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Soutenance de thèse prévue le 08 Juillet 2010 devant le jury composé de :
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Abstract

This thesis outlines our attempt to tackle the problem of estimating the
location of the mobile terminal (MT), using the wireless network’s infras-
tructure and assuming realistic propagation environments. It is essentially
a collection of the following:

• Generic localization methods and methods designed specifically for
MIMO-OFDM systems,

• implementation algorithms ranging from low-complexity (least squares)
to high-complexity ones (maximum likelihood),

• derivations of performance bounds (Cramer-Rao bound) for the local-
ization methods and

• theorems and conjectures on the identifiability and the accuracy of the
estimates.

Apart from the introduction and the conclusions, the document contains five
more chapters. The context of each one of these chapters is based on one
or two publications, while in chapter 4 also a few preliminary unpublished
results can be found.

The purpose of the long introductory chapter is two-fold: On one hand
we introduce the fundamentals of localization methods to the unfamiliar
readers. The fundamentals are complemented with the main sources of
errors encountered in localization methods and some existing attempts to
mitigate them. On the other hand, we present some material that is used
throughout this document, like eg. geometrical and statistical channel mod-
els, useful expressions for a MIMO-OFDM system, the maximum likelihood
(ML) location estimation solution and last but not least a discussion on iden-
tifiability and performance, which will be continued in some of the following
chapters.

In general, localization methods are 2-step processes: In the 1st step a
set of location-dependent parameters need to be estimated. We therefore
present in chapter 2 a high-resolution low-complexity algorithm (4D Unitary
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ii Abstract

ESPRIT) for estimating four different kinds of LDP from the received signal
of a MIMO-OFDM system.

Chapter 3 contains the basic principles of the 2nd step of the NLoS
localization methods that are based on the single-bounce model (SBM). It
starts with a description of the original method that inspired us to also utilize
the SBM for localization purposes. This method is essentially a hybrid
method that utilizes angles of the signal components on both sides of a
communication link and lengths of the paths. Following the description
of the original method, some extensions that we have proposed, can be
found in this chapter. These extensions include a weighted least squares
solution (WLS) and a thorough study on the impact of network geometry
on performance.

In chapter 4, SBM-based localization methods are extended in order
to become applicable to environments that change dynamically due to the
movement of the MT. The so called DSBM-based methods, where the initial
“D” is used for “dynamic”, are introduced and studied in depth. Specifically
two different DSBM-methods are presented. The first method utilizes angles
of arrival (AoA), angles of departure (AoD), path lengths and Doppler shifts
(DS) while the second one is more interesting since it does not utilize the
AoA. We derive closed-form solutions (WLS) for both and compare them.

The 2 steps of localization methods are combined into a single step,
in the method called direct location estimation (DLE) that is described in
chapter 5. The concept of estimating the MT location directly from the
received signal was originally developed for LoS environments. With the
aid of the channel models described in chapter 1 we designed localization
methods that have the same principles but are also suitable for multipath
and NLoS environments.

Chapter 6 presents a tracking method, i.e. a method that estimates
only the speed components, which is not based on the assumption of single-
bouncing. Albeit more general, the method presented therein is also more
complex. Furthermore, in contrast to the methods of the previous chapters,
it is based on Bayesian and not ML estimation.

Finally in the last chapter we make a list of conclusions that we have
reached while working on NLoS localization. We comment on the context
of each chapter, provide arguments to justify our choices, advocate in favor
of our methods. We further make a list of ideas on how to extend this work
and describe how to generalize the concept of SBM-based methods, so that
they become widely accepted.



Acknowledgements

Aφιǫρωµǫ́νo στoυς γoνǫίς µoυ, ∆ηµήτρη και Poύλα.
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Acronyms

Here are the main acronyms used in this document. The meaning of an
acronym is usually indicated once, when it first occurs in the text. The
English acronyms are also used for the French summary.

AoA Angle(s) of Arrival.
AoD Angle(s) of Departure.
app. Appendix.
AWGN Additive White Gaussian Noise.
BC Broadcast Channel.
BE Bayesian Estimation.
BS Base Station.
cdf cumulative density function.
CIR Channel Impulse Response.
CRB Cramer-Rao Bound.
DDM Double Directional Model.
DL Downlink.
DLE Direct Location Estimation.
DFS Doppler Frequency Shift(s).
DPD Direct Position Determination.
DS Doppler Shift(s).
DSBM Dynamic Single Bounce Model.
EKF Extended Kalman Filter.
EM Expectation-Maximization algorithm.
ESPRIT Estimation of Signal Parameters via Rotational Invariance Tech-

niques.
eq. Equation.
FCC (U.S.) Federal Communications Commission.
FIM Fisher Information Matrix.
FP Fingerprinting.
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i.i.d. independent and identically distributed.
io input-output.
KF Kalman Filter.
LDP Location Dependent Parameters.
LE Location Estimation.
l.h.s. left hand side.
LMDP Location and Motion Dependent Parameters.
LoP Lines of Position.
LoS Line of Sight.
LS Least Squares.
MAP Maximum a Posteriori.
ME Maximum Entropy.
MIMO Multiple Input Multiple Output.
MISO Multiple Input Single Output.
ML Maximum Likelihood.
MMSE Minimum Mean Square Error.
MPC Multipath Components.
MSE Mean Square Error.
MT Mobile Terminal.
MUSIC Multiple Signal Classification.
NLoS Non Line of Sight.
pdf probability density function.
PD Positive Definite.
pmf probability mass function.
PSD Positive Semi-Definite.
r.h.s. right hand side.
RMS Root Mean Square.
RMSE Root Mean Square Error.
RSS Received Signal Strength.
Rx Receiver(s).
SBM Single-Bounce Model.
SIMO Single Input Multiple Output.
SNR Signal-to-Noise Ratio.
SISO Single-Input Single-Output.
s.t. such that.
SVD Singular Value Decomposition.
TDoA Time Differences of Arrival.
ToA Time(s) of Arrival.
TLS Total Least Squares.
Tx Transmitter(s).
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WLS Weighted Least Squares.
w.r.t. with respect to.
2D (3D, 4D) two (three, four) dimensional.



xiv Notation



Notation

Throughout this thesis, calligraphic upper-case letters denote sets. Upper
case and lower case boldface symbols will represent matrices and column
vectors respectively. For any defined vector a, the corresponding capital
symbol A will represent a diagonal matrix whose main diagonal is equal to
a, i.e. A = diag{a} and vice versa. Extending this, ai will denote the ith
entry of a and the {i, i} entry of A. It therefore suffices to define any of the
above (a vector, a diagonal matrix or just an entry), to define all 3.

tr{·} Trace of the matrix in brackets.
det{·} Determinant of the matrix in brackets.
|a| Absolute value of a.
‖a‖ Euclidean norm of vector a.
‖A‖ Frobenius norm of matrix A.
|S| The cardinality of set S.
⌊a⌋ Floor operation, rounds (the elements of) a to the nearest

integers towards minus infinity.
⌈a⌉ Ceil operation, rounds (the elements of) a to the nearest

integers towards infinity.
(̂·) An estimate of the quantity in parentheses.
(̃·) The error in the estimate of the quantity in parentheses.
A∗ The complex conjugate of matrix A.
A† The complex conjugate transpose (Hermitian) of matrix A.
At The transpose of matrix A.
A−1 The inverse of matrix A.
[A](k:l,m:n) A submatrix of A containing the common elements of rows

k-l and columns m-n.

A+ The left pseudo-inverse of matrix A, given by
(
A†A

)−1
A†.

A = diag (a) The diagonal matrix with the entries of vector A along its
main diagonal, if the latter is defined.

xv
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a = diag (A) The vector equal to the main diagonal of A, if the latter is
defined.

A1/2 Hermitian square root of the positive semidefinite matrix A.
A ≥ B means that A − B is non-negative definite.
T (·) Linear transformation of the vector in parenthesis.
p(·) pdf of the continuous random variable in parenthesis.
P [·] pmf of the discrete random variable in brackets.
E{·} Expected value of the random variable in brackets.
CN (m,C) Circularly symmetric complex Gaussian random vector of

mean m and covariance matrix C.
U Uniform distribution
sgn{·} Sign of the variable in brackets.
max,min Maximum and minimum.
argmax{·} Argument that maximizes the function(al) in brackets.
argmin{·} Argument that minimizes the function(al) in brackets.
∼ Distributed according to.
⊙ Hadamard Product.
⊗ Kronecker Product.
⊠ Khatri-Rao (Column-wise Kronecker) Product.



Symbol Index

The definition of symbols that are repeated throughout this thesis are given
in the tables below. There will be a few exceptions, where these symbols
will denote something different than what is described below. For these
exceptions, the definition will be given at the place of their occurrence.

Sets

R,C The set of all real and complex numbers, respectively.
R
m×n The set of m× n real matrices.

C
m×n The set of m× n matrices with complex-valued entries.

Z Set of integer numbers

Scalar Parameters

j subscript used for scatterer (multipath component).
i subscript used for time sample.
l subscript used for time sample.
k subscript used for frequency sample. Also used for different

LDP.
fc Carrier frequency.
c Speed of light.
λ Wavelength.
Ns Number of scatterers.
∆t Spacing between two consecutive time samples.
ti Time difference between time instant i and time instant 0.
Nt Number of time samples.
∆f Spacing between two consecutive frequency samples.
Nf Number of frequency samples.
K Number of different kinds of LDP.

xvii
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L Log-likelihood function.

Coordinates
xmt ≡ x0 x-coordinate of MT.1

ymt ≡ y0 y-coordinate of MT.1

xi x-coordinate of MT at time instant i.2

yi y-coordinate of MT at time instant i.2

xbsj x-coordinate of BS j.
ybsj y-coordinate of BS j.

xsj x-coordinate of scatterer j.
ysj y-coordinate of scatterer j.

Motion parameters

υ magnitude of speed.3

ωυ direction of speed.3

υx ≡ υx0 speed component along the x-axis.3

υy ≡ υy0 speed component along the y-axis.3

υi magnitude of speed. 4

ωi direction of speed.4

υxi speed component along the x-axis at time instant i.4

υyi speed component along the y-axis at time instant i.4

αx acceleration component along the x-axis at time instant i.4

αy acceleration component along the y-axis at time instant i.4

LDP
dmts,ij distance between the MT and scatterer j at time instant i.
dbs,j distance between BS j(or BS 1) and scatterer j.
dij length of path j at time instant i.
φij AoA of MPC j at time instant i.
ψij AoD of MPC j at time instant i.
fd,ij DS of MPC j at time instant i.

(Column) Vectors

1 vector of all ones.
xkl = vec{Xkl} Transmitted signal matrix.5

hkl = vec{Hkl} Channel vector.5

1Static environment.
2Dynamic environment.
3Constant speed mobility model.
4Constant acceleration mobility model.
5At time k and frequency l.
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ykl = vec{Ykl} Received signal vector.5

nkl = vec{Nkl} Noise vector.5

aR Rx array response.
aT Tx array response.
pint parameters of interest.
pnui nuisance parameters.

Coordinate vectors
xmt = [x0, . . . , xNt−1]

t x-coordinates of the MT at all time in-
stances.6

ymt = [y0, . . . , yNt−1]
t y-coordinates of the MT at all time in-

stances.6

xbs = [xbs1 , . . . , xbsNs ]
t x-coordinates of all the BS.7

ybs = [ybs1 , . . . , xbsNs ]
t y-coordinates of all the BS.7

xs = [xs1 , . . . , xsNs ]
t x-coordinates of all the scatterers.

ys = [ys1 , . . . , ysNs ]
t y-coordinates of all the scatterers.

LDP vectors
φ ≡ φi = [φ1, . . . , φNs ]

t AoA of all MPC for 1 time instant.8

φ = [φt0, . . . ,φ
t
Nt−1]

t AoA of all MPC for all time instances.

ψ ≡ ψi = [ψ1, . . . , ψNs ]
t AoD of all MPC for 1 time instant.8

ψ = [ψt0, . . . ,ψ
t
Nt−1]

t AoD of all MPC for all time instances.

di = [d1, . . . , dNs ]
t Lengths of all MPC for 1 time instant.8

d = [dt0, . . . ,d
t
Nt−1]

t Lengths of all MPC for all time in-
stances.

dmts,i = [dmts,1, . . . , dmts,Ns ]
t MT-scatterers distances for 1 time in-

stant.8

dmts = [dtmts,0, . . . ,d
t
mts,Nt−1]

t MT-scatterers distances for all time in-
stances.

dbs = [dbs,1, . . . , dbs,Ns ]
t BS-scatterers distances .

fd,i = [fd,1, . . . , fd,Ns ]
t DS of all MPC for 1 time instant.

fd = [f td,0, . . . , f
t
d,Nt−1]

t DS of all MPC for all time instances.

θk ∈ {φ,ψ,d, fd} LDP.
θ = [θ1, . . . ,θK ]t All available LDP.

Vectors of Trigonometric functions of z = T (φ)+T (ψ)+T (ω)

cz = [cos(z1), . . . , cos(zN )]t Cosines of the angles.
sz = [cos(z1), . . . , cos(zN )]t Sines of the angles.

6If the MT is not moving it reduces to scalar.
7If the MT is communicating only with 1 BS it reduces to scalar.
8Static environment.
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Matrices

J FIM (also used for selection matrices in chapter 2).
I Identity matrix.
H CIR matrix.
G Transformation matrix (matrix of partial derivatives).
Xkl Transmitted signal matrix.9

Hkl Channel matrix.9

Ykl Received signal matrix.9

Nkl Noise Matrix.9

Rb Correlation Matrix of b.
Cb Covariance Matrix of b.
AR Rx array response to all incident waves.
AT Tx array response to all incident waves.

Coordinate matrices
Xmt x-coordinates of the MT.
Ymt y-coordinates of the MT.
Xbs x-coordinates of the BS.
Ybs y-coordinates of the BS.
Xs x-coordinates of the scatterers.
Ys y-coordinates of the scatterers.

LDP matrices
Φ AoA.
Ψ AoD.
D lengths of paths.
Dmts MT-scatterers distances.
Dbs BS-scatterers distances.
Fd DS of MPC.

Matrices of Trigonometric functions of z = T (φ) + T (ψ) +
T (ω)

Cz Cosines of the angles.10

Sz Sines of the angles.

9At time k and frequency l.
10The symbol C is also used for Covariance matrices. Its definition will always be clear

from the context.



Chapter 1

Introduction

Localization, wireless or cellular geolocation and often positioning are some
of the different names one can come across when browsing the existing rich
literature on methods and algorithms that are utilized to find the exact
geographical location of a Mobile Transceiver/Terminal (MT). Even more
impressing than the number of different names assigned to this problem,
is the even larger number of fundamentally different approaches to solve it
along with the evolution of these approaches through the years. Although
research on this specific topic of the area known as “parameter estimation”
has been conducted since the late seventies [1], localization attracted much
more interest after the U.S. Federal Communications Commission (FCC)
announced that it is mandatory for all wireless service providers to be able
to provide location information to public safety services in case of an emer-
gency [2, 3]. However, that was just the initial motivation, since, during
the attempt to meet with the FCC requirements in the predetermined time-
interval, researchers envisioned new commercial services that could become
feasible if the exact location of the MT is known to the provider or just
to the user. Specifically, location-sensitive billing, increased data rate due
to optimum resource allocation, cellular phone fraud detection, cargo track-
ing, navigational and yellow-pages services could be introduced by wireless
service providers to attract new costumers and satisfy the demanding ones.

Inspired by the difficulty of the localization problem under realistic prop-
agation conditions and motivated by the aforementioned new commercial

1
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services, researches exploited the nature of the wireless channel in their
attempt to estimate meaningful parameters that could in turn be used for
geolocation. Amongst the numerous methods that were developed, the most
commonly used and accepted are the geometrical ones. As the name indi-
cates, geometrical methods are those that are based on the estimation of
some location-dependent parameters (LDP)1 and the exploitation of geo-
metrical relations to express these LDP as a function of the MT position in
order to estimate it. Commonly used LDP are the angle of arrival (AoA),
the time of arrival (ToA), the time difference of arrival (TDoA), the Doppler
shift (DS) and the received signal strength (RSS) [4,5]. Often, a combination
of two or more of the above can be employed. Another wide class of localiza-
tion methods is the so-called fingerprinting (FP) methods. The concept and
the implementation of fingerprinting is totally different than the geometri-
cal methods. This approach is based on comparing a set of estimated LDP
that compose a “fingerprint” with the entries of an existing database that
contains “fingerprints” for various discrete location points. FP was created
as an alternative to traditional geometrical methods in difficult propagation
environments, like eg. indoor and dense urban environments. In such envi-
ronments, traditional geometrical methods fail to achieve high accuracy. By
“traditional” we refer to the very first localization methods, that use trilat-
eration and/or triangulation and were developed under the assumption of
existence of a line-of-sight (LoS) component.

In parallel with FP, “modern” geometrical techniques were developed.
These techniques take into account the difficulties faced when localizing in
real propagation environments, as opposed to ideal environments and thus
are able to overcome them. Albeit sometimes complex, they can estimate
the MT position accurately in any environment that fulfills some realistic
assumptions. This is exactly the reason why we were inspired by these
approaches and decided to develop state-of-the-art geometrical methods.
The details of these methods, the key ideas behind them and the assumptions
they are based on will be explained in detail throughout this document.

1.1 Fundamentals of Geometrical Localization Meth-

ods

In this section we will present the fundamentals of traditional geometrical
methods. As already mentioned, in these methods, localization is performed

1Location-dependent parameters can also be found under the name channel-dependent
parameters in the literature.
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in 2 steps. In the 1st step, one or more (kinds of) LDP, are estimated in
an adequate number of base stations (BS). The necessary for identification
and at the same time sufficient for high accuracy, number of BS, depends on
the number of different kinds of LDP that each BS can estimate and on the
propagation environment. Once LDP estimates are available, standard geo-
metric and trigonometric laws can be applied to form a system of equations
that needs be solved to estimate the coordinates of the MT with respect to
the coordinates of the BS, in a two or three dimensional plane. We briefly
explain below the basic principles of various geometrical methods that are
based on different kinds of LDP estimates. The analysis and the remarks
of this section - with the exception of the RSS subsection- are based on the
assumption of an ideal, error-free, static LoS environment. Therefore it can
serve as a reference for any reader that does not master the fundamentals of
localization. The sources of errors, their impact on the techniques and the
attempts to mitigate them will be stated in the following sections.

1.1.1 Angle of Arrival Methods

In order to estimate the AoA of incident signals, a directional antenna, such
as an adaptive phased array of two or more antenna elements, is required.
The most straightforward method is to measure the phase difference between
the signals, when impinging on different antenna elements and convert this
to an AoA estimate. This method is known as interferometry. Another
conceptually simple method is beamforming. It gives an estimation of AoA
by electronically steering the main lobe of the antenna array in the direction
of the arrival signal and measuring the input power. The main drawback of
beamforming is that the angular resolution is limited by the beamwidth of
the array2.

Once the AoA (or AoD if we consider downlink transmission) have been
estimated in a minimum of 2 base stations (BS), the MT can be localized.
The position of the mobile device is precisely given by the intersection of the
2 lines of bearing, a technique well-known as triangulation. With respect to
the figure 1.1, the lines of bearing for ∀j are given by

ymt =
1

tan(θj)
xmt + ybsj −

1

tan(θj)
xbsj (1.1)

2The half-power beamwidth of a linear array of antennas is approximately equal to
1/L, where L is the array aperture.
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Figure 1.1: AoA localization with 2 BS (triangulation)

so that the position vector pmt = [xmt, ymt]
t is given by

pmt =




tan(θ2)xbs1−tan(θ1)xbs2−tan(θ1) tan(θ2)(ybs1−ybs2 )

tan(θ2)−tan(θ1)
xbs1−xbs2−(tan(θ1)ybs1−tan(θ2)ybs2 )

tan(θ2)−tan(θ1)


 (1.2)

To combat inaccuracies, more than two BS and highly directional antennas
might be employed. The system of lines of bearing can then be solved by
means of eg. Least Squares (LS). The main disadvantages of AoA techniques
are that they require relatively large and complex hardware and periodic
array calibration. The fact that the position estimate degrades as the MS
moves further from the BS also renders the AoA techniques less attractive
than the ToA and the TDoA techniques in many realistic scenarios.

