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ABSTRACT

Spoken term detection (STD) systems usually arrive at
many overlapping detections which are often addressed with
some pragmatic approaches, e.g. choosing the best detec-
tion to represent all the overlaps. In this paper we present a
theoretical study based on a concept of acceptance space. In
particular, we present two confidence estimation approaches
based on Bayesian and evidence perspectives respectively.
Analysis shows that both approaches possess respective ad-
vantages and shortcomings, and that their combination has
the potential to provide an improved confidence estimation.
Experiments conducted on meeting data confirm our analysis
and show considerable performance improvement with the
combined approach, in particular for out-of-vocabulary spo-
ken term detection with stochastic pronunciation modeling.

Index Terms— Confidence measurement, stochastic pro-
nunciation modeling, spoken term detection, speech recogni-
tion

1. INTRODUCTION

Spoken term detection (STD), as defined by NIST in 2006
[1], aims to provide for the searching of large quantities of
audio without the need for reprocessing the audio signal ev-
ery time a query is performed. The evaluations organized by
NIST have attracted broad interest, including [2, 3, 4, 5, 6]. A
typical STD system consists of an automatic speech recogni-
tion (ASR) component to transcribe speech signals into word
or subword lattices and a detection component to search for
occurrences of search terms within the generated lattices.

A well known problem of STD is the ubiquitous overlap
among resulting detections. In most STD systems, overlap-
ping detections are merged into a single detection by some
pragmatic approach, for example, choosing the best detec-
tion as the merged detection, or accumulating the time and/or
confidence measures of all the overlaps as the time and con-
fidence measure of the merged detection [4, 6]. Frame-based
treatments have also been reported [4], though they tend to
have weak theoretical foundation.

Another challenge to existing overlap treatment stems
from out-of-vocabulary (OOV) terms. We have shown in
previous studies [7] that an ATWV-oriented decision strategy
[8] is essential for OOV STD, however accumulated confi-
dences are not normalized and thus cannot be applied together
with ATWV-oriented decisions, although normalization tech-
niques may provide some compensation [7]. Furthermore,

stochastic pronunciation modeling (SPM) [9], which has
been shown to be highly effective for OOV term detection,
may further complicate the pattern of overlaps since more
pronunciation candidates are taken into account.

In this paper, we present a theoretical reasoning for over-
lap treatment based on a concept of acceptance space. Specif-
ically, we present an average time estimation and two confi-
dence estimation approaches based on the Bayesian perspec-
tive and the evidence perspective respectively. The two con-
fidence estimation approaches are then combined to give a
normalized confidence measurement which is consistent with
the ATWV-oriented decision. In the next section, we first
present a statistical analysis of the pattern of overlaps for in-
vocabulary (INV) terms and OOV terms, and then present
time and confidence estimation approaches in Section 3. Ex-
periments and results are reported in Section 4.

2. OVERLAP STATISTICS

This section reports a study of the different patterns of over-
lapping detections for INV and OOV terms. We first intro-
duce the data used in the experiments and the reference sys-
tem used to conduct STD.

2.1. Data and reference system

OOV terms are strictly defined as those terms which do not
contain words in the system dictionaries nor in the training
material for either the acoustic models (AM) or language
models (LM). We selected 412 OOV terms from the AMI
dictionary that do not occur in the COMLEX dictionary
(published by LDC in 1996 and therefore historical from
an STD perspective), and added another 70 artificial OOV
terms (which occur more frequently) that are plausible search
terms. This results in 482 search terms which have a total
of 2736 occurrences in the evaluation data. These terms
were removed from the system dictionaries and the speech
and text training corpora. In addition, 256 INV terms which
are mostly person and city names were chosen to perform a
comparative study.

