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ABSTRACT

This paper investigates the performance of narrowband, slowly-
fading, and delay-limited multiple-antenna systems where
channel state information (CSI) is available at the transmis-
sion end. This situation can arise in time-division duplex
(TDD) based two-way systems where channel state estima-
tion can be performed using the signal received from the op-
posite link. Power control methods which attempt to keep
the transmission rate constant at the expense of randomizing
the transmit power are considered. It is shown that significant
savings in average transmit power (sometimes on the order of
tens of dB) can be expected compared to systems which keep
the total transmit power constant. Several practical channel
coding examples using are illustrated and their bit and frame
error rate performance are discussed.

1. INTRODUCTION

The aim of this paper is to investigate the performance
improvements which can be gained by employing chan-
nel state information (CSI or side information) in the
form of power control at the transmission end of a
multi-antenna radio communication system. The first
question that one may ask is how realistic is it to as-
sume that quasi-perfect CSI can be made available at
the transmission end. The answer depends strongly on
the system architecture. If we employ the same an-
tenna array for transmission and reception (which is
not always the case in current FDD systems) in a TDD
system then channel reciprocity allows us to use chan-
nel estimates obtained during reception for transmis-
sion. We will show that the performance improvements
over modern antenna processing schemes are dramatic
when CSI is exploited. This provides a strong argu-
ment for employing TDD, when possible, in next gen-
eration wireless systems.

This paper approaches the problem more from the
point of view of information theory rather than signal
processing. Recent papers on antenna processing us-

ing a similar approach include [1, 2, 3, 4, 5]. We will
make use of some key results from these studies in
order to analyse the benefits of employing CSI at the
transmitter. In this work we focus on delay-sensitive
systems and/or non-ergodic channels. For such cases
(see e.g. [6, 3, 7, 8]) the instantaneous average mu-
tual information between the transmitted and received
signals depends on the channel state and is therefore
random. In practice, a situation such as this will arise
when the number of antennas is small and little or no
time/frequency variation occurs in the duration/band of
the transmitted signal. Mathematically speaking, the
number of significant degrees of freedom character-
izing the randomness of the channel process is small
enough that ergodic arguments cannot be invoked in
analyzing system performance. To counter the ran-
domness of the channel, generalized power control can
be employed to maintain a constant average mutual in-
formation between transmitter and receiver, at the ex-
pense of rendering the transmit power random. The
direct consequence of this will be that for certain chan-
nel realizations the expended transmit power will be
higher than for others. Our figure of merit, therefore,
is the average transmit power to maintain a constant
average mutual information (or maximum information
rate for which reliable communication is possible) be-
tween the transmitter and receiver.

2. MULTIANTENNA
TRANSMISSION/RECEPTION

Consider a multi-antenna signaling scheme which uses
M antennas in the transmitter and N antennas in the
receiver. The same antenna is used for transmission
and reception at the same carrier frequency so that chan-
nel reciprocity holds. We assume that the M transmit-
ted signals, si(t); i = 1; � � � ;M are narrowband QAM



signals of the form

~si(t) =
X
k

p
Pi(A)ui;kg(t� kT ); i = 1; 2; � � � ;M

where ui;k is the kth complex symbol on the ith trans-
mit antenna and g(t) is a signaling pulse such that its
Fourier transform, G(f) is zero for frequencies f >

W=2, whereW is the bandwidth of the transmitted sig-
nal. We assume that g(t) � g�(�t) satisfies Nyquist’s
criterion for zero intersymbol interference and that the
average energy of the ui;k is E jui;kj2 = 1. The con-
stants Pi(A) are the instantaneous power allocated to
each transmit antenna element. The real transmitted
signals are si(t) = Re(~si(t)e

j2�fct); i = 1; 2; � � � ;M
where fc is the carrier frequency.