1.1.2 Time of Arrival Methods

Based on the fact that electromagnetic waves propagate through vacuum
-and approximately through any free from objects space medium- at the
constant speed of light (c ≈ 3 × 108m/s) the distance between the MT and
BS j can be calculated as dj = c ∗ tj when the duration tj of the travel of
the signal originating from the BS and arriving at the MT, or vice versa,
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Figure 1.2: ToA localization with 3 BS (trilateration)

is available. The duration tj is usually estimated during the acquisition or
the tracking process. Once the distance dj between BS j and the MT is
known, a sphere (or circle if we assume a 2-D planar geometry) with radius
dj is recognized as the the geographic region on which the MT must lie. If
the same procedure is performed at a minimum of 3 BS, the intersection
of the spheres (circles) obtained gives the exact location of the MT, as
shown in 1.2. This technique is known as trilateration. It should be noted
that ToA technique requires a very accurate time synchronization among all
transmitters and receivers involved, and a time-stamp to be included in the
signal. Using the formula of the euclidean distance between 2 points in a
2-D plane

dj =
√

(xmt − xbsj )
2 + (ymt − ybsj )

2 (1.3)

and assuming without loss of generality that BS 1 is located at the {0,0}
point (origin), the unknown MT coordinates are given by

[
xmt
ymt

]
=

1

2

[
xbs2 ybs2
xbs3 ybs3

]−1 [
x2
bs2

+ y2
bs2

+ d2
1 − d2

2

x2
bs3

+ y2
bs3

+ d2
1 − d2

3

]
(1.4)
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1.1.3 Time-Difference of Arrival Methods

An efficient way of overcoming the two prerequisites for ToA localization,
namely the synchronization and the labeling of the signal with time infor-
mation, is to examine the difference, denoted herein τ , between the time
of arrival of the signal at two different BS, rather than the absolute arrival
time. A straightforward method of estimating that difference in time is to
cross-correlate the signals arriving at a pair of BS. The cross-correlation of
the signals received at BS 1 and BS 2 is given by

R1,2(τ) =
1

T

∫ T

0
s1(t)s2(t+ τ)dt (1.5)

and will have a pick for τ equal to the exact TDoA, in the absence of errors.
Each TDoA estimate determines that in the 2-D case, the transmitter must
lie on a hyperboloid3, rather than a circle. As can be seen from figure 1.3, the
intersection of two or more hyperboloids, whose generation requires three or
more BS, gives the exact location of the MT. In the 3-D plane, a minimum
of four BS is required to estimate the location. It should be mentioned that
overcoming ToA method’s restrictions by using TDoA, does not come with-
out a cost. For the same number of BS, the performance of TDoA method
is always worse than that of ToA, which can be intuitively explained by the
fact that by formulating differences of estimates, the number of available
data decreases by 1 (eg. 4 ToA estimates give rise to 3 TDoA estimates).
Another drawback of the TDoA method is solving the non-linear equations,
which has been proved to be cumbersome. Many different approaches can
be found in the literature. In [6] an exact solution was presented, but only
for the case when the number of TDoA measurements and the number of
unknown coordinates are equal. In [7] Abel and Smith presented the “divide
and conquer” method, which required sufficiently large Fisher Information
while in [8] Foy explored the Taylor-series estimation, an iterative technique
with good accuracy under the reasonable initial guess assumption. Last
in [9] Chan and Ho presented an non-iterative efficient technique that gives
an explicit solution. Below we give their solution for the simple case of three
BS which is also equivalent to the solution given in [10].

Let each difference in distance be

dij = di−dj =
√

(xmt − xbsi)
2 + (ymt − ybsi)

2−
√

(xmt − xbsj )
2 + (ymt − ybsj )

2

(1.6)

3The hyperboloid may be defined as the locus of points where the difference in the
distance to two fixed points (called the foci) is constant.
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Figure 1.3: TDoA localization with 3 BS

and satisfy the following equation: dij = dik − djk , ∀i, j, k. Using BS 1 as a
reference and introducing the terms Ki = x2

bsi
+ y2

bsi
, xi1 = xbsi − xbs1 and

yi1 = ybsi − ybs1 we get the following solution for pmt that depends on d1.

[
xmt
ymt

]
= −

[
x21 y21

x31 y31

]−1([
d21

d31

]
d1 +

1

2

[
d2

21 −K2 +K1

d2
31 −K3 +K1

])
(1.7)

Inserting this result into d2
1 = (xmt−xbs1)2+(ymt−ybs1)2 = K1−2xmtxbs1−

2ymtybs1 +x2
mt+y2

mt we get a quadratic in d1. Substituting the positive root
back into (1.7) produces the final solution for pmt.

1.1.4 Hybrid Methods

The main disadvantage of single-LDP geometrical techniques is the so-called
“hearability” problem. Since cellular wireless systems are designed to mini-
mize the number of BS receiving a high-strength signal, the lack of signals
with adequate Signal-to-Noise Ratio (SNR) can cause a significant variation
in the accuracy of these techniques. In situations where no more than one
or two BS can be used in the localization process, more than one kind of
LDP should be estimated in order to get the unique location of the MT.
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The need for estimating different kinds of LDP and fusing them to estimate
the MT location gave birth to the so-called hybrid methods.

In [11], a ToA/AoA hybrid scheme that employs only 1 BS was intro-
duced. In that method, the 1st step is implemented by premultiplying the
channel impulse response matrix H by an Nl-by-Nθ matrix of beamformer
coefficients W to obtain the spatial impulse response of the antenna array
Hθ:

Hθ = WH ∗H
where Nθ represents the number of “look” directions. The squared mag-
nitudes of the entries in Hθ represent the received energy as a function of
ToA and AoA. Specifically the dominant multipath components (MPC)4 are
estimated as the Np highest peaks of the function obtained by taking the
squared magnitudes of the entries of Hθ. Then AoA and ToA estimates are
given by the row and column indexes respectively. Once the ToA t and the
AoA θ of the LoS path are estimated, the position vector is simply given by

[
xmt
ymt

]
=

[
xbs + ctcos(θ)
ybs + ctsin(θ)

]
(1.8)

This method, besides having the advantage of using only one BS, achieved
relatively good performance. In [12] the authors considered the TDoA/AoA
method as a hybrid scheme to achieve high accuracy in a CDMA system.
Their method, although requiring a minimum of 2 base stations, has tremen-
dous advantages over other hybrid methods, mainly because it assumes that
AoA is estimated only at the serving BS and secondly because there is no
need for synchronization as in the ToA/AoA method. To solve the complex
system of equations (1.9) they translated all positions to a convenient coor-
dination system by placing BS 1 at the origin and the MT on the x-axis as
shown in the following equations:





d21 = d2 − d1 =√
(xmt − x′bs2)

2 + (ymt − y′bs2)
2 −

√
(xmt − x′bs1)

2 + (ymt − y′bs1)
2

θ = tan−1

(
ymt−y′bs1
xmt−x′bs1

)

⇒





d21 = d2 − d1 =√
(xmt − xbs2)

2 + (ymt − ybs2)
2 −

√
x2
mt + y2

mt

ymt = 0

(1.9)

4More on localization algorithms for multipath environments will be presented in the
next section.
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where the prime is used to denote the coordinates before the translation.
The solution then is

xmt =
x2
bs2

+ y2
bs2

− d2
21

2(xbs2 + d21)
, ymt = 0 (1.10)

where xbs2 and ybs2 are given by

xbs2 =
√

(x′bs2 − x′bs1)
2 + (y′bs2 − y′bs1)

2 cos(arctan
y′bs2

−y′bs1
x′
bs2

−x′
bs1

− θ) (1.11)

ybs2 =
√

(x′bs2 − x′bs1)
2 + (y′bs2 − y′bs1)

2 sin(arctan
y′bs2

−y′bs1
x′
bs2

−x′
bs1

− θ) (1.12)

1.1.5 Received Signal Strength Methods

RSS localization methods were first introduced in 1969 [1]. Their major ad-
vantage compared to other methods is the availability of RSS measurements
in practically all systems [13]. Their major drawback is their low accuracy.
The combination of the 2 renders RSS methods, the easier to implement,
but at the same time, the least appealing. This is exactly why, with the
exception of this section, we make no other reference to RSS throughout
this document. At this point, it is unavoidable to mention sources of errors
and inaccuracies, which will be discussed extensively in the next section. In
an ideal environment, the distance between the MT and the BS can just be
computed by using Friis equation for free space loss transmission

Pr = Pt +Gt +Gr + 20 log (λ/(4πd)), (1.13)

therefore, there is no practical meaning in discussing it further. Instead lets
briefly mention some of the first approaches to RSS localization. In [14] min-
imum LS estimation of the position in a locally linear model, led to Kalman
filtering as an interesting choice to improve performance. The method was
tested in a simulation environment at first but later also with the use of real
measurement data [15]. However, in an evaluation of RSS methods [13], the
authors question the improvement of the location estimate due to Kalman
filtering in real cellular networks. To determine the location, RSS measure-
ment must be modeled as a function of MT coordinates. In general, this
task can be performed by using a RSS model5 which is based either on a
propagation model or on measurements. In [17], Weiss suggested a signal
model described by (1.14) that includes two error terms: A common error

5RSS methods can be classified also as Statistical Modeling Localization Techniques
[16].
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term c for signals transmitted from all BS and a random zero-mean error
Xσ which is composed of several factors that cause the variation of the mea-
sured signal power around the predicted mean. Such factors are multipath
fading, shadowing, antenna pattern, thermal noise and interference.

pi = c+ pave,i(x, y) +Xσ, i = 1, ..., N. (1.14)

N is the number of signals received above a certain threshold out of M base
stations and pave,i is the average power (in dB) given by the propagation
model or measurements or a combination of both. For a propagation model
one can choose any of the several alternatives that exist in the literature,
like, for example, the log-distance models that have the following generic
form

pave(r) = β − 10α log10(r) (1.15)

where α is the path-loss exponent and β is the intercept. A more complicated
approach is to use a terrain-based model. These models require a digital
map of the area and may be computationally complex. It is further possible
to use only measurements in creating a model, if there is high resolution
in the measurement data. The distance between a BS and the MT could
be estimated by minimizing a cost function like the one in (1.16), which
can be derived using the weighted least squares (WLS) algorithm. Once
the distances between the N BS and the MT have been estimated, MT
location is given by the intersection of circles of radius di centered on BS i
respectively, exactly as in the ToA method.

Q(r) = [p − pave(r)]
T ∗W ∗ [p − pave(r)] (1.16)

where the weighting matrix W = C−1
Xσ

is equal to the inverse of the covari-
ance matrix of the errors.

1.2 Fundamentals of Fingerprinting Methods

Primarily motivated by the fact that traditional network-based and satellite-
assisted geometrical techniques perform poorly or even totally fail in dense
urban and indoor environments, researchers realized the need to attack the
localization problem from a totally different perspective. As a result the FP
techniques were invented. Following the general guidelines given in [18], the
concept of FP is based on the following tasks:

• A priori and periodical “off-line” tasks
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– Choose the appropriate location-dependent parameters that will
contribute to the signal signature, the so-called “fingerprint”

– Run measurements campaigns, (ray-tracing) simulations or both,
in order to get the signal signatures, each of which corresponds
to a specific unique location.

– Store the signatures in a large database to use as a reference every
time a localization task is performed.

– Periodically calibrate the database by updating the signatures
when significant changes have been made in the environment.

• Real-time “on-line” tasks

– Evaluate the signature of the signal transmitted by the MS at the
serving BS or possibly the serving and more BS.

– Compare the signature with the stored signatures in order to find
good matches and assign probabilities to them. The comparison
is usually based on minimizing an appropriate cost function.

– Choose the location for which the corresponding stored signa-
ture best matches the measured signature, i.e. has the highest
probability to be the correct one.

– If necessary, process further to resolve any ambiguity in location
estimation.

The signal signature can be derived from any combination of amplitude,
phase, delay, direction and polarization information not only of the direct
(LoS) component but also of the MPC. Obviously the more parameters
used, the higher the accuracy of the method will be, until maybe a satura-
tion point is reached. However, adding parameters also leads to an increase
in systems complexity- by requiring more storage space and higher compu-
tational power- and in the time needed for the location to be estimated.

One interesting choice for signal signature was described in a realization
of the FP in [18]. Influenced by the fact that the received signal vector -
assuming antenna array at the Rx- changes rapidly due to noise, movement
of the mobile and other effects, the authors considered creating an approx-
imate signal subspace in which all the array vectors must lie. That can be
done by collecting a sufficient number of array vectors and using well-known
methods. The subspace which is spanned by a set of q linear independent ar-
ray vectors, where its dimension q depends on the number of distinct paths,
can serve as a signal signature associated with each location. In addition to
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the signal subspace the authors considered adding to the signal signature a
set of differential time delays for the MPC, in order to improve the method’s
accuracy.

Storing and then processing the signal subspace can lead to high-complexity
systems that might not be feasible in practical cases. A lot of undergoing
work focuses on defining a fingerprint with as few parameters as possible,
while at the same time keeping the accuracy above a certain threshold. A
very simplistic approach, presented in [19], is to use just the RSS. Surpris-
ingly simulations showed that the method has a relatively good performance.
In [20] the authors considered the power delay profile (PDP) and also intro-
duced the power spatial delay profile (PSDP) as two alternative fingerprints.
While PDP takes into account the amplitude and delays of the MPC and
completely ignores information contained in their phases, the PSDP matrix
exploits additional spatial information contained in the phase-shifts.

As explained in the step-by-step description of FP, after the signal sig-
nature has been defined, the researcher will face the dilemma of running
simulations or a measurement campaign to obtain the signatures for each
and every location. Again there is a trade-off between cost and effort on
one hand and accuracy on the other. For instance a database with very
accurate signatures can be created and periodically calibrated with the use
of a vehicle, that moves through the entire service area, a mobile station
and a GPS receiver. However that would require much time, effort and is
of course very costly. Simulating a slow time-varying wireless channel prop-
agation model could be an alternative option, but the achieved accuracy
will certainly not be as good as in the previous case. Another consideration
is the cost function, sometimes referred to as matching score function. It
should be carefully chosen in order to fully take advantage of the informa-
tion contained in the LDP. Finally, one last important consideration when
developing a FP technique is the resolving of ambiguities that may appear
if the cost function has more than one minima. It can be mitigated in many
ways, such as adding more parameters to the signature, measuring the MS
signature in more than one BS, using tracking motion systems or even com-
paring the candidate locations with real locations on the map to find the
most possible one.

1.3 Realistic approach to Localization

The previous section, albeit an excellent reference for understanding the
concept of localization, is a bit misleading, since it assumes ideal conditions
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and presents simple equations that can be solved to give the exact location of
a MT. In what follows, we present a more realistic approach to localization.
Possible sources of errors and inaccuracies will be identified and existing
approaches to alleviate them will be briefly explained. The main source of
errors and inaccuracies in geometrical localization methods, is the deviation
of the real wireless propagation environment from the ideal environment
assumed. Specifically, while most traditional methods were designed for pure
LoS environments (one direct and no multipath components), in reality the
signal propagates through a multipath or a strictly NLoS environment [21–
23]. Although the NLoS environment is just a special case of the multipath
environment, the approaches that have been adopted to eliminate or reduce
their impact on the accuracy of localization methods are quite different. We
will therefore study the impact and some existing localizations techniques
designed for each one of the 2 different environments, separately.

1.3.1 Multipath Environment

If a LoS path between the MT and the BS does exist, multipath propagation
is essentially the main cause of inaccuracies [21]. Since a LoS component
allows the implementation of really simple and accurate localization methods
like the ones presented in the previous section, the main objective of any
algorithm, designed for estimating the MT location in such an environment,
becomes the identification of the LoS component and the accurate estimation
of the LDP corresponding to it. It therefore becomes apparent that the
impact of multipath environment should be treated during the 1st step of
localization. If the receiver is unable to determine which is the first-arriving
path in order to identify it as the LoS path and treats a MPC as the LoS
one, the position error will be very high. This is explained below were we
explain the impact of multipath environment on the LDP estimation.

Multipath propagation affects AoA estimates when the receiver cannot
resolve closely-spaced multipath delays. In flat-fading channels the delay
spread is very small relatively to the channel bandwidth BW , so the mul-
tipath components will all be correlated. However, since delay spread and
angular spread are interrelated, the receiver must be able to handle small
angular spread. In an attempt to find direction finding methods with good
accuracy in multipath environments, researchers employed classical sophis-
ticated methods, like the Maximum Likelihood (ML) and the Maximum
Entropy (ME) methods or developed other high resolution ones like the
MUSIC [24] and the ESPRIT [25] algorithms. The latter two enjoyed wide
acceptance and we will present them briefly in the introduction of chapter 2,
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since in that chapter we also develop an ESPRIT-based algorithm for LDP
estimation.

In TDoA and ToA techniques, the presence of multipath components
limits the time resolution of the TDoA (ToA) estimate to approximately
1/BW , when the conventional cross-correlation is used. To convert this res-
olution to accuracy consider the IS-95 standard for CDMA. The bandwidth
of the signal is 1.25 MHz so the signal can propagate c ∗ (1/BW ) = 240
meters in 1/BW sec. The TDoA (ToA) estimation error can be much bigger
for signals with narrower bandwidth, like in the GSM standard. Therefore,
again high resolution estimation techniques are required for better accuracy.
In [26] the Root-MUSIC algorithm is used to resolve multipath components
that arrive within one chip interval of one another in a Spread Spectrum
System. In [27] the total least square ESPRIT (TLS-ESPRIT) algorithm
is applied to produce unbiased accurate time delay estimations. In this
method, the author proposes to pass the channel output through a matched
filter -an operation that is the same as autocorrelating the signal- and then
perform a frequency domain deconvolution to convert the TDOA estimation
problem to an estimation of frequencies of complex sinusoids in a white non-
stationary noise. The TLS-ESPRIT can then be applied, to estimate the
unknown frequencies. The above two algorithms clearly indicate the univer-
sality of the MUSIC and ESPRIT algorithms in LDP estimation problems.
In [28] a concatenation of matched filtering, set-theoretic deconvolution and
autoregressive modeling is employed to estimate the parameters of the mul-
tipath channel, while in [29, 30] the background theory of cyclostationary
signals is presented and applied to the same problem.

Recently in [31], Qi et al considered a total different approach for po-
sitioning in multipath environments and derived an algorithm that utilizes
TOA. Instead of trying to localize the MT, based solely on the ToA of the
first arriving signal component -which propagates through the LoS path-
they investigated the enhancement in performance when the ToA of the
MPC are also being processed. They showed that the signal strength of
those components and the prior statistics of their ToA play an important
role in the enhancement. This approach will be better explained in the
following analysis of existing techniques for NLoS localization, since in a
strictly NLoS environment i.e. in the absence of a LoS component, only the
LDP of the MPC can be estimated and utilized in the 2nd step of the MT
localization.
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1.3.2 Non Line-of-Sight Environment

The problem of localizing in NLoS environments has been addressed in the
most recent years and is still an open area of research. There exist 2 fun-
damentally different approaches to this problem: In the 1st approach, there
is an attempt to reduce the impact of the MPC, while in the 2nd approach
there is an attempt to benefit from it, by making various assumptions and
essentially creating more complex algorithms. Various methods that adopt
the 1st approach assume the existence of a LoS path between the MT and
at least few of the involved BS. These methods are based on identifying
and removing the NLoS measurements [32, 33], weighting these measure-
ments appropriately in order to minimize their impact [34] or utilizing these
measurements assuming knowledge of the NLoS errors statistics [35]. Other
methods that adopt the 1st approach but are designed for strictly NLoS en-
vironments, attempt to solve a constrained optimization problem where the
error bias leads to inequalities instead of equalities [36, 37]. On the other
hand, methods that adopt the 2nd approach utilize appropriate NLoS chan-
nel models to describe the environment and create a mapping between the
LDP of the MPC and the the MT coordinates [38,39]. Usually these meth-
ods result in more complex algorithms, since, in order to make the channel
models as accurate as possible, nuisance parameters need to be introduced
and either be integrated out (marginalization) or be jointly estimated. All
the methods presented in this document fall into this last category. We will
therefore explain briefly herein only methods that adopt the 1st approach.

