for secure firmware updates:

HSM in the Diagnostic Tool: As stated in [5], there are numerous scenarios,
where an attacker targets the diagnostic tool (DT). For instance, the attacker
might inject bogus authority keys into the ECU, through DT, which compro-
mises the overall security of the vehicular on-board architecture In particular,
this means that the DT stores challenges and public strings for key recovery
(i.e., ECU unlock key) and is therefore responsible for the security of the sub-
system. Therefore, this information needs to be stored securely on the DT-side.
An additional advantage of HSM is the resistance against physical tampering of
the DT. Any damage to the HSM changes the behavior and therefore prevents
the extraction of secret key material.

Bandwidth Limitations of In-vehicle Networking Technologies: Firmware
update protocols comprise two parts: a V2I part, and an intra-vehicular part,
the latter involving a large number of interconnected ECUs.In the on-board bus
systems used, a specific restriction lies in the limited size of data packets. For
the CAN bus, for example, this means that only eight bytes of payload may
be transmitted at a time. For this purpose, secure common transport protocols
(S-CTP) [7], extensions of the CTP defined in [2] are applied to diagnosis jobs,
where typically larger data chunks need to be transmitted.

4.2 Protocol Description

Remote Diagnosis: In the OTA firmware update scenario, a service sta-
tion using a DT connects remotely to a vehicle, using V2I communication,
to assess the state of the vehicle (see Fig. 1). To know which version is in-
stalled, a diagnosis of the vehicle is required to have all necessary information
such as ECU type, firmware version, and date of last update. An employee of
the station using the DT establishes a secure connection with the vehicle, at
the ECU level, in order to determine the current state of the vehicle. To do
so, DT creates a session key Msk (exportable), by sending a HSM command
Create_Random_key and specifies the set of allowed key properties such as,
use_flag= sign|verify, encrypt| decrypt. It then calls export the
Mk using Pk ccu (Public key of the central communication unit – CCU) as a
transport key (Tk) and transmits it to the vehicle. Here, the CCU is the first
receiving entity in the vehicle, responsible for receiving and distributing V2X
messages to the in-vehicle network.

8 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

In the vehicle, the CCU, equipped with the Full HSM and acting as a KM
node, receives the connection request. The authorization for the connection is
verified in the CCU. The message −→m is checked for freshness, integrity and the
service station is authenticated. If the check succeeds, CCU-KM imports the key
into the HSM. It then exports the received Exported Mk with the correspond-
ing Pk ecu or Psk, depending on the ECU type, and distributes it to the target
ECU in order to enable end-to-end communication. This message includes all
information that is necessary to deliver this message to the correct ECU. On
the receiving side, ECU verifies the integrity, authenticity and authorizations of
CCU/DT based on the policy as to whether DT is allowed to deliver a message
or not. If this is true, and the message is fresh, ECU imports the Mk in the
HSM. Once Mk key have imported, an acknowledgment is sent back to DT (see
Algorithm 1). After this acknowledgment frame, the DT sends, depending on
the option chosen by the employee of the service station, requests to read out
diagnosis information (State/Log information) from the ECU it wants to check.

Algorithm 1 Remote Diagnosis
Require: Signature verification Key Vk of DT, CCU, ECU are pre-loaded
Ensure: Establishing a fresh and authentic session between DT and ECU based on a symmetric

session key Mk, where CCU-KM acts as a Key Master Node.

– DT � HSM: Mk-handle:= create random key (use flag = sign| verify, encrypt| decrypt,
export, use authorization data)
DAT: Exported Mk := key export(Tk-handle = <Pk ccu-handle>, kh=<Mk-handle>)

1. DT → CCU-KM:
{

(Exported Mk, Ts) , {σ̂}Sk dt

}
– CCU-KM � HSM: Mk-handle := key import (Tk-handle =<Sk ccu-handle>, kh=
<Mk-handle>)

– CCU-KM: � HSM:Exported Mk := key export(Tk-handle = <Pk ecu-handle | Psk-
handle>, kh=<Mk-handle>)

