
Securing P2P Storage with a Self-organizing
Payment Scheme

Nouha Oualha1 and Yves Roudier2

1 Telecom ParisTech, Paris, France
Tel.: +33 (0)1 45 81 77 41, Fax: +33 (0)1 45 89 79 06

oualha@telecom-paristech.fr
2 EURECOM, Sophia Antipolis, France

Tel.: +33 (0)4 93 00 81 18, Fax: +33 (0)4 93 00 82 00
roudier@eurecom.fr

Abstract. This paper describes how to establish trust for P2P storage
using a payment-based scheme. This scheme relies on the monitoring
of storage peers on a regular basis. The verification operations allow
assessing peer behavior and eventually estimating their subsequent re-
muneration or punishment. The periodic verification operations are used
to enforce the fair exchange of a payment against effective cooperative
peer behavior. Payments are periodically provided to peers based on the
verification results. Only cooperative peers are paid by data owners with
the help of intermediates in the P2P network, thus accommodating peer
churn. Moreover, our payment scheme does not require any centralized
trusted authority to appropriately realize a large-scale system. Simula-
tions in this paper evaluate the capability of the payment scheme to work
as a sieve to filter out non cooperative peers.

Keywords: P2P storage, cooperation, Storage reliability, payment based
scheme.

1 Introduction

The tremendous growth in the amount of data available in today networks and
the trend towards increasing self-organization, as illustrated by large scale dis-
tributed systems and mobile ad hoc networks, generate a growing interest in
peer-to-peer (P2P) data storage. Such an application exposes the data to new
threats due to peers since any service deployed in self-organizing networks first
and foremost relies on their willingness to cooperate. In this setting, selfishness
not only covers explicit non cooperation, but also subtle forms of misbehavior
whereby peers may discard some data they promised to store in order to optimize
their resource usage or may try to escape their responsibility in contributing to
the maintenance of the storage infrastructure.

Approaches to overcome non cooperating behaviors fall into two classes: rep-
utation and payment (or remuneration) mechanisms. Reputation builds a long-
term trust between peers based on a statistical history of their past interactions.

On the other hand, payment-based mechanisms feature a more immediate re-
ward for a correct behavior making possible an explicit and discrete association
of incentives and cooperation. With payments, peers cooperate because they are
getting paid not because of a hypothetic reciprocation in the future as can be
found with reputation systems.

Several payment schemes have been introduced to enable ad hoc packet for-
warding ([1], [2]). It is however quite easy to determine individual and instanta-
neous rewards fostering cooperation in exchange of a packet forwarding opera-
tion, whereas data storage can only be deemed as correct at data retrieval time.
Furthermore, it is useful in this case to be aware of a storage failure as soon
as possible. Other payment schemes are not attached to a particular resource
sharing application ([19], [20], [21], and [22]); but they unfortunately rather sup-
pose the presence of a centralized authority to mediate peer payments, and they
therefore may undermine the scalability of a P2P system.

The contributions of this paper are summarized in the following. A descrip-
tion of the problem statement (Section 2) that particularly defines our threat
model and related work (Section 3). The design of a payment based scheme
for mitigating the impact of selfishness towards P2P storage (Section 4). The
proposed scheme relying on KARMA [14] for peer account administration is
based on a cryptographic protocol that enforces the periodic fair-exchange of
payment against cooperative behavior. An evaluation of that scheme (Section
5) based on simulation results demonstrating its capability to detect and punish
non cooperative peers and an analysis of its security.

2 Problem Statement

P2P cooperative storage systems feature peers that store data for other peers;
in counterpart, peers receive some disk space for the storage of their own data.
Such systems face two major issues: reliability, since holder peers may crash or
delete the data they store; and fairness, since peers may refuse to store data for
others. The data stored can be periodically checked using one of the numerous
verification protocols discussed in [4] and [5]. [4] discusses how verification can
be mostly handled by verifier peers selected and appointed by the data owner to
distribute the load of this task. The current paper discusses how to enable such
a system using monetary compensations for the verification task.

