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ABSTRACT

We propose a blind Maximum-Likelihood method for FIR
multichannel estimation, denoted GML. The GML criterion
is derived assuming the input symbols as Gaussian random
variables. The performance of GML (computed based on
the true symbol distribution) is compared through numerical
evaluations to the optimally weighted covariance matching
method: both methods are equivalent in a certain asymptotic
sense. A fast implementation of the scoring algorithm is
proposed to solve GML.

1. PROBLEM FORMULATION

We consider a single-user multichannel model: this model
results from the oversampling of the received signal and/or
from reception by multiple antennas. Consider a sequence
of symbols a(k) received through m channels of length N
and coefficients h(i):

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independent white Gaussian circular noise
with rvv(k�i) = Ev(k)v(i)H = �

2
vIm �ki. Assume we

receive M samples, concatenated in the vector YM (k):

YM(k) = TM(h)AM+N�1(k) + V M(k) (2)

YM (k)=[yH(k�M+1) � � �yH(k)]H , similarly forVM (k),

andAM (k) =
�
a
H(k�M�N+2) � � �aH(k)

�H
, where (:)H

denotes Hermitian transpose. TM (h) is a block Toeplitz
matrix filled out with the channel coefficients grouped in
the vector h. We shall simplify the notation in (2) with
k = M�1 to:

Y = T (h)A + V (3)
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2. GAUSSIAN MAXIMUM LIKELIHOOD (GML)

Gaussian ML considers the estimation of the parameter � =�
h
H
�
2
v

�H
. The GML criterion is derived assuming the in-

put symbols as Gaussian i.i.d. random variables of vari-
ance �2a. This Gaussian hypothesis is used only to build the
GML criterion: a performance analysis shows that GML
has a meaning and is, from a performance point of view, the
most powerful method among all the blind methods using
the second–order statistics of the data.

A � N (0; �2aI)) Y � N (0; CYY (�)); (4)

withCY Y (�) = �
2
aT (h)T

H (h)+�
2
vI. The Gaussian Max-

imum Likelihood criterion is then :

min
�=(h;�2

v
)

n
ln(detCY Y (�)) + Y H

C
�1
Y Y (�)Y

o
(5)

In this paper, we will treat only the single user case. How-
ever, one of the reasons for examining GML is its extension
to the multiuser case where GML is of particular interest.
Apart, from performance advantages, one of the great prop-
erties of the GML, like all methods using the second–order
statistics of the data, is their robustness to channel length
overestimation. It is well known, both for the single user
case as for the multiuser case, that deterministic methods
fail when the channel length has been overestimated: each
channel length for each users has to be tested. In the mul-
tiuser case, where the different channels have, in general,
different lengths, this drawback nearly condemn determin-
istic methods to be purely theoretic. On the contrary, the
Gaussian approach can be shown not to suffer from this
problem (as has been shown for Linear Prediction meth-
ods [1]). In multiuser communications, GML has also an-
other advantage: deterministic methods can only identify
the channel apart from a triangular dynamical multiplicative
factor, whereas Gaussian methods can identify the channel
up to a unitary static factor.

In fact, in the multiuser case, these identifiability and
robustness properties would be sufficient to tell us that the
second–order approaches would be the only viable for blind
second–order statistics based methods.



3. COMPARISON WITH COVARIANCE
MATCHING METHOD

We compare, through simulations, GML to the Optimally
weighted Covariance Matching (OCM) method [2] which
has been said to be the most powerful method based on the
second–order moments of the data. We will see that this re-
sult is true when the length of the correlation sequence con-
sidered is infinite. The GML criterion can also be written
as:

min
�=(h;�2

v
)

n
ln(detCY Y (�)) + tr

n
C
�1
YY (�)Y Y H

oo
,

min
�=(h;�2

v
)

n
ln(detCY Y (�)) + tr

n
C
�1
YY (�)

bCY Y (�)oo
(6)

where bCY Y (�) = Y Y H . The fact that Y Y H can be con-
sidered in the criterion as an estimate of CY Y (�) is justified
because, asymptotically in the number of data, GML crite-
rion behaves like its expected value:

min
�=(h;�2

v
)

n
ln(detCYY (�)) + tr

n
C
�1
YY (�)E

�
Y Y H

�oo
(7)

Equation (6) looks then like a criterion matching CY Y (�)
to one estimate of it. And then can be seen as a form of
covariance matching.

The CM method proceeds to a weighted least-squares fit
between the model of the covariance matrix of the received
signal:

RL(�) = �
2
aTL(h)T

H
L (h) + �

2
vI (8)

and its sample estimate:

bRL =
1

M

MX
k=0

Y L(k)Y
H
L (k) (9)

where L is the length of the covariance matrix chosen. Note
that this formulation of the CM method is in fact asymp-
totically exact only: indeed, you have M � i samples to
estimate the moment of order i and not M as indicated. We
prefer this formulation which allows to get closed form ex-
pressions of the optimal weighting matrix, and then of the
performance.