2. CCU-KM → ECU:
{

(Exported Mk, Ts) , {σ̂}Sk ccu

}
– ECU � HSM: Mk-handle := key import (Tk-handle = <Sk ecu-handle| Psk-handle>,

kh= <Mk-handle>)

3. CCU-KM ← ECU:
{

(ACK, Ts) , {σ̂}Sk ecu

}
4. DT ← CCU-KM:

{
(ACK, Ts) , {σ̂}Sk ccu

}
Advance Notification: Due to legal reasons and to allow for flexible deploy-
ment, we consider that service station will send an advance notification of pos-
sible firmware updates, if the type is the expected one. This advance notifi-
cation is intended to help customers plan for the effective deployment of up-
dates, and includes information about the number of new updates being re-
leased. These updates still need to be Approved for install before downloading.
The customer receives this information on the vehicle human-machine interface
(HMI) and can decide about possible deployment (i.e., Install, Decline,
Decide later). Only updates that have the approval status Install will
be downloaded to the vehicle. Disabling any ECU while vehicle is running may
cause safety critical problems, depending on the function ECU is responsible for.
We thus assume that additional checks will be performed by the on-board sys-
tem, to ensure that the vehicle is stopped and has access to the infrastructure,
before switching the ECU into the re-programming mode. Furthermore, we
assume that the V2I communication is available throughout the OTA firmware
update process.

Secure Over-the-Air Firmware Updates 9

ECU Reprogramming Mode: If the type is the expected one, the DT forces
the ECU to switch from an application mode into a reprogramming mode by re-
questing a seed (Na). This seed is required to calculate an ECU specific key value
to unlock the ECU for reprogramming. The ECU verifies desired security proper-
ties. If it is true, ECU sends a HSM command SecM_Generate(seed) to gen-
erate a seed. It then encrypts the seed ε (Na)Mk

for confidentiality enforcement,
compute a MAC on−→m = (ε (Na)Mk

+Ts) and transmits it to the DT. At the same
time, the ECU sends a HSM command SecM_ComputeKey(Na, SecM_key)
to compute the key on the HSM using Na. As output, the function delivers a
SecMkey key handle, we write SecMkey=Smk, that is used to unlock the ECU.

Algorithm 2 ECU Reprogramming Mode
Require: DT and ECU have established a fresh and authentic connection based on a Mk. Vehicle

is stopped and have access to infrastructure
Ensure: Authentic and confidential exchange of ECU unlock key.

1. DT → ECU:
{

(request seed, Ts) , {m̂}Mk

}
– ECU: � HSM:: SecM Generate(seed)

2. DT ← ECU:
{(
ε (Na)Mk

, Ts
)
, {m̂}Mk

}
– ECU: � HSM:: Smk:= SecM ComputeKey(seed, SecM key)
– DT: � HSM:: Smk:= SecM ComputeKey(seed, SecM key)
– DAT� HSM: Exported Smk := key export(Tk-handle = <Mk-handle>, kh=<Smk-

handle>)

3. DT → ECU:
{

(Exported Smk, Ts) , {m̂}Mk

}
– ECU: � HSM:: SecM CompareKey (key, seed)

4. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}

The DT verifies {m̂}Mk
, decrypts the received seed (ε−1 (Na)Mk

), and com-
putes the Smk with the aid of the received seed (Na). Once the Smk key value is
computed, it is exported, using Mk as a transport key, and transmitted to the
target ECU. The ECU verifies the {m̂}Mk

and compares the received Smk key
with the self-generated Smk. If the two values are identical, the ECU is switched
into unlock state (from application mode to the reprogramming mode) and
sends an ACK message to the DT (see Algorithm 2). This message is sent after
the ECU is switched into the unlock state to make sure the switch has been per-
formed. The information whether a re-programming request has been received
or not shall be stored in non-volatile memory, e.g. EEPROM. Since switching
from the application to the reprogramming mode shall be done via a hardware
reset, all contents of volatile memory will be lost [15]. If the comparison failed,
the flashloader [15] holds the ECU in locked state. ECU reprogramming is
possible only in the unlocked state.