Threat model. P2P storage relies on cooperation with unknown peers without
prior trust relationships. However, peers may misbehave in various ways. In
comparison with the study of selfish behaviors in routing over mobile ad-hoc
network, we distinguish two types of selfishness:

– Passive selfishness: Passively selfish peers store their own data in the sys-
tem but never concede disk space for the storage of other peers. This problem
has long been referred to as free-riding. In a storage system like the one de-
scribed in [4], free-riders will also refuse to perform data storage verifications

although they will request other peers to check the correct storage of their
own data.

– Active selfishness: Actively selfish peers accept to store data although they
will not in effect store them for the agreed upon period of time but instead
destroy them at some point to optimize their resource usage. Actively selfish
peers also agree to become verifiers, although they will defect in some way
as discussed below. Data owners wrongly depend on actively selfish peers
contrary to passively selfish ones. Such a behavior constitutes an attack
to the cooperation scheme much more offensive because it wastes network
bandwidth and lowers data reliability and trust towards verifiers.

Active selfishness involves addressing the following issues:

– Resource related collusions: peers may collude to reduce their resource us-
age (storage space, computation, or bandwidth utilization). Holders may
destroy all replicas of a data but one and still be able to answer verifica-
tion requests. This attack might be addressed by personalizing data replicas
at each holder ([4], [18]). Another type of collusion may occur between a
holder and its verifier such that neither the holder stores data nor the veri-
fier performs verification operations. This can be avoided by distributing the
verification task to several verifiers, then checking the consistency of their
answers to decide on the trustworthiness of both the holder and the veri-
fiers. If verifiers might defect altogether (Quis custodiet ipsos custodes3), the
owner might ultimately perform sampling verifications itself, which should
be done sparingly, for obvious resource related matters.

– Remuneration related vulnerabilities: attacks may directly target the incen-
tive mechanism to defeat its filtering capabilities. The Sybil attack represents
another potential vulnerability making it possible to generate new peers
at will. The Sybil attacker masquerades under multiple simultaneous peer
identities in order to gain an unfair advantage over system resources. The
payment based mechanisms to be envisioned should therefore support some
form of real world based authentication. This attack should at least be mit-
igated by imposing a real world monetary counterpart to membership for
peers joining the storage system. In terms of implementation, the payment
mechanism should also prevent or mitigate in some respect double spending
attacks.

Purely malicious behaviors are also possible: a malicious peer might aim at
obtaining or altering some private data, or at destroying the data stored or
the infrastructure through denial of service attacks (e.g., flooding), even at the
expense of its own resources. This paper only focuses on selfish behaviors, in
particular active ones, and their mitigation through a (micro)payment based
incentive scheme.

3 who watches the watchers?

3 Related work

A number of micropayment schemes have been proposed in the past like Pay-
Word, MicroMint [20], and Millicent [21]. Those rely on a central broker, the
bank, that tracks each peer balance and payment transactions. In most of these
schemes, the load of the bank grows linearly with the number of transactions;
though hash chains in PayWord or the use of electronic lottery tickets [23] greatly
reduce such cost. As example, the P2P micropayment system MojoNation [19]
has also a linear broker’s load and this system has gone out of work because the
central bank constitutes as well a single point of failure.

One obvious way of distributing bank’s work would be to use super-peers
disseminated within the P2P network. These super-peers would provide neutral
platforms for performing a payment protocol. The use of such an infrastructure
of trusted peers may make sense, in particular in relation with content distri-
bution networks (CDNs) [3]. Such networks involve the deployment of managed
workstations all over the Internet, thereby providing a nice platform for other
functionalities.

The scale of the P2P system makes it necessary to resort to a type of protocols
termed optimistic protocols where the bank does not necessarily take part in the
payment, but may be contacted to arbitrate litigations between peers. With
such type of protocols, the bank’s work is reduced. PPay [22] is a lightweight
micropayment scheme for P2P systems where the issuer of any coin is a peer
from the system that is responsible for keeping trace of the coin. However, the
bank comes into play when the issuer of a coin is off-line. In a very dynamic
system, the probability of finding the original issuer of the coin on-line is very
low. In this situation, PPay converges to a system with a centralized bank.

If data storage should be achieved in a large-scale and open P2P system,
designs based on a trusted authority may be unfeasible or unmanageable. In
that case, implementing the optimistic fair exchange protocol would have to be
done by relying solely on peers. [7] describes design rules for such cryptographic
protocols making it possible to implement appropriate fair-exchange protocols.