For AoA positioning, the direction of the received signal at BS j can be
expressed as

φj = θj + θ̃j , ∀j (1.17)

where θ̃j is the NLoS induced error. In figure 1.4, it can be clearly seen
that if the signal arrives at one BS by a reflection, the direction of arrival
is misestimated. This results in a distance error ed, which is proportional
not only to the angle error θ̃j but also to the distance d between that BS
and the MT. Specifically using the law of sines and having figure 1.4 as a
reference, we get for the error of the estimation of BS 1:

ed1 = d1 ∗ sin (ψ1)/ sin (180 − φ1 − θ2)

In contrast to different single-LDP methods, like TDoA and ToA, little work
that adopts the 1st approach has been done in improving the accuracy when
AoA is used in a NLoS environment. This probably stems from the fact that
in AoA methods, a small error in the estimated angle can cause an arbitrar-
ily large error in the estimated MT location. On top of that, to mitigate
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Figure 1.4: AoA location estimation error induced by NLoS environment

effectively the NLoS error, a lot more than 2 BS need to be employed, there-
fore the great advantage of using the minimum number of just 2 BS is lost.
For the case of employing more than 2 BS in AoA positioning, a somehow
efficient in reducing the estimation error algorithm was proposed in [32].
The author derived analytical expressions for the coordinates (xmt, ymt) by
maximizing the joint distribution of the angle errors θ̃i = φi − θi assum-
ing that they are jointly Gaussian and that the induced error in distance is
small compared to the distance between the MT and the BS. An iterative
algorithm was then proposed, to identify and exclude NLoS signals in the
following 4 steps:

• Estimate the coordinates (xmt, ymt), using all the available measure-
ments.

• Calculate the error of angular measurement at BS j using the formula:

ψj =
|(xmt − xbsj )sinθi − (ymt − ybsj )cosθj |√

(xmt − xbsj )
2 + (ymt − ybsj )

2
, ∀j (1.18)

Then sort the θ̃j ’s according to their absolute value and calculate the
root mean square RMS(θ̃j).
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• Reject the BS whose θ̃j is much greater than RMS(θ̃j).

• Use the remaining BS to estimate (xmt, ymt) again.

In ToA and TDoA techniques NLoS propagation will bias the time mea-
surements with a non-negative error term ǫτj so that the distance becomes:

dj =
√

(xmt − xbsj )
2 + (ymt − ybsj )

2 + ǫdj (1.19)

where ǫdj = c ∗ ǫτj . Most of the contributions cited at the beginning of this
section concern methods for ToA NLoS localization. A somehow different
method than the ones cited there, which still adopts the 1st approach is based
on exploiting the property of the NLoS errors (biases), which are always non-
negative as shown in (1.19) and then searches for the true position by adding
some constraints. This method was proposed in [40], where the authors
extended the solution proposed in [9] to improve accuracy in the NLoS
propagation. Their simulation revealed the algorithm’s good performance
on one hand but indicated the need for more than 5 BS to be employed on
the other.

1.4 Geometrical Channel Models

We present in this section the 2-D channel models that enable us to express
the LDP as a function of the MT coordinates, among other parameters.
For LoS environments, it suffices to use simple trigonometric functions and
euclidean distances. We present these relations in the following subsection
for reference. On the other hand, for NLoS static environments, some as-
sumptions for the propagation environment need to be made. To that end,
we utilize the so-called single-bounce model (SBM) that will be presented
in subsection 1.4.2. On top of that, to account for NLoS dynamic envi-
ronments, we introduce in the same subsection, the dynamic single-bounce
model (DSBM), which is the result of the integration of the SBM with a
mobility model.

1.4.1 LoS Static Environment

In a LoS environment, the MT communicates with the BS through a direct
component, as shown in fig. 1.5. The LDP commonly used in localization
algorithms, like eg. the AoA, the AoD and the lengths of the direct paths
between the MT and BS j, 1 ≤ j < Ns, are given by
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Figure 1.5: LDP in a LoS environment

φj = π
2 (1 − sgn{xmt − xbsj}) + tan−1 ymt−ybsj

xmt−xbsj
(1.20)

ψj = φj ± π (1.21)

dj =
√

(ybsj − ymt)2 + (xbsj − xmt)2. (1.22)

The sign term that appears on the r.h.s of (1.20) stems from the fact that
the AoA φj can take any value in [0, 2π]. This is explained in more detail
in appendix B.

1.4.2 Single-Bounce NLoS Environment

Throughout this thesis , we utilize the single-bounce model (SBM), slightly
different versions of which have been introduced and employed in localization
methods by Miao et al [38, 41] and Jazzar and Caffery [39]. The SBM
describes accurately numerous NLoS and multipath scenarios, despite the
fact that it is very simple. Its wide applicability stems from the fact that
in a physical propagation environment, the more bounces, the larger the
attenuation will be, not only because the scatterer absorbs some of the
signal’s energy but also because more bounces usually implies a longer path
length. Thus, if a limited number of NLoS signal components with non-
negligible energy arrive at the receiver, it is reasonable to assume that they
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Figure 1.6: LDP in a NLoS environment: Dynamic single bounce model

have bounced only once. Define the following position vectors:

pmt = [xmt, ymt]
t (1.23)

pbs = [xtbs,y
t
bs]

t (1.24)

ps = [xts,y
t
s]
t (1.25)

Using the SBM we are able to express any LDP explicitly as a function of
the entries of these vectors, i.e. as a function of the BS, MT and scatterers’
coordinates, as follows

φj = π
2 (1 − sgn{xsj − xmt}) + tan−1 ysj−ymt

xsj−xmt
(1.26)

ψj = π
2 (1 − sgn{xsj − xbsj}) + tan−1 ysj−ybsj

xsj−xbsj
(1.27)

dj = dmts,j + dbs,j (1.28)

dmts,j =
√

(ysj − ymt)2 + (xsj − xmt)2 (1.29)

dbs,j =
√

(ysj − ybsj )
2 + (xsj − xbsj )

2 . (1.30)
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The aforementioned approaches consider a static propagation environment,
i.e. they assume that the MT is not moving. We, on the other hand, are also
interested in dynamically changing environments, where we assume that the

MT is moving with speed that has magnitude υi =
√
υ2
xi + υ2

yi and direction

ωi = π
2 (1 − sgn{υxi}) + tan−1 (υyi/υxi). In such environments, the LDP6

are time-varying. To account for this and at the same time benefit from it,
we introduce the dynamic single bounce model (DSBM), which is a result
of the integration of the SBM with an appropriate mobility model. Two
mobility models are considered: The constant-speed model, for which the
MT position at time i is given by

[
xi
yi

]
=

[
x0

y0

]
+

[
υx
υy

]
ti (1.31)

and the constant-acceleration model, for which the MT position and speed
at time i are given by the equations below

[
υx,i
υy,i

]
=

[
υx,0
υy,0

]
+

[
αx
αy

]
ti (1.32)

[
xi
yi

]
=

[
x0

y0

]
+

[
υx,0
υy,0

]
ti +

1

2

[
αx
αy

]
t2i (1.33)

where ti is the time difference between time instants i and 0. Similarly to
the static scenario, we can use the DSBM to express any time-varying LDP
(including the Doppler Shift) explicitly as a function of the BS, MT and
scatterers’ coordinates, as follows

φij =
π

2
(1 − sgn{xsj − xi}) + tan−1 ysj − yi

xsj − xi
(1.34)

dij = dmts,ij + dbs,j (1.35)

dmts,ij =
√

(ysj − yi)2 + (xsj − xi)2 (1.36)

fd,ij =
fc
c
υi cos (φij − ωi) =

fc
c

υxi(xsj − xi) + υyi(ysj − yi)√
(ysj − yi)2 + (xsj − xi)2

(1.37)

The AoD and the distances between the BS and the corresponding scatterers
are still given by eq. (1.27) and (1.30) respectively. Using eq. (1.31) we

6In dynamic environments, LDP is used as an acronym for LMDP, where “M” stands
for motion.
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obtain the DSBM equations that express the time-varying LDP as a function
of the initial position of the MT and its constant speed components

φij =
π

2
(1 − sgn{xsj − x0 − υxti}) + tan−1 ysj − y0 − υyti

xsj − x0 − υxti
(1.38)

dmts,ij =
√

(ysj − y0 − υyti)2 + (xsj − x0 − υxti)2 (1.39)

fd,ij =
fc
c

υxi(xsj − x0 − υxti) + υyi(ysj − y0 − υyti)√
(ysj − y0 − υyti)2 + (xsj − x0 − υxti)2

(1.40)

while using eq. (1.32)-(1.33), we obtain the DSBM equations that express
the time-varying LDP as a function of the initial position of the MT, its
initial speed and its constant acceleration components

φij =
π

2
(1−sgn{xsj −x0−υx0ti−

1

2
αxt

2
i })+tan−1 ysj − y0 − υy0ti − 1

2αyt
2
i

xsj − x0 − υx0ti − 1
2αxt

2
i

(1.41)

dmts,ij =

√
(ysj − y0 − υy0ti −

1

2
αyt2i )

2 + (xsj − x0 − υx0ti −
1

2
αxt2i )

2

(1.42)

fd,ij =
fc
c

υxi(xsj − x0 − υx0ti − 1
2αxt

2
i )) + υyi(ysj − y0 − υy0ti − 1

2αyt
2
i )√

(ysj − y0 − υyti − 1
2αyt

2
i )

2 + (xsj − x0 − υx0ti − 1
2αxt

2
i )

2

(1.43)

1.5 Statistical Channel Models

We present herein channel models that can be utilized to express the channel
impulse response (CIR)7 matrix as a function of the LDP and possibly other
random parameters. Statistical models based on the geometrical models
described in the previous section, are also presented.

1.5.1 Double Directional Model for MIMO Channels

The double directional model (DDM) describes a time-variant, frequency-
selective channel, taking into account the AoA, the AoD, the delays, the
Doppler shifts (DS) and the powers of the paths at the steering directions

7CIR will also be used for channel transfer function that is obtained by taking the
CIR FFT with respect to delay.
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Figure 1.7: Double directional model for a MIMO channel

at the transmitter and receiver size. Its based on the assumption that the
scattering environment does not change during the transmission, thus the
variation in time is a result of the movement of the MT and/or the BS.
Debbah et al. introduced this model in [42]. In [43], the same authors
validated the model using the Maximum Entropy (ME) principle. Moreover
they proved that the DDM encompasses the “Kronecker”, the “Müller”,
the “Virtual Representation” and the “keyhole” models as special cases.
According to the DDM, the nr × nt MIMO matrix H in the time-frequency
domain, is given by

Hnr×nt(f, t) =
1√
srst

Φnr×sr(t)Pr(Θsr×st ⊙Dsr×st(f))PtΨ
t
st×nt(t) (1.44)

where nr,nt,sr,st are the number of receiving and transmitting antennas and
the number of scatterers in the area of the receiver and the transmitter re-
spectively (See figure 1.7). The entries of Θ are i.i.d. complex Gaussian with
zero mean and unit variance. Pr and Pt are diagonal matrices containing
the powers. The rest of the matrices on the r.h.s. of (1.44) are defined as
follows8

Φ =




ej(βr,11+2π fc
c
υr cos(φ11−ωr)t) · · · ej(βr,1sr+2π fc

c
υr cos(φ1sr−ωr)t)

...
. . .

...

ej(β
r
r,nr1

+2π fc
c
υr cos(φnr1−ωr)t) · · · ej(β

r
r,nrsr

+2π fc
c
υr cos(φnrsr−ωr)t)




(1.45)

8Symbol definitions in this subsection are quite different from the general definition
given in the Symbol Index.
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Ψ =




ej(βt,11+2π fc
c
υt cos(φ11−ωt)t) · · · ej(βt,1st+2π fc

c
υt cos(φ1st−ωt)t)

...
. . .

...

ej(β
r
t,nt1

+2π fc
c
υt cos(φnt1−ωt)t) · · · ej(β

r
t,ntst

+2π fc
c
υr cos(φntst−ωt)t)




(1.46)

D =




e−j2πfτ11 · · · e−j2πfτ1st
...

. . .
...

e−j2πfτsr1 · · · e−j2πfτsrst


 (1.47)

To explain the meaning of the entries of the above matrices, lets first define
the subscripts:

q, 1 ≤ q ≤ nr (1.48)

i, 1 ≤ i ≤ sr (1.49)

j, 1 ≤ j ≤ st (1.50)

p, 1 ≤ p ≤ nt (1.51)

The phase βr,qi represents the initial phase of the signal from scatterer i
to receiving antenna q and φqi is the angle between a line perpendicular
to the antenna array and the wavefront’s direction (AoA). υr and ωr are
the receiver’s speed magnitude and direction. The parameters βt,pj and ψpj
along with υt and ωt are defined in a similar way for the transmitter. τij is
the unknown delay required for the signal to propagate from scatterer j at
the transmitter’s side to scatterer i at the receiver’s side.

The phases 2π fcc υr cos(φqi−ωr)t and 2π fcc υt cos(ψpj−ωt)t represent the
shift in frequency due to the movement of the receiver and the transmitter
(Doppler effect). For the common scenario of Uniform Linear Arrays (ULA)
at both ends the DDM becomes simpler since the number of parameters is
reduced. Specifically the entries of Φ and Ψ become9:

[Φ]ij = ej2π(
d(i−1) sin(φqi)

λ
+ fc

c
υrcos(φqi−ωr)t) (1.52)

[Ψ]ij = ej2π(
d(j−1) sin(ψpj)

λ
+ fc

c
υtcos(ψpj−ωt)t) (1.53)

where we have used the fact that under the far-field approximation, the
initial phase βr,qi (βt,pj) varies linearly with the sine of φqi (ψpj).

9Any one or two-dimensional antenna array can be considered instead of ULA with a
simple modification of the exponent of the entries of these matrices.
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Figure 1.8: Double directional SBM for a MIMO Channel

1.5.2 Double Directional Model for MIMO Channels assum-
ing Single-Bounce Environments

In this section we introduce a special case of the DDM that is more appro-
priate for NLoS localization problems, since it is far more simple than the
general DDM. It can be used to describe environments, where each signal
component bounces only once exactly as shown in fig. 1.8. Therefore, this
model not only is based on but also can be integrated with the SBM. It is
a slightly modified version of the random matrix model introduced in [44].
According to this model, the nr×nt MIMO matrix H in the time-frequency
domain, is given by

Hkl = 1√
Ptot

∑Ns
j=1

√
Pjγje

j2πl∆tfd,ljaR(φlj)a
t
T (ψlj)HTR,ke

−j2πk∆fτlj

= AR,l(Γ ⊙ (DkFd,l))A
t
T,l = AR,lΓDkFd,lA

t
T,l. (1.54)

The subscripts k, 1 ≤ k ≤ Nf and l, 0 ≤ l < Nt − 1 denote frequency and
time sample respectively, i.e. Hkl = H(fk, tl). The subscript j, 1 ≤ j ≤ Ns

denotes scatterer or multipath signal component. The definition of all the
parameters in the first representation (sum of rank 1 terms) of the channel
matrix are given in table 1.1. The newly introduced matrices in the matrix
representation are defined as follows

AR,l
∆
= [aR(φl1), . . . ,aR(φlNs)] (1.55)

AT,l
∆
= [aT (ψl1), . . . ,aT (ψlNs)] (1.56)

Γ
∆
= HTR,kdiag(γ) (1.57)

Dk
∆
= diag(dk) (1.58)

Fd,l
∆
= diag(fd,l) (1.59)
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Table 1.1: Parameters in terms composing Hkl

∆t, ∆f sampling space in time and frequency

τlj delay

γj ∼ CN (0, 1) complex amplitude

Pj(∝ τ−alj ) power10

Ptot power normalization constant

HTR,k filter’s11 transfer function

φlj , ψlj AoA and AoD

aR(φlj) and aT (ψlj) Rx and Tx array response

where

γ
∆
= 1√

Ptot
diag([

√
P1γ1, . . . ,

√
PNsγNs ]) (1.60)

dk
∆
= [e−j2πk∆fτl1 , . . . , e−j2πk∆fτlNs ] (1.61)

fd,l
∆
= [ej2πl∆tfd,l1 , . . . , ej2πl∆tfd,lNs ]. (1.62)

The last equality stems from the fact that in single-bounce scenario Γ, Dk

and Fd,l are diagonal matrices. It is worth pointing out that this model can
in fact describe any NLoS environment with delays that correspond to more
than 1 pair of angles (AoA-AoD) as long as each AoA is linked with one
AoD. The model is not appropriate only when an angle at one side is linked
to multiple angles on the other side.

1.5.3 Double Directional Model for MIMO Channels assum-
ing Multipath Environments

The MIMO channel matrix given by eq. (1.44) and(1.54) is based on the
assumption of a strictly NLoS environment. If a LoS component exists,
then, in order to represent the multipath environment, the MIMO channel
matrix can be written as a sum of the following 2 components

Hkl = HNL,kl + HL,kl. (1.63)
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The NLoS component HNL,kl is given by eq. (1.44) or (1.54) and the LoS
component HL,kl is given by

HL,kl =

√
P0√
Ptot

ejθnej2πfd,l0tlaR(φl0)a
t
T (ψ0)HTR,ke

−j2πfkτl0

= ejθndk0fd,l0aR,0a
t
T,0. (1.64)

In the equation above we have introduced the index j = 0 which will be used
through this document for LDP that correspond to the LoS component and
the unknown phase shift (due to phase noise) of the LoS path θn ∼ U [0, 2π].

1.6 Input-Output Relationship for MIMO-OFDM

Systems

The discrete input-output relationship of a nr × nt MIMO-OFDM system
can be written as

Y(fk, tl) = H(fk, tl)X(fk, tl) + N(fk, tl) (1.65)

or alternatively, using the subscript (·)kl to denote frequency sample fk =
k∆f and time sample tl = l∆t,

Ykl = HklXkl + Nkl. (1.66)

Hkl is the nr × nt channel matrix is given by eq. (1.63) for multipath
environments and reduces to the one given by eq. (1.44) or (1.54) for strictly
NLoS ones. However, ∆f is now also equal to the sub-carrier spacing and
Nf is also equal to the number of sub-carriers. Xkl is the nt×N transmitted
signal matrix, which, in our work, we consider to be composed of a training
sequence of symbols. N is the number of OFDM symbols per sub-carrier
transmitted during the channel’s coherence time. N can be greater than 1
since, in most practical systems of interest, the product of symbol’s period T
with the number of sub-carriers Nf utilized by one user is much smaller than
the channel’s coherence time, i.e. NfT < 1/Bd, where Bd is the Doppler
Spread. Indeed, while the Doppler Spread usually ranges between 0 and
some hundreds of Hz, so that the coherence time is at least 1msec, the
symbol’s period is of the order of µsec and the number of sub-carriers utilized
is at most a few tens. This essentially means that the channel is static during
the transmission of consecutive (blocks of) symbols but changes between 2
consecutive time instances tl, tl+1, provided that ∆t is comparable with
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1/Bd. Ykl is the nr ×N received signal matrix and Nkl is the nr ×N noise
matrix, all at frequency k, 1 ≤ k ≤ Nf and time l, 1 ≤ l ≤ Nt. The entries
of Nkl are i.i.d complex Gaussian with 0 mean and variance σ2

n.
The input-output relationship can be equivalently written in vectorized

form, as follows:

ykl = (Xt
kl ⊗ Inr)hkl + nkl (1.67)

where hkl = vec(Hkl) and nkl = vec(Nkl). Using (1.63), the channel vector
can also be expressed as a sum of 2 terms for multipath environments:

hkl = hNL,kl + hL,kl (1.68)

where

hNL,kl = vec(HNL,kl) = (At
T,l ⊠ AR,l)Dklγ (1.69)

hL,kl = vec(HL,kl) = ejθd0,kl(a
t
T,l0 ⊗ aR,l0). (1.70)

1.7 Maximum Likelihood and Bayesian Estima-
tion

Whenever researchers attack a parameter estimation problem, they face the
dilemma of choosing between maximum likelihood (ML) and Bayesian esti-
mation (BE). Since localization is essentially a parameter estimation prob-
lem, we faced this dilemma numerous times. In the ML approach the un-
known parameters are treated as deterministic quantities. The estimation is
then based on maximizing the density of the data conditioned on the param-
eter vector. This function is called the “likelihood” function and thus the
method is called ML. In the Bayesian approach, the unknown parameters
are treated as random variables. If their prior distributions are not known,
a method known as Bayesian Inference [45] can be used to produce mean-
ingful priors. The estimation can then be based on maximizing the density
of the parameter vector conditioned on the data (Maximum a posteriori es-
timation). In general MAP estimators have superior performance than ML
estimators, assuming that the priors used are the correct ones of course.
However, it should be noted that when the priors are non-informative, as is
the case of uniformly distributed parameters, the MAP and the ML methods
are equivalent.