Firmware Encryption Key Exchange: In this phase we are considering two
possible scenarios for exchanging firmware encryption keys: i) on-line solution
and ii) off-line solution. In the on-line solution: the service station has access
to an online infrastructure of the manufacturer, it can request the firmware and
as well as the firmware encryption key – (SSK). The SSK is a stakeholder
symmetric key pair [7], created externally, with use_flag=decrypt, key for
stakeholder individual usage e.g., software update. Instead, in the case of off-line
firmware is encrypted with the pre-installed SSK.

10 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

Considering current trends and advancements in the automotive industry,
on-line solutions provide more reliability, flexibility and will eventually increase
the security of the on-board network. Sharing the firmware encryption key only
with specific ECUs makes an on-line solution more robust and generic compared
with of-line approaches, where all vehicles share unique symmetric keys that are
pre-installed in the vehicles. In addition, the existence of various security levels
in the architecture [5], pleads for the specification of a validity period of the
SSK (short term or long term keys), for an individual ECU. We suggest to use
short term keys for firmware encryption. Short terms keys will expire after a
short amount of time and thus, as there is no need for instant revocation if keys
are compromised. This has the advantage that OEMs do not have to go through
another key migration (installing new keys) process if keys are compromised. As
such, the following section only details the on-line solution.

Algorithm 3 Firmware Encryption Key Exchange
Require: On-line access to OEM server and PKI infrastructure
Ensure: Authentic and confidential firmware encryption key exchange between OEM and ECU

1. DT → OEM:
{

(request firmware encryption key, Ts) , {σ̂}Sk dt

}
– OEM:Exported SSK:=key export(Tk-handle=<Pk ecu-handle|Psk-handle>,

kh=<SSK-handle>)
2. DT ← OEM:

{
(Exported SSK, Ts) , {σ̂}Sk oem

}
3. DT → ECU:

{
(Exported SSK, Ts) , {m̂}Mk

}
– ECU: � HSM:: SSK-handle :=key import (Tk-handle =<Sk ecu-handle|Psk-handle>,

kh= <SSK-handle>

4. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}
After successfully reprogramming access at the ECU level, the DT sends a

request (request_firmware_encryption_key) to the OEM server to get
the firmware encryption key (see Algorithm 3). This request includes information
about the ECU (i.e., ECU type, ECU identification number, firmware version,
etc.). The OEM verifies the authenticity and integrity of the received message.
If verified, OEM server retrieve the Pk ecu from the Public Key Infrastructure
(PKI), (possibly) maintained by an individual OEM, and exports SSK using
Pk ecu as a Tk. This is only feasible if the ECU is equipped with a full HSM.
In the case of medium or light HSM-ECUs, the pre-shared key Psk will be used
as a Tk. The OEM server exports the SSK and sends a signed message to the
DT. As the SSK key blob is encrypted with the ECU key, It is not possible
for the DT to retrieve the firmware encryption key. Next, the DT transmits the
received firmware encryption key to the ECU. The ECU imports the SSK in
the HSM using the key_import function. The key_import function provides
the assurance to the ECU that the key is generated by the OEM, by verifying
the authentication code send along with the encrypted key, and can only be
decrypted by the specific ECU key. After importing the SSK in the ECU-HSM,
the ECU sends an acknowledgment about the successful import of the SSK.

Firmware Download: Once the SSK is successfully imported into the ECU-
HSM, the DT sends the received signed and encrypted firmware (Frm) along with

its ECU Configuration Register (ECR) reference: sig (Frm,Ecr, T s)→ σ̂Frm

εnc→
ε
(
σ̂Frm

)
ssk

, to the Random-Access Memory (RAM) of the ECU. Following the

Secure Over-the-Air Firmware Updates 11

HSM use_flag approach, where multiple key-properties may be set, only the
OEM server can sign and encrypt the firmware, whereas the receiving ECU
can decrypt and verify the received firmware, using the same key material. The
encrypted firmware is downloaded block by block (logical block). Each of those
blocks is divided into segments, which are a set of bytes containing a start address
and a length. The start address and the length of each segment is sent to the
HSM during the segment initialization. For one block, a download request is
sent from the DT to the HSM. The HSM initializes the decryption service and
sends an answer to the DT. The download then starts segment by segment. After
sending the last firmware segment, the DT sends a transfer_exit message
to the ECU (see Algorithm 4).