To the best of our knowledge, the only fully-decentralized micropayment
scheme that has been proposed so far is KARMA [14]. KARMA splits the bank
functionality in different bank sets composed of peers selected and appointed
randomly from the P2P system for each peer when it first joins the system.
The KARMA payment scheme does not require any trusted infrastructure and
is scalable.

The payment scheme proposed in this paper relies on such framework to
administer peer accounts. Enforcing the fair-exchange of payment against a co-
operative service is based on a cryptographic protocol (described in Section 4)
that is built on top of the KARMA framework. The framework has been initially
applied to the file sharing problem described in [14]. The described application
cannot be assimilated to a P2P storage application since in the former case pay-
ments are immediately charged after the exchange of the file, whereas in the
latter case payments for storage or verification are by installment i.e., they are
billed at a due date that corresponds to the confirmation (by verifications) of

the good behavior of the holder or the verifier. Therefore, we will supplement
the KARMA framework by an escrowing mechanism (described in detail in Sec-
tion 4) that guarantees the effective payment of credits promised by the owner
towards a cooperative holder or a cooperative verifier.

Tamper resistant hardware (TRH) have also been suggested as a way to
enforce payment protocols in a decentralized fashion as illustrated by smart cards
in [6]. TRH supported approaches have been suggested within the TermiNodes [1]
and CASHnet [2] projects as a support for implementing cooperation incentives.
TRH based approaches suffer from other attacks on the payment scheme: if
the TRH of a non cooperative or malicious peer is disconnected from the other
peers, their credits/tokens might not be available, which might raise starvation
issues. However, the use of a secure operating system as a TRH might make
it possible alleviate this problem notably by more completely controlling and
possibly reducing the device functionalities if the peer does not connect to the
system network.

4 Payment-based Storage

In this section, we first give an overview of the payment-based storage scheme,
to describe then the cryptographic protocol that achieves such scheme.

4.1 Overview

We propose a mechanism that monitors data storage on a regular basis to de-
termine the payments between data owners, holders, and verifiers. The payment
mechanism allows a peer storing data for other peers to be paid for its service.
It thus controls the storage functions seen in the previous section by rewarding
cooperating peers.

Notations: Let BP denote the bank-set of the peer P , PKP the public key of a
peer P , SKP the private key of P , and SKBP

the private key of the bank-set
of P . A message M signed by some key K is denoted as MK or σK (bank-set
signature is explained in [14]).

Let G denote a finite cyclic group with n elements. We assume that the group
is written multiplicatively. Let g be a generator of G. If h is an element of G
then finding a solution x (whenever it exists) of the equation gx = h is called
the discrete logarithm problem (DLP) and is assumed hard to solve.

Assumptions: A P2P system generally consists of altruistic peers, selfish peers,
malicious peers, and others with behavior ranging in between. We will assume
that there are a non-negligible percentage of the peers that are altruistic or at
least correctly follow the protocol. Peers of the storage system are structured
in a DHT such as CAN [8], Chord [10], Pastry [9], or Tapestry [11]. A DHT
consists of a number of peers having each a key Key(Peer) in the DHT space,
which is the set of all binary strings of some fixed length. Each participant is

assigned a secure, random identifier in the DHT identifier space: Id(Peer). We
assume that the DHT provides a secure lookup service (see [12] and [13]): a peer
supplies an arbitrary key (an element in the DHT space), and the lookup service
returns the active node in the DHT that stores the object with the key.

Peer selection: To avoid pre-set collusion between verifiers and the owner or
verifiers and the holders, holders and verifiers should be randomly chosen. The
random selection of peers is generally used for its simplicity since it is less sophis-
ticated and since it consumes less bandwidth per peer. TotalRecall [24] and the
P2P storage system of [25] rely on a DHT to randomly select data holders. The
selection is realized by randomly choosing a value from the DHT address space
and routing to that value. [26] proved the positive effects of randomization in
peer selection strategies. For instance, a long-list of randomly chosen potential
holders and verifiers can be constructed: the l1 (respectively l2) closest peers
in the DHT identifier space to the key HASHH(Id(Owner), timestamp) (re-
spectively HASHV (Id(Owner), timestamp)) constitute the potential holders
(respectively verifiers) of the owner (HASHH and HASHV are pseudo-random
functions publicly known).