The si(t) are transmitted over a static L-path mul-
tipath channel with NM impulse responses hij(t) =PL

l=1 al�(t � dl(i; j)), where al and dl(i; j) are the
gain and delay of the lth path between transmitter i
and receiver j. The channel remains static during the
transmission of long codewords but can change from
codeword to codeword. We assume that W (dl(i; j) �
d1(i; j))� 1 so that we may approximate the complex
baseband equivalent signal seen by the jth receiver by

~rj(t) =

MX
i=1

X
k

p
Pi(A)Ai;jui;kg(t� kT ) + ~zj(t);

j = 1; 2; � � � ; N

where Aij is the complex gain of the ith transmitter
and jth receiver given by

Aij =

LX
l=1

ale
j2�fcdl(i;j):

The ~zj(t) are circularly symmetric additive white (in
the band of the signal) Gaussian noise with power spec-
tral density N0.

As is common in the literature we take the Aij

to be complex Gaussian random variables with vari-
ance �2A and mean �ij . We will assume that no di-
rect path between the transmitter and receiver exists
so that �ij = 0. Assuming that the receiver employs
maximum–likelihooddetection using filters g�(�t) sam-
pled at instants t = kT we have the discrete-time chan-
nel model

rk;j =

MX
i=1

p
Pi(A)Aijuk;i + zk;j ; j = 1; � � � ;M

or in vector form

rk = Adiag(Pi(A))uk + zk

whereA is anN�M matrix of complex channel gains.

2.1. Receiver and Transmitter Channel State In-
formation

The Aij are assumed to be known perfectly to the re-
ceiver. This can be achieved by inserting training se-
quences (possibly a different one for each transmit an-
tenna!) which allow for quasi-perfect estimation of the
Aij and at the same time do not significantly reduce in-
formation rates. As mentioned in the introduction, the
results of this work are intended to provide a strong
argument for employing time-division duplex with the
same antennas used for transmission and reception. We
will therefore also assume that the Aij may be known
to the transmitter. The channel state information used
during transmission will be taken from the signal re-
ceived during the previous time-slot.

2.2. Parallel Channel Decomposition

As in [3, 2] which generalize the continuous-time frequency-
selective channel described in [9, Chap. 8] to a discrete-
time multi-antenna system, we decomposeA using its
singular value decomposition A = U�V

� where U
and V are N �N and M �M unitary matrices and

� =

8>><
>>:

hp
� 0

i
M � N"p

�

0

#
M < N

and � is a min(N;M)-dimensional diagonal matrix
containing the eigenvalues of AA� or A�

A. Since A
is known to the transmitter,U,� andV can, at least in
principle, be computed before transmission or recep-
tion. We may therefore transform the detection prob-
lem, without loss of generality, as

r
0
k = U

�
rk = �diag(P 0i(�))u

0
k + z

0
k

where diag(P 0i(�))u0k = V
�diag(Pi(A))uk and u0k

has unit variance components. TheP 0i(�) are the power
of the transmitted signal components in the transform
domain. Note that either the transformed input or trans-
formed output may be reduced in dimension ifA is not
square. We have the equivalent parallel channel repre-
sentation

r0i;k =
p
�iP 0i(�)u

0
i;k + z0i;k; i = 1; � � � ;min(M;N):

3. N � 1 AND 1�M ANTENNA DIVERSITY

We first focus on the case where the parallel chan-
nel decomposition results in a single channel repre-
sentation. Assuming we transmit long codewords and
the channel is static during the codeword, the instanta-
neous average mutual information (channel capacity)
as a function of �1 and P(�1) is given by

C(P(�1); �1) =W log2

�
1 +

P(�1)�1
WN0

�
bits=s



assuming an average symbol energy of one and min-
imum bandwidth pulse shapes g(t). It is achieved if
the u01;k are zero-mean, independent, circular symmet-
ric complex Gaussian random variables [9, Chap. 7].
The meaning of this quantity is that reliable communi-
cation is impossible if R < C(P(�1); �1), or that R
must be adjusted as a function of P(�1)�1. If we wish
to maintain a constant channel capacity (or practically
transmit at a constant rate) then the power controller
must satisfy

P(�1) =
WN0(2

W
�1
R � 1)