Another dilemma faced when trying to estimate unknown parameters in
the presence of nuisance parameters, is that of choosing between marginal-
ization and joint estimation. In the first approach, the nuisance parameters
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are being integrated out of the likelihood or the posterior density, to obtain
a density that depends only on the parameters of interest. In the second
approach, the nuisance parameters are jointly estimated. Intuitively, one
would expect that marginalization has superior performance than joint esti-
mation, since in the latter case more parameters need to be estimated with
the same amount of data. However, to the best of our knowledge, there is
no theorem proving this. Some interesting results on parameter estimation
in the presence of nuisance parameters can be found in [46–48].

In our work, we have mostly chosen ML estimators. The reason for
this is that we tried to avoid introducing unnecessary assumptions that
would lead to informative priors and thus, using the principle of maximum
entropy (ME) we would always come up with uniform priors. Moreover,
in our work we have mostly used joint estimation. The reason for this
is that integrating out parameters like eg. the scatterers’ coordinates has
been proved cumbersome. The exception to this, is the case of Bayesian
linear models, where an unknown mean (usually due to unknown complex
amplitudes) is Gaussian distributed and the received signal is also Gaussian
distributed, due to white noise. In such cases the vector containing these
nuisance parameters can be easily integrated out, leading to a new Gaussian
likelihood.

1.8 ML Location Estimation for SBM-based Meth-

ods

In this section we present a general ML estimator for the 2nd step of any
2-step SBM-based localization algorithm. It is based on available LDP es-
timates. Let θ = [θt1, . . . ,θ

t
K ]t denote the Nθ = KNtNs vector containing

the true values of the K = {3, 4} different kind of LDP and θ̂ denote the
vector containing their available estimates. For the DSBM case (dynamic
channel), θ could contain a subset of 3 or all of the LDP given below

θk =





d, k = 1
φ, k = 2
ψ, k = 3
fd, k = 4

(1.71)

For the SBM case, Nt = 1, K = 3 and θ is composed of just the first 3 of
the above vectors. Assuming that the estimates of the LDP are not perfect,
but contain an error θ̃ we can write

θ̂ = θ + θ̃. (1.72)
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Table 1.2: Parameters of interest pint

pint = pmt = [xmt, ymt] SBM

pint = [x0, y0, υx, υy] DSBM with constant speed

pint = [x0, y0, υx,0, υy,0, αx, αy] DSBM with constant acceleration

We further assume that θ̂ is an unbiased estimator that possesses the asymp-
totic normality property and that a sufficiently large number of samples of
the received signal was used in estimating θ. Due to these assumptions,
θ̃ ∼ N (0,C

θ̃
) and thus θ̂ ∼ N (θ,C

θ̃
).

The main objective of any localization method is to estimate the MT
position. In dynamic scenarios it might also be desirable to estimate its
speed. However, in section 1.4.2, we showed that for a NLoS environment
that can be described by the SBM, the LDP depend not only on the MT
coordinates and speed but also on the scatterers’ coordinates. Since there is
usually little interest in knowing the scatterers’ position, we will treat their
coordinates as nuisance parameters and denote the vector that contains
them as pnui = ps = [xts,y

t
s]
t. On the other hand we will denote the

parameters of interest as pint. pint can vary, depending on the scenario and
the mobility model, as shown in table 1.2. Introducing the Np × 1 vector
of all the unknown parameters, p = [ptint,p

t
nui]

t, we can rewrite the set of
equations (1.26)-(1.28), (1.38)-(1.40) and (1.41)-(1.43) in a more compact
way θ = θ(p) to show the dependence of the mean of the LDP estimates
on the unknown parameters. Apart from the mean, it is likely that the
covariance matrix C

θ̃
also depends on the unknown parameters, i.e. it

is likely that the accuracy of the method used to estimate the LDP from
the received signal samples depends on the geometry of the environment.
However, since we consider a broad class of estimators and not a specific
one (thus we don’t introduce any expression for the covariance matrix), we
will not consider any such dependency. The pdf of θ̂ conditioned on p is
given by:

f(θ̂|p) =
1

(2π)
1
2
Nθ (detC

θ̃
)1/2

e
− 1

2
(θ̂−θ)tC−1

θ̃
(θ̂−θ)

(1.73)

To obtain a ML estimate of our parameters of interest, we need to maximize
f(θ̂|p) -or equivalently a corresponding likelihood- with respect to p. Define
a log-likelihood obtained by taking the natural logarithm of f(θ̂|p) and
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ignoring the constant terms as:

L = L(θ(p)) = (θ̂ − θ)tC−1

θ̃
(θ̂ − θ) (1.74)

Maximizing f(θ̂|p) is equivalent to minimizing L, therefore the ML estimate
of p is given by

p̂ = argmin
p

{L} (1.75)

1.9 Cramer-Rao Bound

According to the Cramer-Rao Bound (CRB) for an unbiased estimator p̂ of
p, the correlation matrix of the parameter estimation errors p̃ is bounded
below by the inverse of the Fisher Information Matrix (FIM) J as shown
below

Rp̃p̃ = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (1.76)

where the FIM is given by:

J = E
{(∂L

∂p

)(
∂L
∂p

)t }
=
∂θt

∂p
C−1

θ̃

∂θ

∂pt
= GC−1

θ̃
Gt (1.77)

L is the log-likelihood given by (1.74) and we have introduced the transfor-
mation matrix G = ∂θt

∂p . It is well known and can be easily shown, that
the information contained in independent data (in our case LDP) can be
summed up, so that the FIM for a hybrid localization method is given by:

J =
∑

k

Jθk =
∑

k

∂θtk
∂p

C−1

θ̃k

∂θk
∂pt

=
∑

k

1

σ2
k

∂θtk
∂p

∂θk
∂pt

(1.78)

where the 3rd equality holds only if the entries of θk, ∀k, are i.i.d. with
variance σ2

k. If p = [ptint,p
t
nui]

t, i.e. if we are estimating the parameters
of interest in the presence of nuisance parameters, which is the case for
SBM-based methods, we can substitute ∂θk

∂pt = [ ∂θk
∂ptint

∂θk
∂ptnui

] in (1.78) to get

J =




∑
k

1
σ2
θk

∂θtk
∂pint

∂θk
∂ptint

∑
k

1
σ2
θk

∂θtk
∂pint

∂θk
∂ptnui∑

k
1
σ2
θk

∂θt
k

∂pnui
∂θk
∂ptint

∑
k

1
σ2
θk

∂θt
k

∂pnui
∂θk
∂ptnui


 ∆

=

[
J11 J12

J21 J22

]
(1.79)

Based on the expressions for the FIM presented above, we can examine the
identifiability, i.e. the ability to estimate all unknown parameters and the
asymptotic performance of efficient estimators, as was demonstrated in [49].
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1.10 Identifiability Concerns for Location Estima-
tion

The entries of the FIM J are continuous functions of p everywhere in RNp .
A point p0 is said to be a regular point of the matrix J if there exists an open
neighborhood of p0 in which J has constant rank. Using this definition and
making some weak assumptions, Rothenberg proved the following theorem
in [50]:

Theorem 1. Let p0 be a regular point of the FIM J = J(p). Then p0 is
locally identifiable if and only if J(p0) is non-singular.

Assuming that a vector p containing the true values of the unknown pa-
rameters is a regular point, which in general is true, the above theorem tells
us that the unknown parameters become identifiable when FIM evaluated
at the true values is nonsingular. The following corollary is an immediate
consequence of the above theorem and eq. (1.77):

Corollary 1. In SBM-based localization methods, local identifiability of the
parameter vector p can be achieved when the transformation matrix G = ∂θt

∂p
is square or wide (Nθ ≥ Np) and has full rank Np.

1.11 Performance Concerns for Location Estima-
tion

In this section we study the impact on the performance of any localization
method for cases in which exploiting new LDP comes at the cost of jointly
estimating a new set of nuisance parameters. This happens when considering
a dynamic rather than a static environment and thus the speed of the MT
needs to be jointly estimated as mentioned above. This can also happen
when the set of unexploited LDP depends deterministically on the entries
of p but also on an unknown error term. For example there might be an
unknown synchronization offset that needs to be taken into account for the
delays (and thus for the path lengths) or an orientation/calibration offset
that needs to be taken into account for the AoA and/or the AoD. The
following theorem applies to all of the above cases and specifies the cases
when the location ML estimation will be more accurate.

Theorem 2. Introducing and exploiting new LDP θ2 (data) that depend on
the entries of the Np1 × 1 parameter vector p1 that needs to be estimated
due to the problem formulation (which might consist of parameters of interest



32 Chapter 1 Introduction

and possibly some nuisance parameters as well) but also on the entries of
new vector of nuisance parameters p2, will lead to an enhancement of the
(asymptotic) performance of the ML estimation only if the transformation

matrix G22 =
∂θt2
∂p2

is wide (Nθ2 > Np2) and has full rank Np2.

Proof. Let θ1 be the Nθ1 × 1 vector containing the data that are already

used in the estimation process and define θ
∆
= [θt1θ

t
2]
t, p

∆
= [pt1p

t
2]
t, G = ∂θt

∂p

and Gij =
∂θti
∂pj

. The FIM for the new problem is given by :

Jnew = E
{(∂L

∂p

)(
∂L
∂p

)t }
= GC−1Gt

=

[
G11 G21

0 G22

] [
Cθ1|p 0

0 Cθ2|p

]−1 [
Gt

11 0
Gt

21 Gt
22

]

=

[
G11C

−1
θ1|pG

t
11 + G21C

−1
θ2|pG

t
21 G21C

−1
θ2|pG

t
22

G22C
−1
θ2|pG

t
21 G22C

−1
θ2|pG

t
22

]

∆
=

[
A B

C D

]
(1.80)

The first term of the sum composing A can be recognized as the FIM J1 of
the original estimation problem while D is the FIM J2 for the estimation
problem of p2 .

If both of the conditions forG22 are met, we can use the inversion formula
for 2×2 block matrices to obtain the Np1 ×Np1 upper left submatrix of the
inverse of Jnew as follows:

[J−1
new](1:L,1:L) = (A−BD−1C)−1

= ( J1 + G21C
−1
θ2|pG

t
21 − G21C

−1
θ2|pG

t
22J

−1
2 G22C

−1
θ2|pG

t
21 )−1 (1.81)

To show that the performance is improved with the addition of new data,
it suffices to show that [Jnew](1:L,1:L) > J1. This is true because the sum of
the other two matrices on the r.h.s. of (1.81) results in a positive semidef-

inite matrix. This can be proved by defining a
∆
= C

−1/2
θ2|p Gt

22u and b
∆
=

G21C
−1
θ2|pG

t
22(G22C

−1
θ2|pG

t
22)

−1/2u, where u is any non-zero vector and ap-

plying Cauchy-Schwartz inequality ||a||2||b||2 ≥ (atb)2, to get:

ut ( G21C
−1
θ2|pG

t
21 − G21C

−1
θ2|pG

t
22J

−1
2 G22C

−1
θ2|pG

t
21 )u ≥ 0 (1.82)

If Nθ2 = Np2 and G2 has full rank, (1.81) reduces to :

[J−1
new](1:L,1:L) = J−1

1 (1.83)
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thus the performance of the ML estimation is exactly the same, while the
complexity of the method increases.

If Nθ2 < Np2 and G2 is full rank, D is singular and thus non-invertible.
The parameter vector p2 is not identifiable, however p1 is still identifiable
and [J−1

new](1:L,1:L) can be derived by replacing the inverse of D−1 with its
pseudo-inverse D+ = G22(G

t
22G22)

−1Cθ2|p(Gt
22G22)

−1Gt
22 in (1.81). This

results again in (1.83) and thus in no improvement in performance.
Finally, if G22 has rank k < min{Nθ2 , Np2}, Nθ2 − k of its columns con-

tain no additional information for p2. If they contain additional information
only for p1 then, the information they contain for p2 (if any) could be re-
moved by elementary column operations so that the corresponding entries
of θ2 can be included in θ1, leading to a different partitioning of the FIM.
That will improve performance, since new LDP that depend only on p1 and
no new nuisance parameters, are exploited. If, however, they contain no
additional information on any of the entries of p then they should be dis-
carded. Either way, G2 becomes a Np2 × k full rank matrix and the last of
the above cases applies.

Theorem 2 can be applied in any ML localization approach. For example,
proposition 1 in [35] can be derived using this theorem. The fact that the
performance of a TOA method does not improve by including the TOA of
the NLoS components, if these are modeled as the TOA corresponding to
the LoS component plus an unknown error term, is a direct application of
theorem 2 with Nθ2 = Np2 .
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Chapter 2

Estimation of Location
Dependent Parameters

2.1 Introduction

As already explained in the previous chapter, traditional geometrical local-
ization techniques consist of two steps: First a set of location dependent
parameters (LDP) are estimated in one or more BS. The location of the
Mobile Terminal (MT) is then estimated by finding the values for the coor-
dinates xmt and ymt that best fit the data (LDP estimates). This chapter
contains a subspace-based method that can be utilized to simultaneously
estimate different kinds of LDP for all the MPC. We consider a MT that
communicates with a BS through a NLoS propagation environment. The
MT moves and therefore, the channel impulse response (CIR) is affected by
Doppler frequency shifts (DFS). We limit our study to a MIMO system and
an OFDM signal. We parameterize the CIR matrix in such a way, that a
4-dimensional (4D) Unitary ESPRIT (Estimation of Signal Parameters via
Rotational Invariance Techniques) algorithm can be utilized to jointly esti-
mate 4 subsets of LDP, namely the angles of arrival (AoA), the angles of
departure (AoD), the path lengths and the DFS.

ESPRIT algorithm was introduced in [25] as a computationally attractive
estimation algorithm that exploits the rotational invariance of the signal
subspace. Compared to MUSIC (Multiple Signal Classification), which is

35
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another high resolution algorithm that was introduced in [24] and enjoyed
wide acceptance, ESPRIT achieves a significant reduction in computational
complexity by imposing a constraint on the structure of the antenna array.
Due to this constraint, ESPRIT is able to output estimates directly in terms
of generalized eigenvalues, without the need for a search over the array
manifold. This will become more obvious below, where the steps of the 2
algorithms are given, exactly as they originally appeared in [24, 25] for the
problem of AoA estimation.

Music Algorithm

Suppose there are D incident waveforms received by an antenna array of M
elements. The received M × 1 vector is

x = Af + w (2.1)

where f represents the D×1complex incident signals vector and w is the
noise vector. The elements of A are known functions of the AoA and the
array element locations. In fact the jth column of A is a “mode” vector of
responses α(θj) to the direction of arrival θj . The M ×M covariance matrix
of x is given by:

S = E{xx†} = AE{ff †}A† + E{ww†} = APA† + λS0 (2.2)

under the assumption that incident signals and noise are uncorrelated.
Skipping the analysis we directly give the algorithm in steps:

• Collect data and form the covariance matrix S

• Calculate eigenstructure of S in metric of S0

• Estimate D = M − N where N is the multiplicity of the minimum
eigenvalue of S in the metric of S0

• Evaluate

PMU (θ) =
1

α†(θ)ENE
†
Nα(θ)

(2.3)

as a function of θ , where EN is the the M ×N matrix whose columns
are the N noise eigenvectors and α(θ) is the continuum of the mode
vectors.

• Pick D peaks of PMU (θ) that give you the D AoA.
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Esprit Algorithm

Conveniently describing the antenna array as being comprised of two iden-
tical subarrays ZX and ZY physically displaced from each other by ∆, the
output signal vector z can be written as

z =

[
x
y

]
=

[
A
AΦ

]
s+

[
nx
ny

]
= Ās+ nz (2.4)

where Φ is a diagonal d × d matrix of the phase delays between the
doublet elements:

Φ = diag{[ejγ1 , . . . , ejγd ]} (2.5)

In the same fashion as before, we give the algorithm in steps:

• Collect data and compute the sample covariance matrix Rz = ĀRsĀ†+
σ2Σn

• Compute the generalized eigendecomposition of Rz and Σn

RzĒ = ΣnĒΛ (2.6)

• Estimate the number of sources d using existing techniques

• Obtain the signal subspace Sz = R{ES} = R{Ā}. Decompose ES to
get Ex and Ey

• Compute the eigendecomposition

E†
xyExy =

[
E†
x

E†
y

]
[
Ex Ey

]
= EΛE† (2.7)

and partition E into d× d submatrices :

E =

[
E11 E12

E21 E22

]
(2.8)

• Calculate the eigenvalues of Ψ = −E12E
−1
22 (TLS solution)

φi = λi(−E12E
−1
22 ), ∀ k = 1, . . . , d (2.9)

• Estimate θi = f−1(φi) which for the case of AoA is

θi = sin−1(c arg(φi)/(ω0∆)) (2.10)
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The ESPRIT algorithm has evolved significantly since it was first pub-
lished. From the numerous publications that followed, we will restrict our-
selves to the ones that inspired our method presented in the following sec-
tions. Specifically, in [51], Unitary ESPRIT was introduced and it was
extended to the multidimensional case in [52]. Unitary ESPRIT improves
accuracy by taking advantage of the unit magnitude property of the terms
that represent the phase delays between the two identical subarrays. In [53]
a thorough study and implementation of the ESPRIT algorithm in the joint
estimation of 2 kinds of LDP, namely the AoA and the delays of MPC,
was presented. A 2-D Unitary ESPRIT for MIMO systems was introduced
in [54] for the joint estimation of the AoA and the AoD. The proposed 4D
Unitary ESPRIT is an extension of the aforementioned work applicable to
MIMO-OFDM systems that operate in dynamic environments.

2.2 Channel Model

The discrete input-output relationship of a nr × nt MIMO-OFDM system
in the time-frequency domain is given in section 1.6 by eq. (1.66). For
reference, we rewrite it below:

Ykl = HklXkl + Nkl. (2.11)

The nr × nt channel matrix Hkl is given by

Hkl = 1√
Ptot

∑Ns
j=1

√
Pjγje

j2πl∆tfd,jaR(φj)a
t
T (ψj)HTR,ke

−j2πk∆fτj

= AR(Γ ⊙ (DkFd,l))A
t
T = ARΓDkFd,lA

t
T (2.12)

and the rest of the parameters have been defined in sections 1.5.2 and 1.6.
In what follows we will assume that Xkl = X, i.e. the training sequence
transmitted over different subcarriers and at different time instants does
not change. If this condition is not met, estimates of the channel matrix
Hkl are required to serve as a starting point for the ESPRIT algorithm. The
difference between eq. (1.54) and (2.12) is that in the latter the LDP are
treated as constants, since their variation for a small observation time (of
the order of msec) is negligible. We will further assume that both the Tx
and the Rx are equipped with uniform linear arrays (ULA), so that their
responses to the signal component at angle j are given respectively by

aR(φj) = [1, ej2π
fc
c
dr sin(φj), . . . , ej2π

fc
c
dr(nr−1) sin(φj)]t (2.13)

aT (ψj) = [1, ej2π
fc
c
dt sin(ψj), . . . , ej2π

fc
c
dt(nt−1) sin(ψj)]t . (2.14)
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Any array that can be decomposed into 2 subarrays with identical elements
separated by an arbitrary distance d can be considered instead.

2.3 Data Preprocessing

In order to implement the 4D Unitary ESPRIT algorithm and estimate the
AoA, AoD, path lengths and DS directly from the received signal samples, we
need to rewrite the input-output relationship in a form such that the channel
matrix inherits a shift invariance property in all four dimensions. This is
achieved by separating the set of data matrices and subsequently employing
vectorization and concatenation operations. The separation can be done in
an arbitrary way, but for ease of notation we will assume that consecutive
samples are grouped together. The 4 necessary steps are described in detail
below:

1. Split the set of the NfNt received matrices (samples) into L = LfLt

disjoint subsets Slf ,lt of |Slf ,lt |
∆
= M = MfMt samples each. If Nf/Lf /∈ Z

and/or Nt/Lt /∈ Z, the subsets Slf ,Lt , 1 ≤ lf ≤ Lf and/or SLf ,lt , 1 ≤ lt ≤ Lt

are padded with zero matrix entries. It follows that Mf =
⌈
Nf
Lf

⌉
and Mt =

⌈
Nt
Lt

⌉
. This separation of the data is equivalent to a smoothing [52] that

ensures that more than one measurement vector will be used in the final
formulation.