Credit escrowing: Each peer has a personal account managed by a set of peers
likewise KARMA [14] that are called bank-set. Our payment scheme relies on
digital checks. To prevent peers from emitting bad checks, the amount of credits
that corresponds to a check value are escrowed, i.e., the necessary number of
credits to pay check holder are locked by the bank-set. Consequently, bank-
sets keep two types of peer balances: normal credits and locked credits. Credits
are escrowed for some time-out (that corresponds to the check’s expiry time),
after which they are returned to the peer normal balance. The owner desiring
to store data in the system must be able to pay its holders and verifiers with
checks. That’s why, it must escrow credits which are converted to digital checks.
These checks are then stored in a blinded version at the corresponding holders
and verifiers. Checks include some random numbers that are generated by the
owner and certified by its bank-set. The latter have a blinded version of these
numbers too (to prevent collusion between one bank-set member and a holder
or a verifier). Each blinded digital check has this form:

C(payer, payee, gc) = {gc, id(payer), id(payee), price, seq, TTL, σSKpayer} (1)

having c a random number, seq check’s sequence number, and TTL check’s
expiry time. The knowledge of c by the payee allows this latter to be paid
credits of value price. The bank-set of the payer is not informed of this number
c; but only a blinded version of it gc. The verification operation allows both the
verifier and the holder to extract the check in order to be able to present it to
their bank-set to be paid in return. The holder must also escrow an amount of
credits corresponding to the punishment it gets if it destroys data that it has
promised to store. The escrowed credits of the holder are converted to one digital
check that is certified by the holder’s bank-set. The check is split into multiple

shares each one will be stored at each verifier: a threshold number k of these
shares allow reconstructing the full check. Shares of the digital check comprise
the following numbers (in blinded version) {gsi}1≤i≤nv which are shares of gs if
{si}1≤i≤nv are shares of s [16]. If a threshold-based majority of verifiers agree
that the holder has destroyed data, they can construct holder’s check and present
it to the owner such that this latter will be reimbursed.

Data verification: Each verifier appointed by the owner periodically checks stor-
age of data stored at a holder. The verifier does not have the full challenge for
the holder, but rather a share of the challenge: a threshold number of messages
received by the holder from verifiers allow this latter to reconstruct the full chal-
lenge. Distributing the verification task to multiple verifiers prevents potential
collusion between the holder and a verifier, since the holder cannot compute
the response without the stored data even by having a partial knowledge of
pre-computed challenges (metadata) disclosed by a small number of colluding
verifiers. The verification operation has three-fold objectives: it allows assessing
the availability of stored data, it permits the verifier to remove the blinding fac-
tor of the stored digital check in order to get paid for verification, and finally it
allows the holder to recover also its check for its payment too. Since, the verifier
is paid exactly for each verification operation it actually performs, verification
operations are executed in a defined number. Consequently, the payment scheme
does not require a verification protocol where verifications are unlimited and may
rely on pre-computed challenges for instance.

The originality of the scheme mainly stems from the combination of verifi-
cation and payment operations such that the scheme works without the data
owners being involved. These latter can store their data at multiple holders, ap-
point verifiers, and then they can forget about the stored data until of course
the moment of retrieval. The system of peers operates automatically without the
intervention of owners: it periodically checks data storage and pays the cooper-
ating holders.

4.2 Protocol

In this section, we describe a protocol that provides a cryptographic implemen-
tation of the scheme. We consider an owner denoted O that stores its data at a
holder H. The integrity of such data is periodically checked by a verifier V on
behalf of O. The proposed protocol consists in multiple steps described in the
following Fig. 1.

5 Simulation experiments

In order to validate the ability of our payment-based storage approach to de-
tect and punish selfish peers, we developed a custom simulator of our payment
scheme. This section first describes the framework of simulations, then presents
and analyzes the results obtained.