Algorithm 4 Firmware Download
Require: Signed and encrypted firmware from OEM
Ensure: Authentic, fresh and Confidential firmware downloaded in the ECU

1. DT → ECU:
{(
ε
(
σ̂Frm

)
SSK

, Ts
)
, {m̂}Mk

}
– ECU � HSM: SecM InitDecryption(ε

(
σ̂Frm

)
ssk

)

– ECU � HSM:SecM Decryption(ε−1
(
σ̂Frm

)
ssk

)

2. DT → ECU:
{

(request transfer exit, Ts) , {m̂}Mk

}
– ECU � HSM:SecM DeinitDecryption()

3. DT ← ECU:
{

(ACK, Ts) , {m̂}Mk

}

Firmware Installation and Verification: For an installation of the firmware,
we consider the standard firmware installation procedure defined in [15], where
each logical block is erased and reprogrammed. However, before the flash driver
can be used to re-program an ECU, its compatibility with the underlying hard-
ware, the calling software environment and with prior versions of the firmware
has to be checked. This compatibility check is performed by means of a version
information stored in the HSM monotonic counters. The HSM Read_Counter
function is used to read out the value of a counter. The counter is referenced by
a counter identifier previously increased after every authentic and successful
installation of the firmware. These monotonic counters are defined to perform
such a checking of its current version against the new firmware version in order
to prevent the downgrading attacks meant to install older firmware.

For the verification, we defined a two step verification process: In the first
step, before re-programming, the ECU verifies the signature of the firmware
data. This is verified by using the pre-installed Manufacturer Verification Key
MVK. It proves that the software was indeed released from the OEM. In the
second step: we construct a tiny trusted computing base (TCB) during the in-
stallation phase. We compute an ECR trusted chain at each step of the firmware
installation. The ECR reference is needed to ascertain the integrity/authenticity
of the firmware data. An Extend_ECR function is defined to build the ECR
trusted chain. This function is used for updating the ECR with a new hash
value. The new value is provided as input and chained with the existing value
stored in the ECR, using a hash update function. As output, the function delivers
the updated ECR value.

12 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

After a successful installation of the new firmware data, software consis-
tence check is performed. The check for software dependencies shall be done
by means of a callback routine provided by the ECU supplier. This check is
done after reprogramming and before setting the new ECR reference. Next, the
Compare_ECR function is called. This comparison can only be performed after
all writing procedures for the logical block have been finished. This function
allows the direct comparison of the current ECR with a reference ECR value
received with the firmware. It is also possible that the ECR reference may be
contained inside the firmware itself. In this case the flashloader shall call a routine
provided by the ECU supplier to obtain the ECR reference. If the check suc-
ceed, the HSM Preset_ECR function is called. This function is used to manage
references to ECR values by ECR indices in the context of a secure boot. After
successfully setting the ECR value, the HSM (Increment_Counter) function
is called to increment the monotonic counter with the new value. At the last
step, the actual hardware reset is executed, the flashloader deletes (i.e. over-
writes) the routines for erasing and/or programming the flash memory from the
ECU’s RAM [15], thereby making sure those routines are not present on the
ECU in application mode. After the reset, the application is started.

Error Handling: Each function of the HSM returns a status after its suc-
cessful or unsuccessful execution. Some functions may deliver further function
specific error codes. The value of the status shows the positive execution of the
function or the reason for the failure. In case of a failure, the flash process must
stop with an error code and the ECU enters the locked state.