Let r(�) containing the non-redundant elements ofRL(�),
i.e. the first block column and block row, and similarly for
r̂. The CM criterion writes as:

min
h;�2

v

(r̂ � r(�))
H
W (r̂ � r(�)) (10)

whereW is a weighting matrix. The optimal weighting ma-
trix is:

W
o =

�
E [r̂ � r(�o)] [r̂ � r(�o)]H

�
�1

(11)

�
o is the true parameter value. When replacing �o by a con-

sistent estimate, the performance remains the same.
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Figure 1: Comparison between GML and the optimally
weighted covariance matching method w.r.t. the number of
correlation coefficients considered in the OCM method.

Which elements should be considered in ~r(�) = r̂ �

r(�)? The authors of [2, 4] consider only the (non-redundant)
non zero coefficients and claim that they are sufficient to
get the optimal performance. This is not true however as
stated in [3]. The optimal performance are obtained when
the number of correlation coefficients involved tends to1.
The asymptotical (M ! 1, L ! 1, L � M ) OCM
corresponds then to the best method exploiting the second
order moments of the data: we will see, by simulations,
that this optimal performance corresponds also to the per-
formance of GML. Note that the non weighted CM method
only require the N non-null correlation coefficients. The
performance of OCM is given by:

E(�R��̂R)(�R��̂R)H =

�
@r

H (�)

@�R

�
W

o�1

�
@r

H (�)

@�R

�H
(12)

where �R = [ReH(�) ImH(�) �
2
v]
H and �̂R is the corre-

sponding CM estimate. The expression of Wo is not given
here for lack of space. In figure 3, we show the perfor-
mance of GML and OCM for the channel only (�2v is as-
sumed known), i.e. khR � ĥRk=khRk, when the sample
matrix is based on M and M � L data samples (the true
performance of OCM is in fact between the two curves, the
burst length being of 100, we have not reach completely
asymptotic conditions, which explains why the curves are
distinct). The channel is of length 4. In this figure, it can be
noticed that the performance of OCM get better as more and
more correlation coefficients are included. A quasi steady–
state is rapidely attained, but considering only the N first
moments is definitively not enough.

4. METHOD OF SCORING: FAST
IMPLEMENTATION

We propose to solve the GML criterion by the method of
scoring. The method of scoring consists in an approxima-
tion of the Newton-Raphson algorithm which finds an esti-



mate �(i) at iteration i from �
(i�1), the estimate at iteration

i�1, as:

�
(i) = �

(i�1)
�

"
@

@��

�
@c(�)

@��

�H �����
�(i�1)

#
�1

@c(�)

@��

����
�(i�1)

(13)
where c(�) is the cost function and � contains the param-
eters to estimate. The method of scoring approximates the
Hessian by its expected value, which is here the Gaussian
Fisher Information Matrix (FIM). This approximation is jus-
tified by the law of large numbers as the number of data is
generally large.

4.1. Approximated Scoring Method

We detail here only the case where the channel is complex.
To simplify things, we consider furthermore that the noise
variance is known. The problem parametrized in hR =�
ReH (h) ImH (h)

�H
can be equivalently parametrized in

hC =
h
h
H
h
�H
iH

. Let

J�� = �E

 
@

@��

�
@c(h)

@��

�H!
(14)

The FIM for hC is then:

JhChC =

�
Jhh Jhh�

J
�

hh� J
�

hh

�
(15)

The coefficient (i; j) of Jhh and Jhh� is:

Jhh(i; j) = tr

8<:C�1
Y Y

@CY Y

@h
�

i

C
�1
YY

 
@CY Y

@h
�

j

!H
9=; (16)

Jhh� (i; j) = tr

(
C
�1
YY

@CY Y

@h�i

C
�1
Y Y

@CY Y

@h�j

)
(17)

Our fast implementation of the method of scoring is
based on a frequential asymptotical (in the number of data)
approximation of the FIM and of the gradient of the cost
function. Let’s consider first the term Jhh: it can be asymp-
totically approximated as [5]:

Jhh(i; j) =
M

4�

Z �

��

tr

8<:S�1yy @Syy@h�i

S
�1
yy

 
@Syy

@h�j

!H9=; d!

(18)
where Syy = Syy(!) = h(e�i!)hH(ei!)+�

2
vI is the spec-

tral density of the received signal. From this expression, we
see that Jhh(i; j) can be approximated as a block Toeplitz
matrix (which is also symmetric). The block (1; jb) of its
first line is the coefficient of order 1� jb of the filter:

hy(z)h(z)
��

hy(z)h(z) + �
2
v

�
I � h(z)hy(z)

�
�2v

�
hy(z)h(z) + �2v

�2 (19)

The numerator implies only FIR filtering operations. Using

the Gohberg-Semencul formula:
�
hy(z)h(z) + �

2
v

��2
=

p(z)py(z)=~�2, where p(z) is the linear prediction filter as-

sociated to
�
hy(z)h(z) + �

2
v

�2
, and ~�2, the prediction error.