Operations Description

C
re

d
it

 e
sc

ro
w

in
g

(O escrows credits for the payment of H and V)

O: fix number of verification operations to m

O: generate random numbers ���������, vH, vV

O: compute for each i∈[1, m]

 Ti = HASH(HASH (d , Ri), vH)

 T’i = HASH(HASH (d , Ri), vV)

O � BO:��	
 � ����������� �����, ��	
 � ����������� �����
BO � O: ����� �� �	
������� , ����� �� �	 �
�������

(H escrows credits to form its punition p)

H: generate a random number s

H: generate ���������� shares of s

H � BH: ���
������� � ��� �����, punition

BH: check ���
������� are shares of ��
BH � H:������ �� ��
��������

D
a

ta
 s

to
ra

g
e

(O stores data d at H)

H � V: �� � ���� �� ��
�
V � H � O: ��� �!"#
O� H: d, ����� �� �	
�������, vH

(O delegates verification of d to V)

O: generate for each i∈[1, m] {rij}1�j�nv shares of Ri

O: compute {HASH2
(d , Ri)}1�i�m

 (HASH2
: HASH is executed 2 times)

O� V: {HASH2
(d , Ri)}1�i�m, rij, ����� �� �	�
�������, vV

D
a

ta
 v

er
if

ic
a

ti
o

n
 (V sends a share of the i

th
 challenge to H)

V � H: i, rij

(H answers verifiers upon construction of challenge from shares)

H: compute Res=HASH(d, Ri)

H � V: Res

(V checks H’s answer)

V: check HASH(Res) =? HASH2
(d , Ri)

P
a

ym
en

t

(H obtains its i
th

 payment)

H: compute Ti = HASH(HASH (d , Ri), vH)

H � BH: Ti, ���� �� �	
�
BH � BO: Ti, ���� �� �	
�
BH: increase H’s balance

BO: decrease O’s balance

(V obtains its i
th

 payment)

V: compute T’i = HASH(HASH (d , Ri), vV)

V � BV: T’i, ���� �� �	�
�
BV � BO: T’i, ���� �� �	�
�
BV: increase V’s balance

BO: decrease O’s balance

 D
a

ta
 r

et
ri

ev
a

l

(O retrieves d from H)

H � O: d

(H unblocks its escrowed credits)

O � H � BH: ��� �!"$
If TTL times out: unspent escrowed credits are returned (respectively

to O and H)

Fig. 1. Payment protocol

5.1 Simulation framework

The self-organizing storage system is modeled as a closed set of homogeneous
peers. The storage system operation is modeled as a cycle-based simulation. One
simulation cycle corresponds to the period between two successive verifications.

Churn: Peers arrive to the system in Poisson distribution: there are 100 new-
comers per hour, for an average lifetime of 2 weeks. [17] shows that Gnutella
peer uptime follows a power-law distribution. We will use the same distribution
for peer uptime and downtime. In average, a peer stays online for 1 hour and
connects in average 6.4 times in a day.

Storage: Peer storage space, file size, and storage duration are chosen from
truncated log-normal distributions. The storage space of each peer is chosen
from 1 to 100GB, with an average of 10GB. In each day of simulated time, 2.85
of files are stored per peer for an average period of 1 week. The average file size
is 500MB. The stored files will be checked by verifiers each day.

User strategies: We consider three peer strategies: cooperation, passive selfish-
ness (free-riding) and active selfishness.

– Cooperative: whenever the peer accepts to store data from another peer,
it keeps them stored. Whenever the peer accepts to check the availability of
some data at a storage peer, it will periodically perform verification opera-
tions on this peer as agreed.

– Passively selfish: the peer will never accept to store data and will never
accept to verify the availability of some data stored for other peers. The peer
is just consumer of the storage system. This type of behavior is also termed
free-riding.

– Actively selfish: the peer probabilistically accepts to store data for other
peers or to verify storage at other peers. Whenever it stores or verifiers for
others, it will fulfill its promise only probabilistically. This type of behavior
has an instability effect: alternating between cooperation and selfishness at
a given probability: probability of participation denoted p and probability
of achieving promise denoted q.

5.2 Simulation results

Different scenarios were simulated to analyze the impact of several parameters on
the payment mechanism. Simulation studies the transition phase of the network
to a stable state where cooperative peers are the only active actors of the system.
Used notations are summarized in Table 1.