5 Related Work

The past decade has seen a tremendous growth in the vehicular communication
domain, yet no comprehensive security architecture solution has been defined
that covers all aspects of on-board communication (data protection, secure com-
munication, secure and tamper proof execution platform for applications). On
the other hand, several projects, namely GST [10], C2C-CC [3], IEEE Wave [22]
and SeVeCOM [20] have been concerned with inter-vehicular communication and
have come up with security architectures for protecting V2X communications.
These proposals essentially aim at communication specific security requirements
in a host-based security architecture style, as attackers are assumed to be within
a network where no security perimeter can be defined (ad-hoc communication).
These proposals consider the car mostly as a single entity, communicating with
other cars using secure protocols.
Mahmud et al. [14] present a security architecture and discuss secure firmware
upload, which depends however on a number of prerequisites and assumptions
(i.e., sending multiple copies to ensure firmware updates) in order to make secure
firmware update. However, sending multiple copies is not realistic and imposes
several constraints on the infrastructure. This proposal does not consider auto-
motive on-board networks, where domains are traditionally separated, due to
functional and non-functional requirements. Kim et al. [12] present remote pro-

Secure Over-the-Air Firmware Updates 13

gressive updates for flash-based networked embedded systems. In their solution
a link-time technique is proposed which reduces the energy consumption during
installation. However, no security concern is addressed in this proposal.
Nilsson et al. discuss in [16,17] provide a lightweight protocol and verification for
secure firmware updates over the air (SFOTA). In the SFOTA protocol, different
properties are ensured during firmware update protocol (i.e., data integrity, data
confidentiality, and data freshness). However, this approach also relies on strong
imposed assumptions in order to ensure the secure software upload: the authenti-
cation of the vehicle is not considered, keys are assumed to be stored securely and
the authors use a single encryption key for all the ECUs in a car. Furthermore,
no specific execution platform requirements are put forward by this proposal. In
[18], key management issues are discussed in relation with software updates. A
rekeying protocol is defined in order to distribute keys with only specific nodes
in the group. It also uses a multicast approach to update the software on a group
of node. Furthermore, as mentioned above, this approach also does not consider
execution platform requirements. It does not discuss about computation attacks,
where the attacker can learn and modify the firmware, during the installation
phase or simply prevent to update the counter, for later replay attacks.
Hagai [19] presents an approach that takes hardware into account by providing
a secured runtime environment with a so-called Trust Zone on an ARM proces-
sor. In contrast the solutions of [1,11] are software based. The so called tools
and enablers, which are low-level and application-level security functions in [1]
also cover a number of on-board automotive use-cases, while leaving the essen-
tial link to the external communication domain uncovered. The approach most
closely related to our work is that of the Herstelle-Initiative Software – HIS [15].
The flashing process defined by the HIS provides a good basis for the OEMs,
but the recommended protocol does not provide all the necessary security func-
tionalities (i.e., freshness). Furthermore, this process only addresses hardwired
firmware updates and does not provide any information about which key is used
for firmware encryption, in a heterogeneous landscape of communication network
technologies.

6 Conclusion

We have presented a firmware update protocol for a new security architecture
to be deployed within the vehicle. We showed how a root of trust in hardware
can sensibly be combined with software modules. These modules and primitives
have been applied to show how firmware updates can be done securely and over-
the-air, while respecting existing standards and infrastructure. In contrast to
existing approaches, the protocols presented in this paper describe a complete
process, which involves the service provider, the vehicle infrastructure as well as
the manufacturer and the workshop. By using secure in-vehicle communication
and a trusted platform model, we show how to establish a secure end-to-end
link between the manufacturer, the workshop and the vehicle. Despite the fact
that a trusted platform model entails certain constraints, such as the obligation
to bind cryptographic keys to a given boot configuration, we showed how the

14 S.Idrees, H.Schweppe, Y.Roudier, M.Wolf, D.Scheuermann, O.Henniger

protocols we presented deal with the update of the platform reference registers
during the boot phase of an ECU.