The speech data used in this work are from multi-
participant meetings recorded using individual head-mounted
microphones. After OOV purging, 122744 utterances (80.2
hours) of speech is available to train the AM. The NIST
RT04s development set was used for parameter tuning. The
evaluation set comprised the RT04s and RT05s evaluation
sets and a meeting corpus recorded recently at the University



# clusters overlap ratio max overlap
INV 32,436 235 177,608
OOV/1-best 75,854 82 145,440
OOV/SPM 767,714 73 158,400

Table 1. Statistics of overlap clusters.

of Edinburgh in the AMIDA project, totalling 11 hours of
speech. The text corpus used to train the language model was
provided by the AMI project and is the same as that used by
the AMI RT05s large vocabulary continuous speech recogni-
tion (LVCSR) system [10]. It involves 521.4 million words
in total after OOV purging. A 50k word dictionary from
the AMI project (also OOV purged) was used to convert the
word-based text corpus to a phoneme-based one. The same
dictionary was used to train a joint-multigram model which
is used for predicting pronunciations of OOV terms.

We built a phoneme-based STD system using the re-
sources described above. The acoustic models are 3-state
triphone HMMs employing conventional 39-dim MFCC fea-
tures, with cepstral mean and variance normalisation (CMN +
CVN) applied. A 6-gram phoneme LM was used to perform
speech decoding (the LM order was optimized empirically).
The averaged density of the resulting lattices is 805 nodes
per second. The HTK toolkit was used to train the acoustic
models and transcribe speech to lattices, and the SRI LM
toolkit was used to train the phoneme 6-gram model. The
term detector was implemented with Lattice2Multigram gen-
erously provided by the Speech Processing Group, FIT, Brno
University of Technology [4]. Confidence normalization [7]
was applied in all experiments.

2.2. Statistical analysis

To analyze the pattern of overlaps, we conducted STD for the
INV terms and OOV terms respectively. We tested two sce-
narios for OOV terms: one with 1-best pronunciations and the
other with multiple pronunciations based on SPM [9]. We de-
fine a maximum group of overlapping detections as a cluster,
the averaged number of detection per cluster as the ‘overlap
ratio’, and the size of the largest cluster as ‘max overlap’.
The statistics are presented in Table 1. It is clear that INV
terms have a larger overlap ratio than OOV terms, indicating a
greater overlap tendency for INV terms than for OOV terms.
This can be explained by the fact that INV terms are better
represented by the language model than OOV terms which
leads to more dense INV paths than OOV paths in lattices.
In addition, we find that more detections/clusters are obtained
with SPM and the overlap ratio is slightly reduced, while the
max overlap is slightly higher compared to the 1-best detec-
tion approach. This indicates that some clusters are enriched
by detections based on alternative pronunciations, while the
new added clusters tend to be small. Detailed investigation
on the clusters generated by SPM confirms this conjecture.

Also of interest is how many of these overlaps are ‘strict
overlaps’. For strict overlaps we refer to detections with the
same starting and ending time. Strict overlaps can be easily
merged into a single detection through confidence accumu-
lation, as we discuss in the next section. Table 2 shows the
statistics after all strict overlaps are merged. Interestingly the
overlap ratio of INV terms is significantly decreased, while

# clusters overlap ratio max overlap
INV 32,436 66 7,225
OOV/1-best 75,854 41 3,841
OOV/SPM 767,714 65 13,838

Table 2. Statistics of overlap clusters after merging strict
overlaps.

this is not the case for OOV terms, especially when SPM
is applied. This indicates that most of the overlaps for INV
terms are strict overlaps. Again, it can be explained by the
denser paths of INV terms than OOV terms.

3. OVERLAP TREATMENT

3.1. Acceptance space

The confidence of a detection is usually formulated as a de-
tection posterior probability, given by:

c = P (Kte
ts
|O) (1)

where Kte
ts

denotes the event that search term K appears be-
tween time ts and time te in the audio stream O. This confi-
dence measure is usually computed from the lattices, and thus
is referred to as the lattice-based confidence. The same for-
mulation is adapted for SPM, although a hidden variable is
introduced to represent possible pronunciations.