Exclusion of selfish owners: Fig. 2. demonstrates that selfish peers have less
capability over time to store data in the system; on the other hand, cooperative
peers are becoming the majority of data owners in the storage system. Passive

Table 1. Description of notations used in simulation figures

Notations Description

n Number of peers in the system
r Data replication factor (number of holders of some given data)
m Number of verifiers of some given data
p Probability of participation of an actively selfish peers
q Probability of data conservation by an actively selfish peer
w Weight parameter in price formulation (associated with the amount of

credits owned by a given peer)

selfish peers are the first to be excluded from the system because they consume
all their initial credits (all peers have a default number of credits when they join,
in order to facilitate system bootstrap). Active selfish peers are also filtered out
from the system because they cooperate only probabilistically. The figure shows
also that a decreasing fraction of these active selfish peers are still present in the
system. Because they cooperate at some probability; they may temporarily gain
some credits and then go without detection. These are considered as the false
negatives of our detection scheme. But still, such false negatives are decreasing
with time. We may notice that 1 simulated month is sufficient to filter out
passively selfish peers; however the filtering may take more than 3 months for
actively selfish peers. Yet, this time period can be reduced by adaptively reducing
the default initial income for newcomers.

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

c
ti
o

n
 o

f
o

w
n

e
rs

p
e

r
s
tr

a
te

g
y coop.

passiv. self.

activ. self.

Fig. 2. Averaged ratio of owners per strategy. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

Exclusion of selfish holders: Fig. 3. depicts the fraction of cooperators and selfish
peers in the population of data holders. The figure demonstrates that with time
cooperative peers will make the majority of holders. This result is due to the fact
that actively selfish peers are losing their credits and then becoming unable to
escrow credits necessary for the storage of other peers’ data; albeit the fact that

they will propose small prices (this explains the small pick in the first simulated
month).

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

c
tio

n
 o

f
h

o
ld

e
rs

p
e

r
s
tr

a
te

g
y

coop.

activ. self.

Fig. 3. Averaged ratio of holders per strategy. n=1000, r=3, m=5, w=0.5, p=0.2,
q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

Overhead: Note that we only measure the communication overhead due to holder
and verifier selection and storage verification. In particular, we exclude the cost of
P2P overlay maintenance and storing/fetching of files, since it is not relevant to
our analysis. In a further observation, the bandwidth consumed for verification
is dependent on the number, rather than the size, of files being stored. This
is in fact a requirement on the verification protocol. Fig. 4 shows the amount
of control messages per file. The figure demonstrates that the bandwidth cost
decreases with time.

0 30 60 90 120 150 180
430

440

450

460

470

480

Simulation time (in days)

A
v
e

ra
g

e
 a

m
o

u
n

t
o

f
c
o

n
tr

o
l

m
e

s
s
a

g
e

s
 p

e
r

fi
le

 s
to

re
d

 (
in

 K
B

)

Fig. 4. Average amount of control messages per file stored (in KB). n=1000, r=3,
m=5, w=0.5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively
selfish peers.

Data reliability: Fig. 5. shows that the rate of the amount of data injected into
the storage system decreasing. This is due to several factors. First of all, there

is the gradual exclusion of selfish peers that limits the number of peers able
to store data in the system. Second, there are possible false positives of our
detection system due to the starvation phenomenon where cooperative peers are
not able to contribute because they are not chosen as holders or verifiers, and
at the end they consume all their credits and get expelled from the system. The
figure also depicts the rate of file loss that is falling down as low as zero, owing
to the exclusion of selfish holders (explained earlier on).

0 30 60 90 120 150 180
0

2

4

6

8

Simulation time (in days)

A
v
e

ra
g

e
 p

e
e

r
ra

te
 o

f
fi
le

s
to

ra
g

e
 a

n
d

 l
o

s
s
 p

e
r

h
o

u
r

file storage

file loss

Fig. 5. Average peer rate of file storage and loss per hour. n=1000, r=3, m=5, w=0.5,
p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

5.3 Security considerations

In this section, we analyze the security of the protocol to prevent or at least
mitigate the threats described in section 2. The security of our scheme relies
principally on replication to deter peers that might try to subvert the protocol.
It assumes that there are at least a given number of peers in the system at all
times, and uses protocols to ensure that the system will correctly operate unless
a substantial fraction of these peers are selfish or malicious.

Selfishness punishment: The proposed payment scheme works as a quota system:
peers have to keep a given balance to be able to participate to the storage system.
Peers that are passively selfish gradually consume all their credits for their data
storage and when their accounts are exhausted they will not be able to use
the storage system anymore. In the same way, actively selfish peers keep losing
credits because they have been detected destroying data they have promised to
store. These peers will also drain their accounts and with time will not able to
use the storage system.