The coefficients of the filter (19) are then computed by filter-
ing the numerator by a troncated version of p(z) and py(z)
(a troncation�N , where � is 3 or 4 is in general sufficient).
So computing the elements of Jhh is of order N .

The same kind of treatement holds for Jhh� which can
be approximated as a block Hankel matrix. The block (1; jb)
of its first line is the coefficient of order jb � 1 of the filter:

h(z)hT (z)�
hy(z)h(z) + �2v

�2 (20)

The block (ib; 1) of the last column is its coefficient of order
N � 2 + ib.

Let Dh be the gradient w.r.t. h� of the cost function.

Dh(i) = tr

�
C
�1
Y Y

@CY Y

@h�i

�
� Y

H
C
�1
YY

@CYY

@h�i

C
�1
YY Y

(21)
Using the band property of CY Y , a fast computation of the

output ofC�1
Y Y Y is of order NM.

@CY Y

@h
�

i

= T (h)T H (
@h

@hi
)

and both terms being banded, the computation of the second
term is of order MN . Using a frequential approximation,
the block ib of the first term of Dh can be approximated as
the element ib � 1 of the filter:

h(z)

hy(z)h(z) + �2v

(22)

Dh� can be computed using Dh� = (Dh)
�. At each step of

the algorithm, equation (13) is solved using the Toeplitz and
Hankel property of Jhh and Jhh� , which gives a complexity
of order N 2.

4.2. Regularization of the FIM

GML can estimate the channel up to a phase factor only,
which results in a singularity of the FIM, spanned by hs =�
�ImH(ho) ReH(ho)

�H
(where ho is the true channel value).

The scoring algorithm as described in equation (13) cannot
be directly applied. In order to regularize the estimation
problem a constraint has to be considered to adjust the phase
of the channel. The constraint considered here is hHs hR = 0
(and hoHh > 0 to determine the right sign).

The initialization is given by the Schur algorithm devel-
oped in [6]: we chose this method because this is a method
based on the second–order moments of the data which can
be used as initialization in the multi–user case also. The pre-
vious constraint is used to estimate the phase factor of the
channel estimate given by the Schur method. This method
gives a consistent estimate of the channel.
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Figure 2: Approximated scoring algorithm for 10dB and
20dB for different regularization factors.

In the scoring algorithm, we take the Moore-Penrose
pseudo–inverse of the FIM: it corresponds to the constraint
ĥ
(i�1)H

R ĥ
(i)

R = 0, where ĥ(i) is the channel estimate at iter-
ation i. When the algorithm converges correctly, this con-
straint is equivalent to the previously mentioned constraint
h
H
s hR = 0.

The approximated FIM is nonsingular: it has an eigen-
value (negative or positive) closed to 0. The inverse of
the approximated FIM could then be directly taken in the
scoring algorithm: this solution makes the algorithm di-
verge however, as the step in the direction of the associ-
ated eigenvector is too large. The best solution here is to
regularize the FIM by a certain �I. In our different tries,
it appears that the � should be quite large: we tested � =
�max; 0:1�max; 0:01�max (and also � = 0, i.e. no regular-
ization), where �max is the maximal eigenvalue of the ap-
proximated FIM. The best solution was found to be 0:1�max:
0:01�max and 0 made the algorithm diverge; �max results
in a slow convergence with a steady state worse than with
0:1�max. When the channel is real, the FIM is regular: in
this case no regularization of the approximated FIM is nec-
essary in the scoring algorithm.

4.3. Simulations

The simulation in figure 2 illustrates this fact: we plot the
averaged normalized errors (kh� hek=khk) over 50 noise
and input symbol realizations for a randomly chosen chan-
nel (N = 4, m = 2). At 10dB, only the regularization
factors 0:1�max and �max work: the first choice gives per-
formance closed to the theoretical performance of GML. At
20dB, the regularization factor 0:01�max works more or
less, but the best regularization is still 0:1�max. We also
tested the scoring algorithm with regularization 0:01�max,
but initialized by the algorithm with regularization 0:1�max:
a small improvement can be noticed only. At last, in fig-
ure 3, we compare the non-approximated to the approxi-
mated scoring algorithm (with regularization factor 0:1�max).
Performance of the approximated scoring is quite closed to
the true scoring especially at 20dB.
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Figure 3: Comparison between the non–approximated and
the approximated scoring algorithm for 10dB and 20dB.

5. CONCLUSION

We have developped a fast implementation of the scoring
algorithm to solve GML. GML was compared to the op-
timally weighted covariance matching method,which was
shown, through simulations, to have the same performance
asymptotically (in the number of data but also in the num-
ber of moments considered). The fast GML should be next
generalized to the multi–user case as it provides a low–
computational solution with potentially the best performance
among all the methods exploiting the second–order moments
of the data.
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