Acknowledgments
This work has been carried out in the EVITA (E-safety Vehicle Intrusion proTected
Applications) project, funded by the European Commission within the Seventh Frame-
work Programme for research and technological development.

References

1. H. Bar-El. Intra-vehicle information security framework. In Proceedings of the 7th
escar Conference, Düsseldorf, Germany, 2009.

2. M. Busse and M. Pleil. Data exchange concepts for gateways. Technical Report
Deliverable D1.2-10, EASIS Project, 2006.

3. C2C-CC. Car2Car Communication Consortium. http://www.car-to-car.org/.
4. R. Escherich, I. Ledendecker, C. Schmal, B. Kuhls, C. Grothe, and F. Scharberth.

SHE – Secure Hardware Extension – Functional Specification Version 1.1.
5. A. Ruddle et al. Security Requirements for Automotive On-Board Networks based

on Dark-side Scenarios. Technical Report Deliverable D2.3, EVITA Project, 2009.
6. B. Weyl et al. Secure On-board Architecture Specification. Technical Report

Deliverable D3.2, EVITA Project, 2010.
7. H. Schweppe et al. Secure On-Board Protocols Specification. Technical Report

Deliverable D3.3, EVITA Project, 2010.
8. K. Koscher et al. Experimental Security Analysis of a Modern Automobile. In

Proc. of the 31st IEEE Symposium on Security and Privacy, May 2010.
9. M. Rahmani et al. A novel network architecture for in-vehicle audio and video

streams. In IFIP – BcN, 2007.
10. GST. Global systems for telematics, EU FP6 project. http://www.gst-forum.org/.
11. A. Hergenhan and G. Heiser. Operating Systems Technology for Converged ECUs.

Embedded Security in Cars, 2008.
12. J. Kim and Pai H Chou. Remote progressive firmware update for flash-based

networked embedded systems. ISLPED’09, pages 407–412, 2009.
13. T. Kosch. Local Danger Warning based on Vehicle Ad-hoc Networks: Prototype

and Simulation. In WIT 2004, pages 3–7, 2004.
14. S.M. Mahmud, S. Shanker, and I. Hossain. Secure software upload in an intelli-

gent vehicle via wireless communication links. In Proc. IEEE Intelligent Vehicles
Symposium, pages 588–593, 2005.

15. T. Miehling, P. Vondracek, M. Huber, H. Chodura, and G. Bauersachs. HIS
flashloader specification version 1.1. Technical report, HIS Consortium, 2006.

16. D.K. Nilsson and U.E. Larson. Secure Firmware Updates Over the Air in Intelligent
Vehicles. In Proc. ICC Workshops, 2008.

17. D.K. Nilsson, L. Sun, and T. Nakajima. A Framework for Self-Verification of
Firmware Updates Over the Air in Vehicle ECUs. In GLOBECOM, 2008.

18. D.K et al. Nilsson. Key management and secure software updates in wireless
process control environments. WiSec 08, 2008.

19. Towards a secure automotive platform. White paper, secunet, 2009.
20. SeVeCOM. Secure Vehicle Communication. http://www.sevecom.org/.
21. A. Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. Google

Android: A State-of-the-Art Review of Security Mechanisms, 2009.
22. IEEE WAVE. Wireless Access in Vehicular Environments, IEEE standard 1609.2.

	Secure Automotive On-Board Protocols: A Case of Over-the-Air Firmware Updates
	Introduction
	Secure On-Board Network Architecture
	Implementing Security Primitives
	Signature:
	Message Authentication Code – MAC:
	Key Creation:
	Key Export:
	Key Import:
	Key Master – KM:
	Counter:

	Secure Firmware Update Protocol
	OTA Update Requirements
	HSM in the Diagnostic Tool:
	Bandwidth Limitations of In-vehicle Networking Technologies:

	Protocol Description
	Remote Diagnosis:
	ECU Reprogramming Mode:
	Firmware Encryption Key Exchange:
	Firmware Download:
	Firmware Installation and Verification:

	Related Work
	Conclusion