Collusion prevention: Holder and verifier selection is random which limits preset
peer collusions. The digital check of the holder is shared among verifiers, thus
mitigating also collusion between the owner and one or a small number of ver-
ifiers. Additionally, challenges sent to the holder are constructed cooperatively

by verifiers to avoid collusion between the holder and one or a small number
of verifiers. Finally, collusion between the owner and the holder is less probable
because it does not generate any financial profit since the owner must pay veri-
fiers to check holder’s storage. The distribution of tasks to several verifiers limits
collusion; but it is still feasible if at least k verifiers collude with the holder for
instance. The probability of collusion can be computed as:∑

nv

i=k(
nv
i

)pi(1− p)(nv−i) (2)

where p is the probability that a given verifier is not honest (colluder). However
such collusion probability is less than 0.1 for 60% of dishonest peers (i.e., p = 0.6)
in the system and with nv = 10 and k = 8, or 80% of dishonest peers and with
nv = 20 and k = 18.

Fair-exchange: Holder and verifier payments are strongly related to the correct
operation of data verification. This motivates the holder to accept storage ver-
ifications and incites verifiers to perform this task periodically on behalf of the
owner. The frequency of verifications is determined by the owner at the time of
delegating verification. This frequency is the matter of all verifiers: the majority
of verifiers use the determined frequency at which the holder collects a sufficient
number of random numbers to compute the challenge; therefore very fast or
very slow frequencies of some verifiers do not influence (with large probability)
the actual frequency of computing the verification challenge. The holder or the
verifier cannot cash their checks without verifying the stored data. This is due
to two reasons. First of all, the secret random numbers included in the checks
are only known to the actual payers since they are held in DLP-based blinded
version at the payees and bank-sets too. Second, HASH is a one-way function,
so knowing HASH(m) does not give any extra information on m. Therefore,
the data verification operation strongly relates to the holder and the verifier
payment operations. However, the existence of such relation is only guaranteed
by the owner. So, if a verifier or a holder is still not paid even though it behaves
well, it has the possibility to prove owner’s misbehavior to the other participants
(using the certified checks) and also to stop cooperating with the owner without
being punished. Thus, the owner is encouraged to provide this type of relation
to secure the future cooperation of peers handling its data. The bank-set comes
into play to guarantee that payments are actually doable since the corresponding
amounts of credits are locked to prohibit the payer from emitting bad checks.

Remuneration-related attacks: Attacks on the payment scheme (such as double
spending or impersonation) are handled by the KARMA framework. Moreover,
the sequence number and the identity of the payee included in each payment
receipt prevent replay attacks, because they impose that the digital check is
only cashed by the payee one time. We assume that all exchanged messages are
signed and encrypted by the keys of the involved parties in order to ensure the
integrity of exchanged messages and even the security against man-in-the-middle

attack for instance. Sybil attacks are mitigated a la KARMA by compelling peers
to execute a cryptographic puzzle before joining the storage system, the result
of which will be used to construct their identities.

6 Conclusion

We described a new payment scheme as an incentive for P2P storage. The scheme
is scalable and cost-effective since it does not require any trusted infrastructure.
It relies on a cryptographic protocol to enforce the fair exchange of payments
against cooperative behavior. The protocol is self-powered: it does not require
the mediation of data owners during the data verification process or for pay-
ments. Additionally, the design of the scheme takes into consideration several
types of peer collusions, and achieves an effective punishment of selfishness. Our
simulations outline that this scheme makes the system converge to a stable state
where non-cooperative peers are finally filtered out. We are further investigating
the formal validation of this approach.

References

1. Levente Buttyán and Jean-Pierre Hubaux. Nuglets: a virtual currency to stimulate
cooperation in self-organized ad hoc networks. Technical report, EPFL, 2001.

2. Attila Weyland, Thomas Staub and Torsten Braun. Comparison of Incentive-
based Cooperation Strategies for Hybrid Networks. 3rd International Conference on
Wired/Wireless Internet Communications (WWIC 2005), pp 169-180, ISBN: 3-540-
25899-X, Xanthi, Greece, May 11-13, 2005.