2. Vectorize the received signal matrices to obtain received signal vectors
ykl, with N = nrnt elements each, as follows:

ykl = hkl + nkl (2.15)

hkl
∆
= (XtAT ⊠ AR)ΓF

(lt−1)
d,1 Dkfd,mt (2.16)

where lt =
⌊

l
Mt

⌋
and mt = l −

⌊
l
Mt

⌋
Mt. For each of the subsets, i.e.

for 1 ≤ lf ≤ Lf and 1 ≤ lt ≤ Lt, do the following concatenations and
vectorizations:

3a. Stack the column vectors ykl, (lt − 1)Mt + 1 ≤ l ≤ ltMt of the
corresponding subset SLf ,lt to form the nrnt×Mt matrix Ȳklt and vectorize
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again to get:

ȳklt = h̄klt + n̄klt (2.17)

h̄klt
∆
= (Ftd,1:Mt

⊠ XtAT ⊠ AR)Γ̄lf ltdmf (2.18)

Fd,1:Mt

∆
= [fd,1, . . . , fd,Mt ] (2.19)

Γ̄lf lt
∆
= ΓF

(lt−1)
d,1 D

(lf−1)
1 (2.20)

where lf =
⌊

k
Mf

⌋
and mf = l −

⌊
k
Mf

⌋
Mf .

3b. In a similar way, stack the column vectors yklt , (lf − 1)Mf + 1 ≤
k ≤ lfMf to form L = LfLt matrices ¯̄Ylf lt and vectorize again to get:

¯̄ylf lt = ¯̄Hγ̄lf lt + ¯̄nlf lt (2.21)

¯̄H
∆
= (Dt

1:Mf
⊠ Ftd,1:Mt

⊠ XtAT ⊠ AR) (2.22)

D1:Mf

∆
= [d(i−1)Mf+1, . . . ,diMf

] (2.23)

γ̄lf lt
∆
= (D

(lf−1)
1 ⊙ F

(lt−1)
d,1 )γ (2.24)

4. Stack all generated vectors in a big matrix of size MN × L

¯̄Y = [¯̄y11, . . . , ¯̄yLfLt
] = ¯̄HΓ̄ + ¯̄N (2.25)

where

Γ̄ = [γ̄11, . . . , γ̄LfLt ] (2.26)

¯̄N = [¯̄n11, . . . , ¯̄nLfLt ]. (2.27)

It should be noted that this type of formulation is possible due to the fact
that Γ, Dk and Fd,l are diagonal, which in turn is a consequence of the fact
that each path is distinct. Also it becomes obvious that the matrix Γ̄ and
not the original transmitted matrix X plays the role of the unknown signal
in our model. An alternative approach to the one presented above would be
to stack all NfNt received matrices and create a NfNtnr×nt matrix H and
subsequently follow the approach in [53] and construct a Hankel matrix by
stacking shifted versions of H.

2.4 4D ESPRIT

Due to its structure (Khatri-Rao Product of 4 matrices), the newly con-
structed ¯̄H satisfies the following invariance properties in the r = 4 dimen-
sions

JNr
¯̄HZr = J′

Nr
¯̄H, 1 ≤ r ≤ 4 (2.28)
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where Nr ∈ {nr, nt,Mt,Mf} denotes the number of samples in dimension r
and

Zr =





diag{ej2π fcc dr sin(φi)}Nsi=1, r = 1

diag{ej2π fcc dt sin(ψi)}Nsi=1, r = 2

diag{e−j2π∆fτi}Nsi=1, r = 3

diag{ej2π∆tfd,i}Nsi=1, r = 4

(2.29)

In every dimension r, the pairs of selection matrices satisfy the equation

JNr = ΠM(Nr−1)
Nr

J′
NrΠMN (2.30)

where Π is a symmetric permutation matrix (Givens reflection). It therefore
suffices to define one of the two in each pair. For the 4 dimensions JNr is
given by

Jnr = IMf
⊗ IMt ⊗ Int ⊗ [0(nr−1)×1Inr−1] (2.31)

Jnt = IMf
⊗ IMt ⊗ [0(nt−1)×1Int−1](X

t)+ ⊗ Inr (2.32)

JMt = IMf
⊗ [0(Mt−1)×1IMt−1] ⊗ Int ⊗ Inr (2.33)

JMf
= [0(Mf−1)×1IMf−1] ⊗ IMt ⊗ Int ⊗ Inr . (2.34)

These pairs of selection matrices correspond to choosing 2 subarrays (out
of all possible choices for ULA) with maximum overlap. Extending that
to the time and frequency sets of samples, these pairs result in 2 subsets
of samples with maximum overlap. Other selections that would exploit
the multiple invariances of the ULA and of the sets of samples could be
considered instead. Multiple Invariance ESPRIT was studied in [55] but is
beyond the scope of this work.

Following the guidelines for Unitary ESPRIT, lets define

¯̄H′ = Q†
MN

¯̄H (2.35)

where Q denotes a left Π-real matrix (see App. C). Using the fact that Q
is unitary, eq. (2.28) becomes

JNrQMNQ†
MN

¯̄HZr = J′
Nr

QMNQ†
MN

¯̄H ⇔
JNrQMN

¯̄H′Zr = J′
Nr

QMN
¯̄H′ ⇔

Q†
MNJNrQMN

¯̄H′Zr = Q†
MNJ′

Nr
QMN

¯̄H′. (2.36)
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Subsequently using the relations Π2 = I, ΠQ = Q∗ and eq. (2.30) we get

Q†
MNJ′

NrQMN = Q†
MNΠ2

M(Nr−1)
Nr

J′
NrΠ

2
MNQMN

= Q†
MNΠM(Nr−1)

Nr

JNrΠMNQMN

= Qt
MNJNrQ

∗
MN = (Q†

MNJNrQMN )∗. (2.37)

Therefore if we introduce

KNr,1 = Re{Q†
Nr

J′
NrQL} (2.38)

KNr,2 = Im{Q†
Nr

J′
NrQL}. (2.39)

we can write

Q†
MNJNrQMN = KNr,1 − jKNr,2 (2.40)

Q†
MNJ′

Nr
QMN = KNr,1 + jKNr,2 (2.41)

Substituting these in (2.36) we get the invariance equations for ¯̄H′

(KNr,1 − jKNr,2)
¯̄H′Zr = (KNr,1 + jKNr,2)

¯̄H′ ⇔
KNr,1

¯̄H′(Zr − I) = jKNr,2
¯̄H′(Zr + I) ⇔

KNr,1
¯̄H′Ωr = KNr,2

¯̄H′ (2.42)

where

Ωr = j(I−Zr)(Zr + I)−1 =





diag{tan(π fcc dr sin(φi))}Nsi=1, r = 1

diag{tan(π fcc dt sin(ψi))}Nsi=1, r = 2

diag{tan(−π∆fτi)}Nsi=1, r = 3

diag{tan(π∆tfd,i)}Nsi=1, r = 4

(2.43)

Observe that in eq. (2.42) all matrices except ¯̄H′ are real so we can proceed
with the steps for Unitary ESPRIT. A simple, yet efficiency way to increase
the number of the data used in the estimation process, while simultaneously
decreasing the computational cost, is to transform ¯̄Y into a centro-Hermitian
matrix and subsequently into a real matrix, to get:

¯̄Yr = Q†
MN[ ¯̄Y ΠMN

¯̄Y∗ΠL]Q2L. (2.44)

For a detailed description of this operation, which is essentially a forward-
backward averaging and a mapping to R

MN×2L, please see section Appendix
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C. Due to noise, ¯̄Yr is full rank, instead of rank Ns. This affects the
solution of any ESPRIT algorithm, by resulting in a number of estimates
that is greater than the number of parameters that need to be estimated. To
mitigate this, a rank reduction can be performed, using for example the SVD
decomposition of ¯̄Yr. From the SVD, the Ns dominant left singular vectors,
composing ENs , can be derived. These vectors span the signal subspace,
i.e. in the noiseless case ENs and ¯̄H′ span the same Ns-dimensional space.
We can and thus write ¯̄H′ = ENsU for a non-singular square matrix U.
Substituting in (2.42) we get

KNr,1ENsΘr = KNr,2ENs (2.45)

where
Θr = UΩrU

−1 (2.46)

The invariance equations (2.45) can be solved by means of Least-Squares
(LS) or any of its more advanced variants, to obtain the matrices Θr. The
LS solution yields

Θr = ((KNr,1ENs)
tKNr,1ENs)

−1(KNr,1ENs)
tKNr,2ENs (2.47)

while the Total Least-Squares (TLS) solution yields

Θr = −V(1:Ns,Ns:2Ns)V
−1
(Ns:2Ns,Ns:2Ns)

(2.48)

where V is obtained from the SVD of [KNr,1ENs KNr,2ENs ], i.e.

[KNr,1ENs KNr,2ENs ] = UΣV†. (2.49)

The final step of the algorithm is the eigendecomposition of each of the Θr

to obtain their Ns eigenvalues which are equal to the diagonal entries of
the corresponding Ωr. To avoid the need for pairing the LDP estimates,
joint diagonalization or triangularization is highly recommended, since it
can achieve automatic pairing. This is a direct consequence of the fact that
the four Θr share the same set of eigenvectors in the absence of noise. In
the presence of noise, these sets are approximately the same. Following the
work in [52], Simultaneous Schur Decomposition (SSD) will be utilized to
compute the eigenvalues of the four Θr.

The SSD is an iterative procedure that tries to derive approximate upper
triangular matrices simultaneously. Each iteration has 1

2Ns(Ns − 1) steps.
It starts with Rr,0 = Θr, r = 1, . . . , 4 and in each step j the matrices Rr,j ,
are updated as follows

Rr,j = Bt
i1i2Rr,j−1Bi1i2 (2.50)
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where the elementary Jacobi rotation matrix Bi1i2(α) is chosen to minimize
the following cost function

e(Bi1i2) =
4∑

r=1

||L(Rr,j)||2 = tr{
4∑

r=1

L(Rr,j)L(Rr,j)
t}. (2.51)

L denotes the strictly lower triangular part of a matrix. These Jacobi matri-
ces are constructed from identity matrices, by replacing four of their entries
as follows

βi1i2 = −βi1i2 = sin(α) (2.52)

βi1i1 = βi2i2 = cos(α). (2.53)

It is obvious that finding the matrix Bi1i2(α) that minimizes e(Bi1i2) in
each step is equivalent to finding α. The solution to this problem was given
in [52]. After the 1

2Ns(Ns−1) steps have been completed, the final matrices
Rr, 1

2
Ns(Ns−1) serve as starting points Rr,0 and the operation can be repeated

to yield matrices that are even closer to upper triangular. After just a few
iterations, the algorithm outputs I as the Jacobi matrix in each step and
thus the cost function can not be minimized further.

As already mentioned above, the final approximate upper triangular ma-
trices produced, contain Ns eigenvalues of the corresponding Θr on their
main diagonals and thus the LDP estimates can be easily computed using
eq. (2.43). Fig. 2.1 depicts a block diagram of the 4D ESPRIT algorithm
described in this section along with the data preprocessing described in the
previous section.

Figure 2.1: 4D ESPRIT block diagram
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Table 2.1: MT and scatterers’ coordinates

(xmt, ymt) (xs1 , ys1) (xs2 , ys2) (xs3 , ys3) (xs4 , ys4)

(30, 20)m (20, 30)m (35, 20)m (40, 15)m (15, 25)m

2.5 Numerical Example

In this section we evaluate the performance of the proposed method in terms
of the RMSE of the LDP estimates for a 2×4 MIMO system equipped with
ULA on both sides. The transmitted signal propagates through Ns = 4
distinct NLoS paths. The coordinates of the corresponding four scatterers
along with the coordinates of the MT are given in table 2.1. The BS is
assumed to be placed at the origin. The magnitude of the speed of the MT
is |υ| = 1.5m/sec (average walking speed) and the direction is −π

3 . Nt = 40
time samples with ∆t = 1msec and Nf = 8 frequency samples (subcarriers)
with ∆f = 10MHz are considered. The impact of the choice of the data
smoothing numbers, Lt and Lf , on the estimates of the different LDP was
studied. The results indicated that there is a trade-off between performance
for different subsets of LDP, rather than some optimal smoothing numbers
that minimize RMSE for all of them. The only restriction on the smoothing
numbers is that their product must satisfy L ≥ Ns, so that the LDP become
identifiable. The results shown in the figures correspond to Lf = 2 and
Lt = 8. On a similar basis, for identifiability purposes, the largest of the
four dimensions Nr must satisfy

4∏

r=1

Nr
Nr,max − 1

Nr,max
≥ Ns. (2.54)

The carrier frequency is fc = 1.9GHz and the transmitted pilot signal is the
training matrix X = I. We run N = 50 independent trials and averaged the
results, thus the RMSE is

RMSE(µir) =

√√√√ 1

N

N∑

n=1

|µ̂ir − µir|2 (2.55)

where the terms µir depend on the LDP according to

µir =
2

π
arctan(ωir), 1 ≤ i ≤ Ns, 1 ≤ r ≤ 4. (2.56)
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Figure 2.2: RMSE of sine of AoA sin(φ)

In the figures we plot the RMSE versus the Signal-to-Noise Ratio (SNR) at
the receiver, which is given by

SNR = 10 log10

(
E{tr(( ¯̄HΓ̄)( ¯̄HΓ̄)†)}

E{tr( ¯̄N ¯̄N†)}

)
(2.57)

Results show that the RMSE of the estimates are very small even for
small to medium SNR (5 − 10dB). Its excellent performance along with
its low computational cost make this algorithm an attractive solution to
LDP estimation problems and motivates us to implement the 2nd step of
localization, which will be presented in the following 2 chapters, assuming
the existence of accurate LDP estimates.
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Figure 2.3: RMSE of sine of AoD sin(ψ)
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Figure 2.4: RMSE of delay times sample frequency spacing ∆fτ
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Figure 2.5: RMSE of DS times sample time spacing ∆tfd



Chapter 3

Hybrid Localization for
NLoS Static Environments

3.1 Introduction

In this chapter the fundamentals of Least Squares (LS) and Maximum Likeli-
hood (ML) SBM-based localization are presented. This localization method
was originally proposed [41] and developed further in [38]. The key ideas
of those contributions are stated below. In our contribution, which consists
of the rest of the sections, we extend the study on SBM-based localization
method to include a WLS solution, a brief discussion on identifiability and
a thorough study on the impact of network geometry on performance.

In [38], the authors proved that given the AoA, AoD and the length of
a path j the MT coordinates should satisfy the following Ns straight line
equations:

ymt = kjxmt + bj (3.1)

where the 2 coefficients are given by:

kj =
cos(ψj) + cos(φj)

sin(ψj) + sin(φj)
(3.2)

bj = −kj(xsj − dj sin(ψj)) + ysj − dj cos(ψj). (3.3)

49
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This enabled them to derive a closed-form solution for the MT location,
which for Ns = 2 is

p̂mt =

[
b2 − b1
k1 − k2

,
k1b2 − k2b1
k1 − k2

]t
(3.4)

while for Ns > 2 the estimates that are chosen minimize the following ex-
pression

(x̂mt, ŷmt) = argmin
(x,y)

Ns∑

i=j

(kjxmt + bj − ymt)
2. (3.5)

Using the LS criterion, the solution is given by

x̂mt =

∑Ns
j=1 bj

∑Ns
j=1 kj −Ns

∑Ns
j=1 bjkj

Ns
∑Ns

j=1 k
2
j − (

∑Ns
j=1 kj)

2
(3.6)

ŷmt =

∑Ns
j=1 bj

∑Ns
j=1 k

2
j −

∑Ns
j=1 kj

∑Ns
j=1 bjkj

Ns
∑Ns

j=1 k
2
j − (

∑Ns
j=1 kj)

2
. (3.7)

Subsequently, the authors presented a formulation similar to the one in
section 1.8, to obtain ML estimates. In order to compute the ML estimates, a
standard built-in matlab function called “fmincon” was utilized. “fmincon”
can be used to solve constrained nonlinear optimization problems. It is an
iterative algorithm and therefore it requires initial points close to the true
values to converge. Since for the LS estimates given above it was showed
through simulations that the estimation error can be small, these estimates
were considered as the initial points in the algorithm. The authors further
showed through simulations that the ML solution not only outperforms the
LS solution as expected, but can also achieve the CRB for reasonable values
of the variances of the LDP errors.

3.2 LS Estimation for ToA/AoA/AoD Localiza-

tion

The aforementioned existing method truly inspired us, mainly due to its
simplicity and its high accuracy in environments when the single-bounce
assumption is valid. One obvious extension to this method is to formulate
a generic LS and for improved performance, a generic WLS algorithm for
the joint estimation of parameters of interest and the nuisance parameters.
To formulate a system of linear equations that can be solved to obtain a LS
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Figure 3.1: LDP in a NLoS environment: Static single bounce model

estimate of p, we start with the sine and the cosine equations of the angles
shown in figure 3.1 as follows

sin(φj) =
ysj−ymt
dmtsj

(3.8)

cos(φj) =
xsj−xmt
dmtsj

(3.9)

sin(ψj) =
ysj−ybsj
dbssj

(3.10)

cos(ψj) =
xsj−xbsj
dbssj

(3.11)

Solving for the distances and replacing the solutions in dj = dmts,j + dbs,j ,
we get the following set of 4Ns linear equations

xsj (cos(φj)+cos(ψj))−xmtcos(ψj) = cos(φj)cos(ψj)dj+xbsjcos(φj) (3.12)

ysj (sin(φj)+sin(ψj))−ymtsin(ψj) = sin(φj)sin(ψj)dj+ybsjsin(φj) (3.13)

xsjsin(ψj) + ysjcos(φj) − xmtsin(ψj) = cos(φj)sin(ψj)dj + ybsjcos(φj)
(3.14)

xsjsin(φj) + ysjcos(ψj) − ymtcos(ψj) = sin(φj)cos(ψj)dj + xbsjsin(φj).
(3.15)
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Obviously only 3Ns of these equations are linearly independent and thus
there is no benefit in considering all of them but we ignore this fact in the
formulation below. Defining the following diagonal matrices

Cφ = diag{cos(φ)} (3.16)

Sφ = diag{sin(φ)} (3.17)

Cψ = diag{cos(ψ)} (3.18)

Sψ = diag{sin(ψ)} (3.19)

D = diag{d} (3.20)

the set of 4Ns equations can be put in vector form as shown below



−Cψ1 0 (Cφ + Cψ) O
0 −Sψ1 O (Sφ + Sψ)

−Sψ1 0 Sψ Cφ

0 −Cψ1 Sφ Cψ




︸ ︷︷ ︸
=A




xmt
ymt
xs
ys




︸ ︷︷ ︸
=p

=




(DCψ + Xbs)Cφ1
(DSψ + Ybs)Sφ1
(DSψ + Ybs)Cφ1
(DCψ + Xbs)Sφ1




︸ ︷︷ ︸
=b

. (3.21)

We can then obtain a LS estimate for p given by:

p̂LS = (AtA)−1Atb. (3.22)

Should we desire higher accuracy at the cost of slightly higher computational
complexity, we can always use Weighted Least Squares (WLS), to get

p̂WLS = (AtC−1
b A)−1AtC−1

b b. (3.23)

The weighting matrix C−1
b is the inverse of the covariance matrix of b and is

given in appendix D. Since the entries of A also contain errors, it could be
argued that Total Least Squares (TLS) or one of its more advanced versions
(STLS etc) are more appropriate to solve eq. (3.21). However, assuming
that the errors in the LDP estimates are small compared to their true values,
the errors in A will be small compared to the errors in b, since the latter
contain error terms, which are the product of LDP errors times LDP true
values. Therefore, despite the fact that WLS neglects the errors in A, it is
still a very attractive solution since it treats the errors in b in an optimal
way.
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3.3 Identifiability Concerns

In a static environment for which the AoA, the AoD and the path lengths
are available, Nθ = 3Ns LDP estimates are used in the estimation of Np =
2Ns + 2 unknown parameters. According to Corollary 1, identifiability is
feasible if

3Ns ≥ 2Ns + 2 ⇔ Ns ≥ 2 (3.24)

and the rank of the transformation matrix is Np, a condition that is usually
met. This means that at least 2 distinct paths corresponding to different
scatterers are required for location estimation. It also becomes apparent
that if less than 3 LDP per scatterer are available, then the MT location
is not identifiable independently of the richness of the channel (number of
multipath components).

3.4 The impact of Network Geometry on Perfor-

mance

In this section, we evaluate the performance of the SBM-based localization
method in LoS and NLoS static environments. To do so, we compute and
plot the Cramer-Rao bound (CRB). In all geometrical localization methods,
the CRB (and the actual performance) depends on two factors: the accuracy
of the available LDP estimates and the network geometry. The impact of the
accuracy of the available LDP estimates on the CRB has been studied exten-
sively for both LoS and NLoS environments. For the SBM-based methods,
it was studied in [38]. However, in that contribution, the authors considered
only a particular fixed setting (scatterers and BS locations) and thus the
impact of network geometry on the accuracy was completely ignored. As
a matter of fact, to the best of our knowledge, there exist no publications
that address this topic. On the other hand, for LoS environments, there
are many publications that deal with the impact of network geometry, espe-
cially for non-hybrid methods [8, 23, 56, 57]. For hybrid methods, the topic
was addressed in [58,59].