Scrutinizing (1), we see that it actually represents the con-
fidence measure that a term K appears in a specific speech
segment, i.e., a segment whose starting and ending times are
precisely specified. However, detections hypothesized by an
STD system are never precise, and factors such as imperfect
acoustic modeling, ambient noise and limited vocabulary al-
ways impose uncertainty which leads to biased time segmen-
tation. In fact, even manually labeled transcripts are not abso-
lutely accurate. To address the inaccuracy in time segmenta-
tion, an endurance level is typically applied when evaluating
STD performance. For example, in NIST evaluations, the en-
durance level is set to 0.5 seconds from the mid-point of a
detection to the time span of the true occurrence; in the HTK
tool HResults, the endurance level is set such that the starting
and ending time of a hit detection should be located before
and after the mid-point of the true occurrence respectively.

No matter how it is defined, the endurance level actually
forms a small ‘acceptance space’. Detections falling in this
space are considered as hits, while ones outside this space
are considered to be false alarms. The task of STD there-
fore amounts to searching for as many putative detections as
possible in the acceptance space, and the decision process is
the task of inferring the true occurrence. In real applications,
since the acceptance space of an occurrence is unknown, we
can assume a cluster of overlapping detections form the ac-
ceptance space of a potential occurrence and estimate its time
and confidence measure by the detections in that cluster.

3.2. Time estimation

Assuming a cluster presents a possible occurrence, and that
the overlapping detections are samples of this occurrence,
then the time span of all the overlapping detections can be



regarded as an approximation of the entire acceptance space
of the hypothesized occurrence. Using this approximation to
estimate the time segment of the hypothesized occurrence is
the so called group time approach. A better time estimation
is achieved by assuming that the confidence measure of a
detection is also the confidence measure that its time segment
estimates that of the hypothesized occurrence, which leads to
an average time approach formulated as follows:

s =
∑

i c(i)s(i)∑
i c(i)

(2)

where s is the estimated time segment, and where s(i) and
c(i) are the time segment and confidence measure of the i-th
detection respectively. If one particular detection is dominant
(i.e. its confidence score is much higher than that of the oth-
ers), then the average time reduces to the best time approach,
which selects the time of the detection with the highest confi-
dence measure as the time of the hypothesized occurrence.

3.3. Confidence estimation

We propose two confidence estimation approaches based on
a Bayesian perspective and an evidence perspective respec-
tively, and then combine them for a normalized confidence
measurement that is consistent with ATWV-oriented decision
making and is therefore more suitable for OOV STD.

Bayesian approach

Assuming that the detections of an overlap cluster are sam-
ples of a single occurrence and that their starting time ts and
ending time te are random, we derive the confidence of a term
K appearing in a time span τ as follows:

c = P (K, τ |O) (3)

=
∑
ts,te

P (K, ts, te|O) (4)

=
∑
ts,te

P (K|O, ts, te)P (ts, te|O) (5)

where P (K|O, ts, te) is the lattice-based confidence in (1),
and P (ts, te|O) can be regarded as the prior probability that
the time span (ts, te) falls in the acceptance space of the hy-
pothesized occurrence. Any form of distribution P (ts, te|O)
can be assumed; if we assume a uniform prior, then the com-
monly used accumulated confidence is derived:

cacc =
∑
ts,te

P (K|O, ts, te) (6)

Furthermore, assuming a single dominant detection in the
cluster, we obtain the best confidence approach:

cbest = maxts,te
P (K|O, ts, te) (7)

Although the above equations are derived from single pro-
nunciations, it is straightforward to extend them for multiple
pronunciations (as in the case of SPM) by treating the pro-
nunciation as an additional hidden variable.

Evidence approach

Now let us assume that each detection provides a piece of
‘evidence’ for the hypothesized occurrence, and that all de-
tections are independent events. Furthermore assuming that
an occurrence can be ascertained if any of the detection events
appears, we derive the following exclusive evidence:

cenv = 1−
∏

i

(1− c(i)). (8)

Combined approach

The Bayesian approach has a solid theoretical foundation
and imposes no artificial assumptions, however it is diffi-
cult to specify the prior distribution. Even with a uniform
distribution, estimating the normalization factor P (ts, te|O)
remains a problem. Unnormalized confidence measures,
such as the accumulated confidence, are not consistent with
ATWV-oriented decision making and might be difficult to
compensate with confidence normalization, which is partic-
ularly problematic for OOV STD. The evidence approach,
on the other hand, results in normalized confidences, but the
independence assumption is perhaps too strong.