�1

and the average transmitted power (taken over all real-
izations of �1) is

P =WN0(2
W�1R � 1)

Z 1

0

f�1(u)

u
du

In Rayleigh fading,it is simple to show that �1 is Chi-
square distributed with N (transmit antennas) or M
(receive antennas) degrees of freedom. This yields

P =
WN0(2

W�1

R � 1)

X � 1
; X =M;N

For a transmit diversity system, this corresponds to a
beamforming network (i.e. where the phase of each
antenna element is chosen such that all paths combine
coherently at the receive antenna). For receive diver-
sity it is a maximal ratio combiner. We remark that
for N = M , the performance of transmit and receive
diversity systems is the same when power control is
used. This is not the case without power control (see
e.g. [3]).

3.1. Comparison with Space-Time Coding

In the case where equal power P=M is assigned to
each transmit antenna, the information outage proba-
bility is [3, 4]

Pout(R) = Pr

�
log det

�
I+

P

MWN0

A
�
A

�
< W�1R

�

This outage rate indicates the practical FER perfor-
mance of space-time codes. For a 1 � M system in
Rayleigh fading this simplifies to

Pout(R) = 1�QM

�
0;
p
�
�

where � = MWN0

P
(2W

�1R�1) andQM (�) is the Mar-
cum Q function of order M [10]. The effect of beam-
forming is evident since we obtain gains on the order of
12dB compared to space-time coding for frame error-
rates around 10�2. Much more impressive gains can
be had at lower FER. We may conclude, therefore, that
under the assumption that fairly simple codes designed

for the AWGN channel can bring us to within a few dB
from channel capacity, we may obtain huge reductions
in average transmit power with respect to an optimal
space-time coding scheme.

This is demonstrated in Figure 2 where we show
the simulated bit-error rate (BER) and frame-error rate
(FER) of a dual transmit antenna (L = 2) QPSK 4-
state space-time code (taken from [1]) with fixed trans-
mit power and uncoded QPSK with power control for
the same average transmitted Eb=N0 = P=RN0, where
R = 2 is now the number of bits per symbol. This
was carried out under the assumption of independent
Rayleigh fading for each antenna element. We chose
a block length of 130 QPSK symbols in both cases.
Note that even with uncoded modulation, the effect of
power control is a dramatic reduction in average trans-
mit power. Moreover, since power control keeps the
received SNR constant, any standard coding scheme
for AWGN channels can be employed while maintain-
ing the same amount of coding gain.

4. GENERALIZED POWER-CONTROL

Let us now consider the more general case whereM;N >

1. For the set of min(M;N) parallel Gaussian chan-
nels in (2.2) we have that the instantaneous channel
capacity is given by [9, Chap 7]

C(P 0i(�);�) =
min(M;N)X

i=1

log2

�
1 +

P 0i(�)�i
WN0

�
(1)

and is achieved by using input symbols u0ik which are
independent Gaussian random variables. Moreover, we
are interested in choosing the P 0i(�) such that the total
power is minimum for each realization of the f�ig sub-
ject to the fixed rate constraint

Pmin(M;N)

i=1 Ri = R,

where Ri = log2

�
1 +

P0

i
(�)�i
WN0

�
. Note that this is

not exactly the standard water-filling optimization [9,
Chap. 7]. Here we assure that we always transmit re-
liably at a fixed rate while minimizing the long-term
average power. This optimization is a special case of
the general multiuser framework considered in [11].
In addition it is also an important special case of the
single-user parallel channel information outage proba-
bility minimization [8]. Specifically we have

min

min(M;N)X
i=1

2Ri � 1

�i
subject to

min(M;N)X
i=1

Ri = R

(2)

which is a standard concave optimization problem (see
e.g. [9, Chap 4]). Applying the Kuhn-Tucker condi-



tions yields the following power controllers8>>>><
>>>>:

P 01(�) =WN0
2R�1
�1

;P 02(�) = 0; �1 � 2R�2

P 01(�) = 0;P 02(�) =WN0
2R�1
�1

; ; �2 � 2R�1

P 01(�) =WN0
2R=2

p
�1�2

� 1
�1
;P 02(�) =

2R=2

p
�1�2

� 1
�2

otherwise

In the optimal power control scheme, we see that if
one channel (eigenvector) is much stronger (depending
on the rate constraint) than the other, only the stronger
one is used. Otherwise, both are used. Note that in
the latter case, the received SNR on each channel is
not constant, but depends on the relative strengths of
the two channels. Unlike the single channel case, this
implies that standard AWGN codes need not be effec-
tive for this type of system, and special codes must be
designed. A simple sub-optimal modification (Scheme
I) of this scheme would be to use a rate R code on the
stronger channel when one channel isK times stronger
than the other and a rate R=2 code on each channel
otherwise. K is a parameter to be determined. When
K = 1 we simply select the best channel (selection di-
versity). In this power control scheme, we could keep
the received SNR constant and use AWGN codes with
predictable performance.

4.1. Numerical Results

In order to determine the average transmit power needed
to communicate reliably at rate R, we must determine
f�1;�2(u; v). For i.i.d. Gaussian components in A

the distribution of the ordered eigenvalues is known in
closed-form [12, 3] and that of the unordered eigenval-
ues in [3]. The ordered p.d.f. is given by

f�max;�min
(u; v) = K2(D)e�u�vuDvD(u� v)2;

where K2(D) is a normalizing constant. Although the
average powers for both schemes can be computed an-
alytically, the expressions involve sums of hyperge-
omtric numbers, which are difficult to compute. They
are more easily computed using Monte Carlo averag-
ing. It is straightforward to show that K = 1 min-
imizes the average transmit power in the sub-optimal
scheme, which yields a very simple one-dimensional
transmission technique, since the transmit signal lies
solely in the dimension of the eigenvector correspond-
ing to the largest eigenvalue ofAA�.

Another even simpler sub-optimal signaling scheme
(Scheme II) which does not require an eigenvalue de-
composition is as follows. On the end withU = max(M;N)
antennas, we perform either beamforming (transmis-
sion) or maximal ratio combining (reception) to obtain
the largest gain. On the end with L = min(M;N)
antennas we select the antenna yielding the strongest
received signal-to-noise ratio. In this case the single
channel gain is � = maxi kaik2; i = 1; :::; L and

ai is the ith U -dimensional row or column of A. In
Rayleigh fading the average transmit power can be com-
puted in closed-form.

In figure 3 we show the BER/FER of uncoded QPSK
using the two suboptimal power control schemes out-
lined above with N = M = 2 and block sizes of 130
QPSK symbols.. We also show the outage probabili-
ties for optimal space-time coding schemes. Although
the gains due to beamforming are smaller than in the
1�N antenna diversity case, power reductions on the
order of 5 dB can be expected.

5. CONCLUSIONS

In this paper, we examined dynamic power control schemes
based on quasi-perfect channel gain estimates for nar-
rowband, delay-limited multi-antenna systems with slow
Rayleigh fading. The principal results is that signifi-
cant reductions in average transmit power can be ex-
pected compared to systems where the transmit power
is fixed. Specifically when a single antenna is present
on one end, the power reduction can be greater than
10dB even with a small array (�4 elements). More-
over, the performance is independent of whether the
array is transmitting or receiving, which is not the case
in fixed power systems [3]. This is because CSI at the
transmitter allows us to employ beamforming which is
analagous to maximal-ratio combining at the transmit-
ter, in conjunction with power-control.

We then considered generalized beamforming sys-
tems where multiple-antennas are present both in the
transmitter and receiver. Here the performance is again
independent of the direction of communication, which
is not the case in systems with fixed transmit power.
We show that when the minimum number of elements
is two, considerable power savings can be expected,
however less than the case where a single-antenna is
present on one end.

Issues such as the effects of outdated and/or noisy
channel estimates and extensions for multiuser systems
are currently under investigation.
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Figure 1: Space-time Codes Comparison
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Figure 2: BER/FER Comparison of Power Controlled QPSK
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