In contrast to all of the aforementioned existing studies, in [60] we derived
expressions for the CRB as a function of distances and angles, which allowed
for easy interpretation of the impact of the network geometry. As already
mentioned, in an SBM-based localization method, the coordinates of the
scatterers need to be jointly estimated with the coordinates of the MT. This
increases the size of the transformation matrix G, defined in section 1.9
from 2 × Nθ to (2Ns + 2) × Nθ and leads to a complicated expression for
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the FIM (see eq. 1.77), from which, it is impossible to demonstrate the
impact of network geometry. However, after the straightforward derivation
given in the following subsections, this becomes feasible. Contour maps in
the numerical examples’ subsection validate the conclusions drawn from the
CRB expressions and serve as indicators on how the localization performance
can be improved.

3.4.1 CRB for LoS Environments

In our work we have intentionally ignored localization under LoS conditions,
since this topic has been studied extensively. However, in this section, we
will derive the CRB for location estimation in LoS conditions to point out
the similarities with the expression of the CRB for the NLoS case. Due to
(1.21), it can be easily shown that

σ2
φJφ = σ2

ψJψ (3.25)

Therefore the FIM for this case becomes

J =
1

σ2
d

Jd +
1

(σ2
φ + σ2

ψ)
Jφ (3.26)

Using eq. (1.20)-(1.22), we obtain for the 4 entries of the FIM

j11 = Ns
σ2
d

−∑i αi sin
2(φi) (3.27)

j12 = j21 =
∑

i αi sin(φi) cos(φi) (3.28)

j22 = Ns
σ2
d

−∑i αi cos2(φi) (3.29)

where

αi =
1

σ2
d

− 1

(σ2
φ + σ2

ψ)d2
i

=
1

σ2
d

− 1

σ2
φψd

2
i

. (3.30)

The FIM for the LoS scenario is a 2 × 2 matrix and thus it can easily be
inverted to get the CRBpos = tr{J−1}. The derivation is simple and the
result is given below

CRBpos =
2
∑

i
1
σ2
d

− αi
2

(
∑

i
1
σ2
d

− αi
2 )2 − (

∑
i
αi cos 2φi

2 )2 − (
∑

i
αi sin 2φi

2 )2
(3.31)

Introducing the diagonal matrix of cosines of AoA, C2φ (see also definition
in the index of symbols) and the matrix

A = diag{[a1, . . . , aNs ]} =
1

σ2
d

I − 1

σ2
φψ

D−2 (3.32)
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we can rewrite the CRB expression in a way that allows for easy comparison
with the one for the NLoS case

CRBpos =
21t( 1

σ2
d

I − 1
2A)1

1
σ2
d

Ns1t(
1
σ2
d

I − A)1 + 1tA(11t − C̆δ2φ)A1
(3.33)

where C̆δ2φ is a symmetric matrix whose {i, j} entry is equal to cos(2φi −
2φj).

3.4.2 CRB for NLoS Environments

To compute the CRB in a NLoS static environment, the (2Ns+2)×(2Ns+2)
FIM needs to be inverted. This is feasible even for large values of Ns, if we
write the FIM as a 2 × 2 block matrix, exactly as we did in eq. (1.79) and
then use blockwise inversion. Besides we only need to focus on the upper
left 2× 2 submatrix of its inverse, the trace of which gives the best possible
accuracy, i.e. the CRB for the MT position.

CRBpos = tr{[J−1]1:2,1:2} (3.34)

Using blockwise inversion we can obtain the upper left submatrix of the
inverse of J, given by the Schur complement of J22

[J−1]1:2,1:2 = (J11 − J12(J22)
−1J21)

−1 ∆
= J−1

p . (3.35)

The solution is derived in appendix E and the 4 entries of Jp are given by
eq. (E.37)-(E.39). The CRB for the position estimate is then simply given
by

CRBpos =
21tJ̄−1

det
1

1tJ̄−1
det

(Q′
φ+ψ11tQφ+ψ−Sφ+ψ11tSφ+ψ)J̄−1

det
1

=
21tJ̄−1

det
1

1tJ̄−1
det

(11t−C̆δφ+δψ)J̄−1
det

1
(3.36)

where C̆δφ+δψ is a symmetric matrix whose {i, j} entry is equal to cos(φi −
φj + ψi − ψj) and the rest of the matrices are given in eq. (E.40)-(E.44).

3.4.3 Demonstration and Comparison

First one can observe from eq. (3.33) and (3.36) that for both LoS and NLoS
environments, the CRB depends on distances through the matrices A and
J̄det. This is no big surprise, since this hybrid method utilizes angles. In
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Figure 3.2: CRB vs MT position for 2 distant BS LoS environment

contrast to ToA-based methods where distances do not impact performance
(only their errors do of course), in AoA methods, the greater the distances
the signal components cover, the worse the performance. Similarly here,
by taking the partial derivative of the LoS (NLoS) CRB with respect to
any di (dmts,i), it can be proved that performance worsens when the MT
moves away from the BS (the scatterers). To demonstrate this, consider the
following example, where the MT communicates with 2 BS. The following
contour maps show the CRB for a region of 104m2. The contour lines are
based on the c.d.f. of the CRB. Numbering the lines in increasing order of
the corresponding CRB, contour line j encloses (j/10)100%, j = 1 : 9 of the
total area, i.e., for a contour line j we have p(CRB < CRB(j)) = j/10. As
can be clearly seen, in a NLoS environment, performance degrades as the
distance between the MT and the scatterers increases. Accepting commonly
used channel models like the circular one for macrocells and the elliptical
one for pico and microcells [61–65], we conclude that the performance will
not vary much in different environments. This is because in the circular
model, the scatterers are located inside a circle with the center placed at
the MT position, and in the elliptical one, the scatterers are located inside
an ellipse with the foci placed at the MT and BS position. Thus, in both
models, the distance between the scatterers and the MT is comparable.
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Figure 3.3: CRB vs MT position for 2 BS - 2 distant scatterers NLoS envi-
ronment

More interesting than the impact of distances is the impact of the angles
of the MPC. The NLoS CRBpos depends solely on the sums and the differ-
ences of AoA with the corresponding AoD. This is no big surprise either,
since due to symmetry in a 1 BS scenario, we would expect to obtain the
same performance if we exchange the position of the BS with that of the
MT. Furthermore, one can observe the similarity between the 2 CRB expres-
sions, by replacing ψ in the NLoS CRBpos, using the LoS condition (1.21).
The differences of AoA with AoD do not depend on the angles anymore and
the sums are equal to two times the AoA plus a constant c ∈ {−2π, 0, 2π}
so that C̆δφ+δψ = C̆δ2φ. The only difference is the extra term in the de-
nominator of the LoS CRB expression that does not exist in the NLoS one
due to the fact that in this expression estimation of 2Ns more parameters
is assumed. One last comment about these expressions concerns the terms
involving the matrices denoted by C̆. Due to these terms the denominators
decrease and thus the CRB increases. Both CRB can be maximized with
respect to angles if C̆δ2φ = C̆δφ+δψ = 11t. This corresponds to collocated
BS for the LoS case and collocated scatterers for the 1 BS NLoS case. While
for the LoS the CRB remains finite due to the extra term1, for the NLoS

1This means that localization with this hybrid method is possible even with 1 BS, as
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Figure 3.4: CRB vs MT position for 2 collocated BS LoS environment

case the CRB goes to infinity and thus it is impossible to estimate the MT
location. The significance of these matrices is demonstrated with the follow-
ing contour maps for 1 and 2 BS scenarios. Comparing fig. (3.2) with fig.
(3.4), we observe that indeed, in a LoS environment, performance decreases
for closely located BS, but not significantly (same order of magnitude) due
to the first term in the denominator that depends only on distances. On
the other hand, in NLoS environments, the impact of the relative position
of the scatterers will have different impact on the performance depending
on the number of BS employed in the localization method. In fig. (3.6), we
can observe the huge impact of collocated scatterers in a 1 BS environment.
In such an environment localization is practically impossible. However, if in
such an environment 2 BS are used, each one of which communicates with
the MT via one of the scatterers, the result is totally different. Comparing
fig. (3.3) with fig. (3.7) we observe that for this case the CRB actually im-
proves for collocated scatterers. The cdf of the CRB for the 4 different NLoS
environments considered (1 or 2 BS with collocated or distant scatterers)
are plotted in fig.(3.8). From that last figure it becomes apparent that while
for collocated scatterers it is preferable to have communications with more
than 1 BS, in environments with distant scatterers communication with just

expected.
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Figure 3.5: CRB vs MT position for 1 BS - 2 distant scatterers NLoS envi-
ronment

1 BS via multiple paths can lead to better performance.
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Figure 3.6: CRB vs MT position for 1 BS - 2 collocated scatterers NLoS
environment
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Figure 3.7: CRB vs MT position for 2 BS - 2 collocated scatterers NLoS
environment
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Chapter 4

Hybrid Localization for
NLoS Dynamic
Environments

4.1 Introduction

In this chapter, two hybrid localization methods that utilize the DSBM are
presented and their advantage over the SBM-based method is demonstrated.
Both methods are applicable to NLOS environments that change dynami-
cally due to the movement of the MT and both result in Least Squares (LS)
as well as Maximum Likelihood (ML) estimates. The LS estimates are given
in the following two sections while to obtain ML estimates one could use the
formulation presented in section 1.8. The two methods assume knowledge of
different kinds of location-dependent parameters (LDP), like the path length
d which is proportional to the delay, the AoD ψ at the BS and the normal-
ized (with respect to the carrier frequency and the inverse of the speed of
light) Doppler Shift fd. The first method further assumes knowledge of the
AoA φ of different paths at the MT. Despite the fact that this appears to
be a small difference, the two methods actually differ a lot. Due to the lack
of availability of AoA in the second method, the parameters that need to be
estimated become identifiable solely due to the variation in time of the LDP.
A detailed discussion on identifiability and performance of the 2 methods is

63
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Figure 4.1: LDP in a NLoS environment: Dynamic single bounce model

presented in sections 4.4 and 4.5, while in the last section the 2 methods are
compared. This chapter is a collection and an extension of the methods and
the results presented in [49,66,67] and some preliminary results that will be
presented in [60].

4.2 LS Estimation for ToA/AoA/AoD/DS Local-

ization

In this method K = 4 and θ = [dt,φt,ψt, f td]
t. Similarly to the static case

scenario, we can formulate a system of linear equations that can be solved
to obtain a (W)LS estimate of the speed and position of the MT. The LS
formulation is the same as in the static case, so similarly to eq. (3.8-3.15)
and introducing the subscript i to denote the time dependency, the sines
and the cosines of the angles shown in fig. 4.1 are given by
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sin(φij) =
ysj−yi
dmtsij

(4.1)

cos(φij) =
xsj−xi
dmtsij

(4.2)

sin(ψij) =
ysj−ybsj
dbssij

(4.3)

cos(ψij) =
xsj−xbsj
dbssij

(4.4)

where the distances that appear in the denominators satisfy the following
equation

dij = dbssij + dmtsij . (4.5)

Furthermore we can write any DS as

fd,ij = υxcos(φij) + υysin(φij). (4.6)

Solving for the distances and replacing the solutions in dij we get the fol-
lowing set of 4NsNt linear equations (from this set of equations only 3NsNt

are linearly independent):

xsj (cos(φij) + cos(ψij)) − xicos(ψij) = cos(φij)cos(ψij)dij + xbsjcos(φij)
(4.7)

ysj (sin(φij) + sin(ψij)) − yisin(ψij) = sin(φij)sin(ψij)dij + ybsjsin(φij)
(4.8)

xsjsin(ψij) + ysjcos(φij) − xisin(ψij) = cos(φij)sin(ψij)dij + ybsjcos(φij)
(4.9)

xsjsin(φij) + ysjcos(ψij) − yicos(ψij) = sin(φij)cos(ψij)dij + xbsjsin(φij).
(4.10)

The solution for dynamic environments comes as an extension of the solution
for the static one. If the constant speed mobility model is considered, the
matrix A in eq. (3.21) needs to be augmented with the following matrix

Aυ =




−Cψ(t ⊗ 1) 0
0 −Sψ(t ⊗ 1)

−Sψ(t ⊗ 1) 0
0 −Cψ(t ⊗ 1)

Cφ1 Sφ1




(4.11)

to get
[

A
AυO

]

︸ ︷︷ ︸
=A′




p
υx
υy




︸ ︷︷ ︸
=p′

=

[
b

Fd1

]

︸ ︷︷ ︸
=b′

. (4.12)
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The weighted least square solution follows immediately

p̂′
WLS = (A′tC−1

b′ A
′)−1A′tC−1

b′ b
′. (4.13)

Similarly if the constant acceleration mobility model is used, we can further
augment A′ with the matrix

Aα =




−Cψ(1
2(t ⊙ t) ⊗ 1) 0

0 −Sψ(1
2(t ⊙ t) ⊗ 1)

−Sψ(1
2(t ⊙ t) ⊗ 1) 0

0 −Cψ(1
2(t ⊙ t) ⊗ 1)

Cφ(t ⊗ 1) Sφ(t ⊗ 1)




(4.14)

to get

[
A′ Aα

]
︸ ︷︷ ︸

=A′′




p′

αx
αy




︸ ︷︷ ︸
=p′′

= b′. (4.15)

the WLS solution of which is

p̂′′
WLS = (A′′tC−1

b′ A
′′)−1A′′tC−1

b′ b
′. (4.16)

The matrix C−1
b′ in eq. (4.13) and (4.16) is the inverse of the covariance

matrix of b′ and is given in appendix F. Similarly to the static environment,
the motive behind choosing the WLS solution and not TLS or one of its more
advanced versions is that the errors in A′ (A′′) are usually small compared
to the errors in b′. Therefore, despite the fact that WLS neglects the errors
in A′ (A′′), it is still a very attractive solution since it treats the errors in
b′ in an optimal way.

4.3 LS Estimation for ToA/AoD/DS Localization

In contrast to the method presented in the previous section, where we have
derived a LS solution based on knowledge of all 4 subsets of LDP, herein we
do not consider knowledge of the AoA (angle of the impinging wave at the
MT, considering downlink transmission). We do so in order to account for
numerous realistic scenarios in which AoA estimates might not be available
or might be totally unreliable due to e.g. lack of calibration of the antenna
array at the receiver or completely modified antenna pattern because of the
way the user is holding the device. Although the Doppler shift of each MPC
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explicitly depends on the AoA through the cosine of its difference with the
direction of movement ω, we show how to effectively extract useful - for
localization purposes - information from this LDP and combine it with the
rest of the available information to form a 2-step LS solution. This was
achieved in [67] through a geometric interpretation of the DS that enabled
the use of trigonometric laws and led to a linear system of equations. In
this section however, we take an equivalent approach that will be presented
in [60] and utilizes time derivatives.

In this method K = 3 and θ = [dt,ψt, f td]
t. In the 1st step of the method

the nuisance parameters in polar coordinates will be estimated, i.e. instead
of considering pnui = [xts,y

t
s]
t we consider p′

nui = [dtbs,p
t
υ,α]t, where ptυ,α

is a vector of unknown parameters that depend on the speed (or the speed
and the acceleration) of the MT. In the 2nd step these estimates are utilized
to formulate a ToA localization problem and estimate the parameters of
interest pint = [p0,υ0,α]t using an extension of the lines-of-position (LoP)
method that was presented in [68] for static channels. The first step is based
on the following observations: First we observed that fd,ij can be written as
a function of dmtsij

fd,ij =
sij

dmts,ij
(4.17)

where sij = υx(xsj − xi) + υy(ysj − yi). It follows that

fd,ijdij = fd,ijdbs,j + sij . (4.18)

Next we observed that the 1st derivative of sij w.r.t. time for the constant
speed model

dsij
dt

= −υ2 (4.19)

and the 2nd derivative for the constant acceleration model

dsij
dt

= −υ2
i + αx(xsj − xi) + αy(ysj − yi) (4.20)

d2sij
dt2

= −3(υx0αx + υy0αy) − 3α2ti (4.21)

do not depend on the unknown coordinates. This can be extended to higher
derivatives if the MT position as a function of time is a higher degree poly-
nomial. We can therefore differentiate eq. (4.18) n times1 to get

d(n)(fd,ijdij)

dt(n)
=
d(n)fd,ij

dt(n)
dbs,j +

d(n)sij

dt(n)
. (4.22)

1
n depends on the mobility model utilized.
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Table 4.1: Parameters that depend on the mobility model

mobility model V pυ,α
const. speed (n = 1) −1 υ2

const. acceleration (n = 2) −3[1|t] [(υx0αx + υy0αy), α
2]t

Subsequently we can put the above set of Ns(Nt − n) equations in vector
form, using d = (1 ⊗ dbs) + dms and fd = D−1

mss as follows

d(n)(fd ⊙ d)

dt(n)
=
d(n)fd
dt(n)

(1⊗dbs)+
d(n)s

dt(n)
=

d(n)

dt(n)
Fd(1⊗ I)dbs+Vpυ,α (4.23)

where, for the 2 mobility models considered, V and pυ,α are given in table
4.1 and t = [t0, . . . , tNt−1]

t is the vector containing all time instances. To
make computations feasible, derivatives w.r.t time need to be replaced by
differences of time samples. To that end we introduce the following “ time
difference” matrices

Rt = Rn ⊗ I. (4.24)

where the Nt − n×Nt matrix Rn is given by

Rn =

{
[0|I] − [I|0], n = 1

[O|I] − 2[0|I|0] + [I|O], n = 2
(4.25)

When Rt multiplies on the left the vectors (matrices) that contain LDP in
(4.23), the resulting vectors (matrices) contain the differences (or differences
of differences) w.r.t to time of their entries. We can now rewrite (4.23) as
follows :

[RtFd(1 ⊗ I),−(dt)nV]︸ ︷︷ ︸
Z

p′
nui = Rt(fd ⊙ d)︸ ︷︷ ︸

w

(4.26)

If time sampling is not uniform, (dt)n should be replaced by the vector Rtt
and the product with V becomes a Hadamamard product of Rtt with each
of the columns of V. Eq. (4.26) can be solved using eg. WLS and the
solution for p′

nui = [dtbs,p
t
υ,α]t is

p̂′
nui = (Zt(Cw)−1Z)−1Zt(Cw)−1w . (4.27)

If we further define Zf = RtFd(1 ⊗ I) and P = I − V(VtC−1
w V)−1VtC−1

w ,
it can be easily shown that

d̂bss = (ZtfC
−1
w PZf )

−1ZtfC
−1
w Pw. (4.28)
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In the two equations above we have introduced the covariance matrix of w,
which, assuming i.i.d. LDP, is given by

Cw = Rt(σ
2
fd

ddt ⊙ I + σ2
dfdf

t
d ⊙ I + σ2

fd
σ2
dI)R

t
t. (4.29)

We can now proceed with the 2nd step of the method. Combining the esti-
mated distances between the scatterers and the BS with the available AoD,
we can obtain estimates for the scatterers’ locations. Since also the distances
between the scatterers and the MT can also be estimated using eq. (4.5), the
problem of estimating the location of the MT at time i becomes equivalent
to solving a ToA localization problem with Ns BS (which are the scatterers
in this problem formulation), all of which are in a LoS environment. As
mentioned above, one very appealing LS solution for this problem, is the
so-called lines-of-position (LoP). We can modify this method to estimate
pint. According to the LoP method, the coordinates of the MT at time i
satisfy:

(cj′ − cj)xi + (sj′ − sj)yi = bij′ − bij . (4.30)

where

cj = xbsj + d̂bsj cos(ψj) (4.31)

sj = ybsj + d̂bsj sin(ψij) (4.32)

bij = −1
2(d̂2

mts,ij − d̂2
bsj

− 2 (xbsj cos(ψj) + ybsj sin(ψj)︸ ︷︷ ︸
qj

)d̂bsj − (x2
bsj

+ y2
bsj

)
︸ ︷︷ ︸

pbsj

)

= 1
2(d2

ij − 2(dij + qj)d̂bsj − pbsj ) (4.33)

In contrast to the 1st step that required differences with respect to time, eq.
(4.30) indicates that differences with respect to different paths are required.
Therefore, in order to put the set of equations in vector form, we introduce
a “space difference” matrix

Rs = I ⊗ R1 (4.34)

which, by multiplying on the left a vector (matrix) that contains LDP, gives
the differences of the entries (that correspond to different paths) of the vector
(matrix). The matrix R1 is a Ns− 1×Ns matrix that has the same form as
the one defined in eq. (4.25) for n = 1. After a few algebraic computations
shown in app. G we derive the following

Apint = b (4.35)
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where the matrix A is defined in eq. (G.20) and the vector b is defined
in eq. (G.9). Therefore the WLS estimate for the parameters of interest is
given by

p̂int = (AtC−1
b A)−1AtC−1

b b (4.36)

where we have introduced the covariance matrix of b. Its expression (a sum
of many terms) along with its lengthy derivation can be found in app. H.