A better solution is to combine these two approaches:
first merge all strict overlaps by the Bayesian approach, and
then merge the non-strict overlaps by the evidence approach.
The idea is to marginalize out pronunciations and phone seg-
mentations in the first step by keeping segment ending points
fixed, and then estimate the confidence by assuming that the
non-strict overlaps are independent. The resulting confidence
is normalized, and is referred to as the exclusive accumulated
confidence, given by

ceacc = 1−
∏
t1,t2

(1−
∑

ti
s=t1,ti

e=t2

c(i)) (9)

where tis and tie are the starting and ending time of the i-th
detection respectively.

4. EXPERIMENTAL RESULTS

We present our experimental results with the proposed over-
lap treatment. The performance of three time estimation ap-
proaches (best time, group time and average time) together
with four confidence estimation approaches (best confidence
cbest, accumulated confidence cacc, exclusive evidence cenv

and exclusive accumulated confidence ceacc) is reported in
terms of average term weighted values (ATWV) [1].

4.1. Single pronunciation systems

Results for INV terms and OOV terms with 1-best pronun-
ciations are reported in Table 3 and 4 respectively. The first
observation is that neither the accumulated confidence nor the
exclusive evidence shows any advantage over the simple best
confidence. This is especially true for the exclusive evidence,
for which results are poor in the case of INV STD, indicat-
ing that the dominant strict overlaps are far from indepen-
dent. Second, the exclusive accumulated confidence provides
slightly better performance than the best confidence. Com-
paring different time estimation approaches, the average time



shows a small advantage for INV terms but performs almost
the same as the best time for the OOV terms, suggesting that
a large number of non-strict overlaps are required for the av-
erage time estimation. For both INV and OOV terms, the
group time performs consistently worse than the other two
approaches. All these results support the theoretical analysis
presented in the previous section.

ATWV
Best time Group time Average time

cbest 0.5320 0.5312 0.5324
cacc 0.5302 0.5293 0.5305
cenv 0.4951 0.4942 0.4954
ceacc 0.5356 0.5347 0.5359

Table 3. STD results with various overlap treatment ap-
proaches for INV terms.

ATWV
Best time Group time Average time

cbest 0.2911 0.2902 0.2910
cacc 0.2910 0.2903 0.2910
cenv 0.2900 0.2891 0.2899
ceacc 0.2931 0.2924 0.2931

Table 4. STD results with various overlap treatment ap-
proaches for OOV terms with 1-best pronunciations.

4.2. SPM system

Now we extend the 1-best OOV detection to SPM. Note that
the accumulation step in the exclusive accumulated confi-
dence estimation is a slightly more complex: strict overlaps
based on various pronunciations should all be merged. The
ATWV results are shown in Table 5. We see that both the
accumulated confidence and exclusive evidence perform con-
siderably better than the best confidence. This seems to
suggest that the overlapping detections introduced by SPM
tend to provide valuable information. As expected, the exclu-
sive accumulated confidence provides the best performance.
The average time and the best time show similar performance,
and the group time performs the worst.

ATWV
Best time Group time Average time

cbest 0.3479 0.3462 0.3478
cacc 0.3552 0.3537 0.3552
cenv 0.3503 0.3485 0.3502
ceacc 0.3605 0.3588 0.3604

Table 5. STD results with various overlap treatment ap-
proaches for OOV terms with SPM.

5. CONCLUSIONS

This paper presents a theoretical analysis for overlap treat-
ment in STD. An average time estimation and two confidence

estimation approaches are proposed based on the idea of an
acceptance space. The theoretical reasoning and experimen-
tal results show that the best time is good enough for time
estimation, and that the exclusive accumulated confidence is
the best approach for confidence estimation. Note that this
conclusion is slightly different if the evaluation is based on
FOM values computed with HTK, in which case the group
time always performs the best, due to the specific criterion of
HTK for asserting hits.
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