3. Akamai technologies, inc. http://www.akamai.com/.
4. Nouha Oualha, Melek nen, and Yves Roudier. A Security Protocol for Self-

Organizing Data Storage. 23rd International Information Security Conference (SEC
2008), Milan, Italy, September 2008.

5. Nouha Oualha, Melek nen, and Yves Roudier. A Security Protocol for Self-
Organizing Data Storage. (extended version) Technical Report N RR-08-208, EU-
RECOM, January 2008.

6. Holger Vogt, Henning Pagnia, and Felix C. Grtner, ”Using Smart Cards for Fair Ex-
change”, Lecture Notes In Computer Science, Vol. 2232, in Proceedings of the Second
International Workshop on Electronic Commerce, p. 101 - 113 , 2001, Springer-Verlag

7. N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for opti-
mistic fair exchange. in proceeding of the IEEE Symposium on Security and Privacy,
1998, 3-6 May, p. 86-99, Oakland, CA, USA.

8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In Proceedings of SIGCOMM, San Diego,
CA, Aug. 27-31, 2001.

9. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In Proceeding
IFIP/ACMInternational Conference on Distributed Systems Platforms, Heidelberg,
Germany, Nov. 2001.

10. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of SIGCOMM, San Diego, CA, Aug. 27-31, 2001.

11. Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical Report UCB//CSD-
01-1141, University of California, Berkeley, Apr. 2000.

12. Emil Sit and Robert Morris. Security Considerations for P2P Distributed Hash
Tables. IPTPS 2002.

13. Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron and Dan S.
Wallach. Secure routing for structured peer-to-peer overlay networks. Symposium on
Operating Systems and Implementation, OSDI’02, Boston, MA, December 2002.

14. Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gun Sirer. KARMA:
A Secure Economic Framework for P2P Resource Sharing. In Proceedings of the
Workshop on the Economics of Peer-to-Peer Systems, Berkeley, California, June 2003.

15. Indrajit Ray and Indrakshi Ray. Fair Exchange in E-Commerce. ACM SIGEcomm
Exchange, Vol. 3(2), Spring 2002, pp 9-17.

16. Yvo G. Desmedt, Yair Frankel. Threshold Cryptosystems. Crypto ’89, LNCS 435,
Springer-Verlag, Berlin 1990, 307-315.

17. Daniel Stutzbach, Reza Rejaie. Towards a Better Understanding of Churn in Peer-
to-Peer Networks. Technical Report CIS-TR-04-06, University of Oregon, November
2004.

18. Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and Michael
Isard. A Cooperative Internet Backup Scheme. In Proceedings of the 2003 Usenix
Annual Technical Conference (General Track), pp. 29-41, San Antonio, Texas, June
2003.

19. MojoNation archived website.
http://web.archive.org/web/20020122164402/%20http://mojonation.com/.

20. Ronald L. Rivest and Adi Shamir. Payword and micromint: two simple micropay-
ment schemes. In Security Protocols Workshop, 1996.

21. Steve Glassman, Mark Manasse, Martn Abadi, Paul Gauthier, and Patrick Sobal-
varro. The millicent protocol for inexpensive electronic commerce. In Proceeding of
WWW4, 1995.

22. Beverly Yang and Hector Garcia-Molina. PPay: Micropayments for Peer-to-Peer
Systems. ACM Conference on Computer and Communications Security (CCS ’03),
Washington, DC, USA, October 2003.

23. Ronald L. Rivest. Electronic lottery tickets as micropayments. In Proceeding of
financial cryptography, LNCS vol. 1318, Springer Verlag (1997), pp. 307-314.

24. Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoffrey
M. Voelker. TotalRecall: System Support for Automated Availability Management.
ACM/USENIX NSDI, 2004.

25. Nouha Oualha and Yves Roudier. Reputation and Audits for Self-Organizing Stor-
age. In the 1st Workshop on Security in Opportunistic and SOCial Networks (SOSOC
2008), Istanbul, Turkey, September 2008.

26. P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in dis-
tributed systems. ACM SIGCOMM CCR, Vol. 36, N. 4, 2006.

27. Yves Deswarte, Jean-Jacques Quisquater, and Ayda Sadane. Remote Integrity
Checking. In Proceedings of Sixth Working Conference on Integrity and Internal
Control in Information Systems (IICIS), 2004.