4.4 Identifiability Concerns

Since in a DSBM model we consider that the environment changes only due
to the movement of the MT, the AoD are time-invariant LDP. Therefore,
even though NsNt AoD estimates might be available, only Ns of them can
potentially lead to independent equations. Thus, to study identifiability, we
consider Nθ = (K − 1)NsNt +Ns and not Nθ = KNsNt, where K denotes
the total number of different kinds of LDP. Consider first a MT that is
moving with constant speed. The number of parameters that needs to be
estimated is Np = 2Ns + 2. According to Corollary 1 in section 1.10, the
first condition that must be met for identifiability is

(K − 1)NsNt +Ns ≥ 2Ns + 4 (4.37)

The second condition is that the transformation matrix must have rank Np.
Instead of computing the rank, we will take a different approach and require
at least Np data equations to be linearly independent under some assump-
tions for Nt. The only restriction on the number of time samples Nt of each
LDP is that its product with ∆t, i.e. the total observation timeNt∆t, should
remain sufficiently small so that the constant speed assumption is realistic.
So if the sampling rate is quite high, Nt can be quite large too. However,
considering a really small observation time during which the LDP vary very
little, would result in fewer than Nt linearly independent equations per LDP
per path. Specifically, for the constant speed model, the small observation
time assumption leads to exactly 2 linearly independent equations per LDP
per path. To prove this, consider the Taylor series expansion of any LDP
θk,i = θk(pi) around the parameters’ vector at time instant t0, p0. Since the
observation time is small, we can ignore higher order terms and consider the
LDP variation to be linear, i.e.

θk,i = θk,0 + (pi − p0)
t dθk
dp

∣∣∣∣
p=p0

(4.38)
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Table 4.2: Nθ - Np pairs

{Nθ, Np} K
2 3 4

Ns

1 {3, 6} {5, 6} {7, 6}
2 {6, 8} {10, 8} {14, 8}
3 {9, 10} {15, 10} {21, 10}
4 {12, 12} {20, 12} {28, 12}

Furthermore, since 2 entries of p, the MT coordinates, vary linearly with
time and the rest remain constant, each θk,i is also a linear function of time

θk,i = θk,0︸︷︷︸
c0

+

(
υx
∂θk
∂x

+ υy
∂θk
∂y

)∣∣∣∣
p=p0︸ ︷︷ ︸

c1

ti. (4.39)

The above set of equations can be written in vector form as




1 t0
...

...
1 tNt−1




︸ ︷︷ ︸
A

[
c0
c1

]
=




θk,0
...

θk,Nt−1


 (4.40)

The number of linearly independent equations is equal to the rank of A,
which is obviously 2. The values of Nθ and Np for Nt = 2 are given in table
4.2. From that table we can conclude that for the worst case -in terms of
identifiability- scenario2, the unknown parameters can be estimated if all 4
different kinds of LDP are available for just 1 scatterer, or if 3 kinds of LDP
are available for 2 distinct scatterers or if just 2 of them are available for 4
distinct scatterers.

In [49], a different scenario in which, Nt time samples lead to Nt linearly
independent equations per LDP per path, was considered. Identifiability was
investigated in terms of the rank of the FIM (or equivalently of the trans-
formation matrix G). The rank was computed analytically (using Gaussian
elimination) and verified by simulations (for reasonable values of Nt∆t that

2By worst-case scenario we mean the one in which many time samples lead to only 2
linearly independent equations per LDP per path
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Table 4.3: Rank of the transformation matrix

Ns = 1 ⇔ Np = 6, Nt ≥ 4

θ [φt,dt]t [dt, f td]
t [φt,dt, f td]

t

rank(G) 6 6 6

θ [φt,ψt,dt]t [φt,ψt, f td]
t [ψt,dt, f td]

t

rank(G) 6 5 6

do not lead to singularities). The results are given in table 4.3 for environ-
ments with just 1 resolvable path and different subsets of the LDP being
available. Comparing these results with the ones for the worst case scenario,
we observe that according to Corollary 1, for the general case, identifiability
is feasible for all cases of K = 3 except 1 and it is even feasible for 2 cases
of K = 2. However, as will be shown in the next section, in many of these
cases the performance can be poor.

If we allow some linear time-variation of the MT speed by introducing
a constant acceleration term, the restriction of small observation time can
be loosened. However, it is still of great interest to study the worst-case
scenario, thus we again consider that the observation time is small enough
so that the LDP time-variation can be considered linear and (4.38) holds. We
study again identifiability using the number of possibly linearly independent
equations. In this scenario, 2 of the entries of of p, the MT coordinates, are
a quadratic function of time and 2 more, the speed components, are linear
function of time. Therefore, each θk,i is also a quadratic function of time

θk,i = θk,0︸︷︷︸
c0

+

(
υx
∂θk
∂x

+ υy
∂θk
∂y

+ αx
∂θk
∂υx

+ αy
∂θk
∂υy

)∣∣∣∣
p=p0︸ ︷︷ ︸

c1

ti

+
1

2

(
αx
∂θk
∂x

+ αy
∂θk
∂y

)∣∣∣∣
p=p0︸ ︷︷ ︸

c2

t2i . (4.41)

The above set of equations can be written in vector form as



1 t0 t20
...

...
...

1 tNt−1 t2Nt−1




︸ ︷︷ ︸
A



c0
c1
c2


 =




θk,0
...

θk,Nt−1


 (4.42)
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Table 4.4: Nθ - Np pairs

{Nθ, Np} K
2 3 4

Ns

1 {4, 8} {7, 8} {10, 8}
2 {8, 10} {14, 10} {20, 10}
3 {12, 12} {21, 12} {30, 12}
4 {16, 14} {28, 14} {40, 14}

The number of linearly independent equations is equal to the rank of A,
which in this case is 3. Therefore, introducing acceleration increases not
only the number of parameters that needs to be estimated but also the
minimum number of possible independent equations. The values of Nθ and
Np = 2Ns+4 for Nt = 3 are given in table 4.4. Comparing the Nθ-Np pairs
for the 2 mobility model cases, we notice that the only difference in terms
of worst-case scenario identifiability is that using the constant acceleration
mobility model makes estimation feasible even when K = 2 different kinds
of LDP are available for Ns = 3 distinct scatterers. Of course, for more
general scenarios where the number of linearly independent eq. scales with
Nt for both methods, there is no advantage in using different models.

4.5 Performance Concerns

In some of the cases studied in the previous section, although the FIM is in-
vertible, it is ill-conditioned. This has a huge impact on the performance of
the ML estimators, since the CRB becomes very large (noise is amplified).
To avoid scenarios like these, in which the parameters are “ill-identified”
since the estimation error will be so large that their estimated value is mean-
ingless, we will compare the condition number of the FIM for different cases
and study its impact on the CRB through a numerical example. In this
example we consider a picocell so that the distance between the MT and
the BS is a few tens of meters ([xBS , yBS ] = [0, 0] , [x0, y0] = [30, 20]) while
the MT is moving with average walking speed ([υx, υy] = [2,−1.5]). Ns = 4
MPC are available and the scatterers’ coordinates are drawn from a uniform
distribution with support region [xBS , xBS + 2x0] × [yBS , yBS + 2y0]. The
total observation time is 1sec. The results are averaged for 103 different
samples of scatterers’ coordinates. The condition number of the FIM J is
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defined as:

cθ =
λmax
λmin

(4.43)

where λmax (λmin) is the maximum (minimum) eigenvalue of J . The CRB
for the position and speed are given respectively by

CRBp,θ =
√
tr([J−1](1:2,1:2)) (4.44)

CRBsp,θ =
√
tr([J−1](3:4,3:4)) . (4.45)

The FIM J is defined in eq. (1.77). Since we are not interested in the
impact of C

θ̃
on the performance, we will assume that C

θ̃
= I. Any scaling

by a positive scalar does not change the condition number, while if the
diagonal entries change slightly, the condition number changes but generally
its order of magnitude remains the same. In table 4.5 we give the condition
numbers and the CRB for cases of interest, normalized with respect to the
same quantities for the case when all LDP are available (method 1), cθall ,
CRBp,θall and CRBsp,θall respectively. All quantities are in dB, i.e. the
entries are defined as follows

cn = 10 log10

(
cθ
cθall

)
(4.46)

CRBp,n = 10 log10

(
CRBp,θ
CRBp,θall

)
(4.47)

CRBsp,n = 10 log10

(
CRBsp,θ
CRBsp,θall

)
(4.48)

The cases shown in table 4.5 are the ones with the best performance over
all the cases for which local identifiability is feasible. For the cases not
shown in this table, the condition number is increased by at least an order
of magnitude and that leads to a similar degradation in performance, when
fewer LDP are available. The only exceptions are actually the 3 cases shown
in this table. However for 2 of these cases (method 2 and method not
utilizing DS) the CRB for both the position and the speed is more than
doubled and only for the case when the AoD is not available the degradation
is very small.

4.6 Comparison of the 2 proposed methods

In this section we will further evaluate and compare the performance of the 2
methods (K = 4 and K = 3) for a different scenario than the one considered
in the previous section. Specifically we consider a vehicle moving with low
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Table 4.5: Condition Number Ratio and CRB Ratio

Ns = 4, Nt = 10

θ [φt,dt, f td]
t [φt,ψt,dt]t [ψt,dt, f td]

t

cn(dB) 1 14.3 4.3

RMSEp,n(dB) 0.7 18.7 7.1

RMSEsp,n(dB) 0.3 9 3

BS1

BS2

BS3

BS4

MT

υ

Figure 4.2: NLoS Environment with 4 BS



76 Chapter 4 Hybrid Localization for NLoS Dynamic Environments

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ
d
=σ

ψ
=σ

f
d

(=σ
φ
)

P
o

s
it

io
n

 R
M

S
E

(m
)

 

 

LS w/ 4 LDP

ML w/ 4 LDP

LS w/ 3 LDP

ML w/ 3 LDP

Figure 4.3: Position RMSE vs SNR for various methods
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Table 4.6: BS, MT and scatterers’ coordinates

(xbs1 , ybs1) (xbs2 , ybs2) (xbs3 , ybs3) (xbs4 , ybs4)

(0, 50)m (−50, 0)m (0,−50)m (50, 0)m

(xs1 , ys1) (xs2 , ys2) (xs3 , ys3) (xs4 , ys4)

(40, 10)m (−25, 30)m (−30,−30)m (35,−40)m

constant speed (less than 40km/h) inside a micro-cell (city environment)
and receiving a signal from 4 BS. All of the received signal components
propagate through a NLoS environment. The coordinates of the BS and the
corresponding scatterers are given in table 4.6 and the environment is shown
in figure 4.2. The MT is located at {x0, y0} = {25, 25} and moving with
speed {ux, uy} = {6, 9}m/sec. The total observation time is 1sec, during
which Nt = 10 LDP of each kind and for each path are estimated and used in
the localization process. We run N independent experiments and averaged
the results. In figures 4.3 and 4.4 we plot the RMSE of the MT position
and speed respectively given by

RMSEp =
√

1
N

∑N
k=1 (x̂0,k − x0)2 + (ŷ0,k − x0)2 (4.49)

RMSEsp =
√

1
N

∑N
k=1 (υ̂x,k − υx)2 + (υ̂y,k − υy)2 (4.50)

versus the standard deviation σ of all LDP estimates (we consider σ to be
equal for all LDP just for demonstration purposes). It can be observed that
when only 3 LDP are available, the LS estimation for the speed and the
position is accurate only for high SNR (defined as 1

σ2 ). This is because the
method depends on the variation in time of the LDP and is very sensitive to
noise. This does not seem to cause the same problem to the ML estimates,
although the performance is slightly worse than the 1st method, as was
also indicated in the previous section using the CRB. As a matter of fact,
although the scenario is different, the increase in RMSE due to lack of AoA
knowledge that was computed in this section is approximately the same with
the increase in the CRB which was computed in the previous section.
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Chapter 5

Direct Location Estimation
for MIMO-OFDM systems

5.1 Introduction

Direct Location Estimation (DLE) was originally introduced in [69] under
the name Direct Position Determination (DPD). As the name indicates, in
contrast to the traditional 2-step localization methods, DLE is a method
that processes the received signal samples and outputs estimates of the MT
location (and possibly other parameters) directly, without explicitly estimat-
ing the location dependent parameters (LDP). The performance of 2-step
approaches, has been proved to converge to the CRB for high SNR and
sufficient number of data samples [70]. However, in existing wireless com-
munication systems, high SNR is not always guaranteed. Furthermore, if
the channel varies rapidly, the number of data samples that can be used
in the estimation process is very limited. The motivation behind DLE was
exactly to find a method that can localize efficiently even under these cir-
cumstances. DLE is able to achieve that by taking advantage of the fact
that all LDP estimates correspond to the same MT location.

In the aforementioned contributions, DLE was applied to LoS static en-
vironments, where the narrow-band signal transmitted by the MT is inter-
cepted by L BS. The only disadvantage of the method compared to 2-step
methods was the increase in feedback information. If DLE is used, sampled

79
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versions of the received signals from the various BS need to be transmitted
to a central processing unit, while if traditional methods are used, only the
LDP estimates need to be transmitted. The DLE method was further ex-
tended in [71] to include calibration errors and errors due to multipath prop-
agation. We on the other hand, have proposed and implemented DLE for
MIMO-OFDM systems that operate in strictly NLoS or multipath environ-
ments, but instead of considering errors due to the multipath components,
we exploit the information contained in them. Furthermore, we assume that
the MT is communicating only with 1 BS, thus not only there is no need
for feeding information to a central unit, but also we overcome the so-called
hearibility problem, which has been a major concern for localization algo-
rithms [3].

DLE becomes feasible if a unique invertible mapping exists between the
parameters of interest (MT position, speed etc) and the LDP. Such a map-
ping is simple to derive when a LoS signal component exists in the received
signal, thus, this assumption was made in the existing literature. In urban
environments a LoS signal component rarely exists. When it does exist,
the received signal is also composed of various MPC. Most often however,
the signal propagates in a rich scattering environment under strict NLoS
conditions. In order to express all the LDP that the MIMO channel matrix
depends on, i.e. the AoA, the AoD, the delays and the DS, as a function
of the MT’s coordinates, an appropriate geometrical representation of the
propagation environment is required. To that end, we based our approach
on the Single-Bounce Model (SBM), which we also employed in the 2-step
localization methods presented in the previous chapters. It is due to this
widely acceptable channel model, that we were able to create the mapping
needed to implement the DLE method.

5.2 DLE for NLoS environments

In this section we assume that the signal propagates in a strictly NLoS envi-
ronment that changes due to the movement of the MT and that each signal
component has bounced exactly once. Therefore the model described in sec-
tion 1.5.2 can be applied here. We are interested in estimating jointly the
MT’s coordinates at time t0, x0 and y0 and its constant speed components υx
and υy directly from the received signal matrices Ykl. The mobility model
with constant acceleration is not considered here. For ease of notation we
express the mapping of the vector p to the LDP vector θ, along with its
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unique inverse, in a more compact way:

θ = θ(p) , p = θ−1(θ(p)). (5.1)

As already mentioned in the introduction, this mapping allows us to do
a direct position and speed estimation based on the received signal. Let
SY = {Y11, . . . ,YNfNt} and SH = {H11, . . . ,HNfNt} be the set of all re-
ceived signal matrices and the set of the corresponding channel matrices
respectively. To implement ML estimation, we further define the following
log-likelihood:

L ∆
= L(SY|p) = ln(f(SY|p)). (5.2)

Using (5.1), f(SY|p) becomes equivalent to f(SY|θ) and thus can be derived
as follows:

f(SY|p) ≡ f(SY|θ) =

∫

CNs

f(SY|θ,γ)f(γ)dγ

=

∫

CNs

f(SY|SH)f(γ)dγ =

∫

CNs

Nf∏

k=1

Nt∏

l=1

f(Ykl|Hkl)f(γ)dγ

=

∫

CNs

Nf∏

k=1

Nt∏

l=1

(
1

(πσ2)nrnt
e−

1
σ2 |Ykl−HklXkl|2

)
1

(πσ2
γ)
Ns
e
− 1

σ2
γ
γ†γ

dγ

=

∫

CNs

(
1

(πσ2)nrnt
e−

1
σ2

∑Nf
k=1

∑Nt
l=1 |Ykl−HklXkl|2

)
1

(πσ2
γ)
Ns
e
− 1

σ2
γ
γ†γ

dγ

(5.3)

where we have used the io relationship given by eq. (1.66). The solution
of the above integral for σ2

γ = 1 and Xk,l = Int , ∀k, l was derived in [72]
and is given in the next chapter. The extension to the more general case is
trivial and the result is given below (given p, each Yk,l is linear in γ and
Nk,l, which are both Gaussian, hence f(Ykl|p) is Gaussian distributed and
SY will also be Gaussian distributed):

f(SY|p) ∝ det((σ2
γVV† + σ2I)−1)e−y†(σ2

γVV†+σ2I)−1y (5.4)

where y is a NnrNfNt×1 vector containing all the received signal samples,
i.e.

y = [yt11, . . . ,y
t
NfNt

]t (5.5)

and V is a NnrNfNt ×Ns block matrix given by

V = [V†
11, . . . ,V

†
NfNt

]† (5.6)
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Each Nnr ×Ns submatrix Vkl is given by

Vkl = (Xt
kl ⊗ Inr) (AT,l ⊠ AR,l)Dkl︸ ︷︷ ︸

Qkl

(5.7)

To simplify notation lets introduce the block diagonal matrix X that de-
pends only on the training sequence of symbols

X =




(Xt
11 ⊗ Inr) 0 . . .

0
. . . 0

. . . 0 (Xt
NfNt

⊗ Inr)


 (5.8)

and the matrix Q

Q = [Qt
11, . . . ,Q

t
NfNt

]t. (5.9)

We can then write

V = XQ (5.10)

Lets further define the conditional covariance matrix of the data vector y as

Cy|p
∆
= σ2

γVV† + σ2I (5.11)

Since AT,l,AR,l and DG,kl depend on p, so does V. Therefore Cy|p also
depends on the parameters we need to estimate, although this dependency
is not explicitly shown in (5.11). Substituting (5.11) in (5.4) and the result
in (5.2) we get

L = − ln(det(Cy|p)) − y†C−1
y|py. (5.12)

The ML estimate of p is then simply given by

p̂ = argmax
p

{L} . (5.13)

5.3 DLE for Multipath Environments

In the presence of a LoS component, the MIMO channel matrix is given
as a sum of 2 components. The NLoS component depends on the unknown
complex amplitudes γ, which were assigned a complex Gaussian distribution
according to the principle of Maximum Entropy and thus were easily inte-
grated out in the previous section. In a similar fashion, to make the channel
representation as realistic as possible, we introduced in eq. (1.64) the phase
noise term ejθ. Therefore, in a multipath environment we are faced again
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with the dilemma of integrating out this new unknown parameter or esti-
mating it jointly with the rest of the unknown parameters. In this approach
we choose joint estimation, since integration does not lead to a closed-form
solution. Due to this choice, in this problem formulation we need to estimate
pint in the presence of nuisance parameters pnuis = [xts,y

t
s, θ]

t, i.e. our goal
becomes to estimate the (2Ns + 5) × 1 vector:

p = [ptint,p
t
nuis]

t. (5.14)

Under the Bayesian framework [45] and having the principle of Maximum
Entropy as a guiding rule, we can assign uniform probability density to
the phase θ. Thus, the use of these non-informative priors will lead to no
improvement in the accuracy of the estimation method, and a Maximum
a-Posteriori (MAP) estimator becomes equivalent to a ML estimator, which
is also implemented for this environment. To formulate the ML estimation
problem more precisely, let us introduce the following vectors:

hL = [htL,11, . . . ,h
t
L,NfNt

]t (5.15)

my = XhL (5.16)

y′ = y − my (5.17)

We can directly apply the results of the previous section on the centered
random vector y′ to get the new log-likelihood

L = − ln(det(Cy|p)) − (y − my)†C−1
y|p(y − my). (5.18)

The ML estimate of p is once given by maximizing the above function, i.e.

p̂ = argmax
p

{L} . (5.19)

5.4 Cramer-Rao Bound

Since in a multipath environment both the conditional mean and the condi-
tional covariance on the r.h.s of (5.18) depend on the unknown parameters,
using the definition of the FIM given by the first equality of eq. (1.77), will
lead to a sum of 2 terms for each entry. The solution for the i′, j′ entry is
given by [73, eq.(8.34)]:

Ji′j′ = tr
{
C−1

y|p
∂Cy|p
∂pi′

C−1
y|p

∂Cy|p
∂pj′

}
+ 2Re

{∂m†
y

∂pi′
C−1

y|p
∂my

∂pj′

}
. (5.20)
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If a strictly NLoS environment is considered, the second term on the r.h.s of
(5.20) is equal to zero. The partial derivative of the conditional covariance
matrix is

∂Cy|p
∂pi′

= X

(
∂Q

∂pi′
Q† + Q

∂Q†

∂pi′

)
X

† (5.21)

and ∂Q
∂pi′

is constructed by concatenating the following submatrices:

∂Qkl

∂pi′
= (

∂AT,l

∂pi′
⊠ AR,l + AT,l ⊠

∂AR,l

∂pi′
)Dkl + (AT,l ⊠ AR,l)

∂Dkl

∂pi′
. (5.22)

The partial derivatives of AT,l and AR,l are given by

∂AT,l

∂pi′
= 1{2j+3,2j+4}(i

′)[0nt×(j−1),
∂aT (ψj)
∂ψj

,0nt×(Ns−j)]
∂ψj
∂pi′

(5.23)

∂AR,l

∂pi′
= 1{1,...,4,2j+3,2j+4}(i

′)[0nr×(j−1),
∂aR(φlj)
∂φlj

,0nr×(Ns−j)]
∂φlj
∂pi′

(5.24)

while the partial derivative of Dkl is given by

∂Dkl

∂pi′
= 1{1,...,4,2j+3,2j+4}(i

′)

[
− 1

τlj

∂τlj
∂pi′

+ j2π

(
tl
∂fd,lj
∂pi′

− fk
∂τlj
∂pi′

)]
Dkl

(5.25)
Similarly, the partial derivative of the conditional mean is

∂my

∂pi′
= X

∂hL
∂pi′

(5.26)

and ∂hL
∂pi′

is constructed by concatenating the following subvectors:

∂hL,kl
∂pi′

=1{2Ns+5}(i
′)jθhL,kl + 1{1,...,4}(i

′)

×
[(

− 1

τl0

∂τl0
∂pi′

+ j2π

(
tl
∂fd,l0
∂pi′

− fk
∂τl0
∂pi′

))
hL,kl

+

(
∂aT (ψl0)

t

∂ψl0
⊗ Inr

)
aR(φl0)

∂ψl0
∂pi′

+ (atT,l0 ⊗ Inr)
∂aR(φl0)

∂φl0

∂φl0
∂pi′

]
.

(5.27)

In the above equations we introduced the indicator function, defined as:

1S(i
′)

∆
=

{
1, i′ ∈ S

0, i′ /∈ S
(5.28)



5.5 Simulation Results 85

Table 5.1: BS, MT and scatterers’ coordinates

(xbs, ybs) (x0, y0) (xs1 , ys1) (xs2 , ys2) (xs3 , ys3)

(0, 0)m (30, 20)m (20, 30)m (5, 5)m (40, 15)m

The need for this indicator stems from the fact that all LDP of a MPC j
depend only on the corresponding scatterer j. The partial derivatives of
the LDP with respect to the entries of p can be found in app. I. Deriving
∂aT (ψj)
∂ψj

and
∂aR(φlj)
∂φlj

is trivial once the geometry of the antenna arrays is

known. For the case of ULA, the solution will be given in the results section.
Constructing the conditional mean and covariance according to eq. (5.26)
and (5.21) and substituting the result in (5.20) we get an expression for the
FIM which is valid for any geometry of the arrays at the transmitter and
the receiver.

5.5 Simulation Results

In this section we compute and we plot the CRB for three different environ-
ment: A LoS environment (information from NLoS components is either not
available or not used in the estimation process), a multipath environment
with 2 NLoS and a LoS path and a strictly NLoS environment with 3 paths.
The power normalization constant ensures that the channel’s energy remains
the same independently of the environment or the number of available paths.
The coordinates of the BS, the MT and the scatterers considered, correspond
to a picocell that fits the elliptical model [61, 64, 65] and are given in table
5.1. The magnitude of the speed of the MT is |υ| = 1.5m/sec (average
walking speed) and we average the simulation results for 20 different direc-
tions of the speed, drawn independently from a uniform distribution with
support region [0, 2π]. The Nt = 40 time samples are uniformly spaced and
ttot = tNt−1 − t0 is 100msec. Also only Nf = 2 subcarriers are considered
with spacing of ∆f = 10MHz and the carrier frequency is fc = 1.9GHz.
The transmitted signal is the training matrix Xkl = Int , ∀k, l. The array
response of the receiver’s ULA to signal component j arriving at time l, is

aR(φlj) = [1, ej2π
fc
c
dr sin(φlj), . . . , ej2π

fc
c
dr(nr−1) sin(φlj)]t (5.29)
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Figure 5.1: Position CRB vs SNR, various environments

and its partial derivative with respect to φlj is

∂aR
∂φlj

= j2π
fc
c
dr cos(φlj)[0, 1, . . . , (nr − 1)]t ⊙ aR(φlj) (5.30)

where dr is the distance between two adjacent antenna elements. Replacing
dr with dt, φ with ψ and nr with nt, we get the transmitter’s array response
(and the corresponding derivative). In our simulations we considered dr =
dt = λ/2. In figures 5.1 and 5.2 we plot the position and speed root mean
square error (RMSE) respectively for an efficient estimator (i.e. the CRB),
versus the received SNR for a 2 × 2 MIMO system. The SNR is defined as:

SNR = 10 log10

(
E{tr(HXX†H†)}
E{tr(NN†)}

)
= 10 log10

(
σ2
γ

σ2

)
(5.31)

where we introduced the matrices

H = [H11, . . . ,HNfNt ] (5.32)

X = [Xt
11, . . . ,X

t
NfNt

]t (5.33)

N = [N11, . . . ,NNfNt ]. (5.34)



5.5 Simulation Results 87

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR (dB)

S
p

e
e

d
 C

R
B

 (
m

/s
e

c
)

 

 
2x2 NLOS

2x2 Multipath

Figure 5.2: Speed CRB vs SNR, various environments

The position and speed RMSE are defined as:

RMSEp =
√
σ2
x̃0

+ σ2
ỹ0

=
√
tr([J−1](1:2,1:2)) (5.35)

RMSEsp =
√
σ2
υ̃x

+ σ2
υ̃y

=
√
tr([J−1](3:4,3:4)) (5.36)

It can be noticed that the estimation error is very small even for a strictly
NLoS environment. Moreover, if the NLoS signal components are considered
along with the LoS component, the position RMSE is significantly reduced
(e.g. 40% at 10dB) and speed estimation becomes feasible. In figure 5.3 the
effect of increasing the number of antennas on position accuracy is depicted,
for the Multipath environment only. For a MISO system, RMSEp < 1m for
SNR > 11dB, while a 2 × 2 system can achieve the same accuracy with an
SNR of 3dB. The effect is similar for the other two environments, however
position is not identifiable for a MISO system in a NLoS environment.

Finally in figure 5.4, the position’s RMSE as a function of the MT speed
is plotted. It can be seen that the movement of the MT has a huge impact
on localization accuracy, especially for the NLoS environment, where the
error is reduced by more than 50% when the speed is increased to 2m/sec,
largely independently of the direction of movement. In the figures we can
notice that for the 2 × 4 system, RMSEp is less than 1m and RMSEsp is
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less than 0.1m/sec for SNR ≥ 5.5dB. The great enhancement in perfor-
mance due to the increase in transmitting antennas (while keeping the same
transmitting power) is obvious. Approximately the same enhancement can
be alternatively achieved by doubling the time samples Nt, instead of nt.
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Chapter 6

Mobile Terminal Tracking
for MIMO-OFDM systems

6.1 Introduction

In contrast to the localization methods presented in the previous chapters,
the algorithm presented herein estimates solely the magnitude and direction
of speed1, thus the characterization “tracking”. Moreover, this algorithm
is quite different from the aforementioned methods, since it utilizes double
directional model (DDM) in its more generic version, as described in sec-
tion 1.5.1. The major advantage of using the DDM is that no assumption
on the scattering environment (number of bounces) is made. The major
disadvantage is that many new nuisance parameters appear in this channel
representation (see eq. (6.1) below) and on top of that, it is not possible to
express all of these nuisance parameters explicitly as a function of the MT
location. This is exactly the reason why the proposed algorithm is used to
estimate only the speed vector.

Hnr×nt(f, t) =
1√
srst

Φnr×sr(t)Pr(Θsr×st ⊙ Dsr×st(f))PtΨst×nt(t) (6.1)

Although this algorithm is presented last, it was our first attempt to solve
the NLoS localization problem. It was originally published in [72]. As will be

1Speed components are assumed to be constant.
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shown in the simulation results section, this algorithm requires multiple an-
tennas at both ends (preferably more than 2), in order to exploit thoroughly
the space dimension and overcome the difficulty of estimating the speed vec-
tor in the presence of numerous nuisance parameters. MIMO systems have
attracted much interest from an information-theoretic perspective, as it was
proved that they increase the capacity linearly with the number of anten-
nas [74]. This work illustrates the huge advantage of MIMO when used for
MT localization. Specifically, antenna arrays have been extensively used in
the past for estimating the AoA and/or the AoD. This utility of MIMO
systems will play a key role in the proposed tracking method.

6.2 Bayesian Estimation of the Speed Vector

We consider herein the estimation of the magnitude υr and the direction ωr
of the MT speed via the transmission of a training sequence. The training
sequence transmitted by the BS and received by the MT, consists of a set of
N orthogonal sub-vectors of size nt each and is assumed to be transmitted
within the channel’s coherence time T 2. Each sub-vector is given by xl =
[0t(l−1), x,0

t
(nt−l)]

t , l = 1, . . . , N , where x is the training symbol which

is known at the receiver. This training sequence was derived in [75] and
was proved to maximize the capacity, when used for channel estimation in
MIMO-OFDM systems with cyclic prefix.

The discrete-time model describing the io relationship of a time-variant
frequency-selective MIMO channel is given by eq. (1.65), which we rewrite
here for reference:

Y(fk, tl) = H(fk, tl)X(fk, tl) + N(fk, tl). (6.2)

Without loss of generality we will choose N = nt and the training symbol
x = 1 so that the input training matrix is X = Int . This reduces (6.2) to
the simpler form:

Y(fk, tk) = H(fk, tl) + N(fk, tl). (6.3)

To formulate an estimator, we define first the joint conditional density of all

2We assume that the random matrices composing H, do not change within T and
choose to send a set of orthogonal training sub-vectors x that span the column space of
the MIMO matrix during this interval.
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received matrices

f({Y11 . . .YNfNt}|{H11 . . .HNfNt})
∆
= f(SY|SH)

=

Nf∏

k=1

Nt∏

l=1

1

(πσ2)nrnt
e−

|Y(fk,tl)−H(fk,tl)|
2

σ2

=

Nf∏

k=1

Nt∏

l=1

nt∏

p=1

nr∏

q=1

1

(πσ2)
e−

|yp,q(fk,tl)−hp,q(fk,tl)|
2

σ2 (6.4)

Using this density, an ML estimator for the speed vector pυ = [υr, ωr]
t, will

be formulated. The ML estimator is actually equivalent to the Maximum a-
Posteriori (MAP) estimator, if uniform a-priori distributions are assigned to
the speed and the direction. Let pint denote the parameters of interest and
let pnuis be the vector of all the rest unknown parameters in H (nuisance
parameters). These two vectors will be explicitly defined later. For the time
being it suffices to state that pnuis = [θ, p̃nuis], where θ = vec(Θ) and Θ,
along with all the other matrices composing each H(fk, tl), are defined in
section 1.5.1. Under the Bayesian framework [45], we can infer on the a-
priori distributions of all the random variables composing the entries of H,
therefore also composing pnuis. Specifically the pmf of the number of scat-
terers srt ∈ {sr, st} at both sides will be P [srt = Srt] = 1

NfNt
. This choice is

justified by the fact that using Nt time samples and Nf frequency samples,
at most NfNt scatterers can be identified. The priors of the continuous
random variables ∀q = 1, . . . , nr, i = 1, . . . , sr, j = 1, . . . , st, p = 1, . . . , nt,
are given below:

ωr, ωt, φqi, β
r
qi, ψjp, β

t
jp ∼ U [0, 2π] (6.5)

υr ∼ U [0, υrmax] , υt ∼ U [0, υtmax] (6.6)

τij ∼ U [0, τmax] , θij ∼ CN (0, 1) (6.7)

prii ∼ U [0, prmax] , p
t
jj ∼ U [0, ptmax] (6.8)

The fact that most parameters are uniformly distributed stems from the
fact that no assumptions on the environment have been made. The uni-
form distribution is the least-informative one and thus expresses this lack
of knowledge of the propagation setting. The complex Gaussian distribu-
tion for the θ, was derived in [42] using the principle of maximum entropy
(ME) and assuming knowledge of the 2nd order statistics of the channel.
According to ML estimation,

p̂int = argmax
pint

f(SY|pint) (6.9)



94 Chapter 6 Mobile Terminal Tracking for MIMO-OFDM systems

where f(SY|pint) is the joint density of all the received data matrices Y(fk, tl)
conditioned only on the parameters of interest. We can obtain this density
by marginalizing over all the nuisance parameters, according to:

f(SY|pint) =

∫

A
f(SY|SH) · f(pnuis)dpnuis (6.10)

since f(SY|SH) = f(SY|pint,pnuis). Let A denote the vector space where
the vector pnuis lies. f(pnuis) is the product of the a-priori densities of all
nuisance parameters, some of which are conditioned on sr, st or both. Since
all the parameters, except θ, are uniformly distributed, we can write:

f(pnuis) = O(sr, st)e
−θ†θ (6.11)

We can proceed by marginalizing over the Gaussian vector θ as follows:

f(SY|pint) =

∫

Ã

∫

Csrst
f(SY|pint,pnuis)f(pnuis)dθdp̃nuis

=

∫

Ã

∫

Csrst

∏

k,l,p,q

(
1

(πσ2)
e−

|yp,q(fi,tj)−hp,q(fi,tj)|
2

σ2

)
O(sr, st)e

−θ†θdθdp̃nuis

=

∫

Ã

∫

Csrst

M∏

m=1

(
1

(πσ2)
e−

|ym−
∑S
s=1 cm,sθs|

2

σ2

)
e−

∑S
s=1 |θs|2dθO(sr, st)dp̃nuis

=

∫

Ã
JθO(sr, st)dp̃nuis (6.12)

where p̃nuis lies on a space Ã that depends on the priors and the vector
θ lies on Csrst . In the second equality above we used the fact that according
to the DDM channel matrix representation, each one of its entries hp,q(fk, tl)
can be expressed as:

hp,q(fk, tl) =
1√
srst

sr∑

i=1

st∑

j=1

priiφpi(tl)ψjq(tl)p
t
jjdij(fk)θij

=

sr∑

i=1

st∑

j=1

cpqij(fk, tl)θij =
S∑

s=1

cm,sθs (6.13)

where, for ease of notation, we introduced the subscript m = 1, . . . ,M
to replace the dependency on p, q, k, l and the subscript s = 1, . . . , S to

replace ij. Obviously, M = NfNtntnr and S = srst. Introducing cm
∆
=

[cm,1, . . . , cm,S ]t, c′m
∆
= ymc∗m and Cm

∆
= c∗mctm we can show that:

e−
1
σ2 |ym−∑S

s=1 cm,sθs|2 = e−
|ym|2

σ2 e−
1
σ2 [−c′

†
mθ−θ†c′m+θ†Cmθ] (6.14)
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To further simplify our notation, we will use the subscript “all” to denote
a vector or matrix that is equal to the sum of all M vectors or matrices,
respectively, which are denoted by the same symbol. After substituting the
r.h.s. of (6.14) in Jθ we can proceed as follows:

Jθ =

∫

Csrst

1

(πσ2)M
e−

1
σ2

∑M
m=1 |ym|2e−

1
σ2

∑M
m=1[−c′

†
mθ−θ†c′m+θ†Cmθ]e−θ

†θdθ

=
1

(πσ2)M
e−

1
σ2 y†y

∫

Csrst
e
− 1
σ2

[
−c′

†
all
θ−θ†c′all+θ†Callθ+σ

2θ†θ
]

dθ (6.15)

where the data vector y = [y1, . . . , yM ]t contains all the received signal val-
ues, over different time and frequency samples in different receiving anten-
nas and for different transmitted training vectors. Also Call =

∑M
m=1 Cm =∑M

m=1 c∗mctm is an S × S Hermitian matrix of rank r = min{M,S}. Let
C′

all = Call + σ2I. C′
all is also a Hermitian matrix of rank S (full rank).

Therefore it’s inverse exists and is also Hermitian and positive definite. Us-
ing this fact we can integrate over θ and get an explicit expression for Jθ:

Jθ =
det(C′−1

all )

(πσ2)(M−S)
e−

1
σ2 y†ye

1
σ2 (c′†

all
C′−1
allc

′
all)

=
1

(πσ2)(M−S)
det((C∗

GCt
G + σ2I)−1)e−(y†(Ct

GC∗
G+σ2I)−1y) (6.16)

where we have introduced the S ×M matrix CG :

CG =




↑ . . . ↑
c1 . . . cM
↓ . . . ↓


 (6.17)

and we have applied the matrix inversion lemma. After careful inspection
we can write CG as 3

CG =
[

CL,(1,1) . . . CL,(Nf ,Nt)

]
(6.18)

with each submatrix given by :

CL,(k,l) = diag(dk)(Ψ̄l ⊗ Φ̄t
l) (6.19)

and dk = vec(D(fk)), Ψ̄l = PtΨ(tl) and Φ̄t
l = Φ(tl)Pr. From (6.18) and

(6.19) the dependency of CG on p̃nuis becomes apparent. Substituting Jθ
3This representation is not unique. By permuting the rows and/or the columns we

get S!M ! equivalent representations but we should permute the elements of y as well.



96 Chapter 6 Mobile Terminal Tracking for MIMO-OFDM systems

in f(SY|pint) we finally obtain:

f(SY|pint) =

∫

Ã
O′(sr, st)det((C∗

GCt
G + σ2I)−1)e−(y†(Ct

GC∗
G+σ2I)−1y)dp̃nuis

(6.20)
Furthermore if we consider that Nf = 1, the r.h.s. of eq. (6.20) does
not depend on τ either. This is not surprising, since if Nf = 1 we can
replace (Θsr×st ⊙ Dsr×st(f)) with a new matrix Θ′

sr×st that has the same
distribution.

Notice that so far no explicit categorization of the parameters has been
made (except from the unknown amplitudes contained in θ that are nuisance
parameters). One can define pint to contain just the parameters that need
to be estimated for tracking the mobile, namely the speed magnitude and
direction, or even choose to include some nuisance parameters and jointly
estimate all. Whether the Bayesian estimation, based on the marginal pdf,
or the joint estimation will yield better results is not trivial to show an-
alytically. Marginalization would require integration over a subspace with
many dimensions and is not guaranteed to always result in high accuracy.
On the other hand, joint estimation would lead to an algorithm with very
high computational complexity, since we would need to keep track of a mul-
tivariate density. We choose to sacrifice optimality for efficiency and do a
step-by-step Bayesian estimation by recognizing that the AoA φ and the
AoD ψ must be estimated prior to or jointly with υr and ωr for the track-
ing method to give accurate results. The proposed algorithm for a MIMO
system is summarized below:

• Set pint = [sr,φ], p̃nuis = [st,ψ,p
r,pt] and use (6.20) to find the

AoA, using only one observation, Nf = Nt = 1.

• Set pint = [st,ψ], p̃nuis = [sr,φ,p
r,pt] and use (6.20) to find the

AoD, using only one observation, Nf = Nt = 1.

• Set pint = [υr, ωr], p̃nuis = [υt, αt,p
r,pt, τ ] and use (6.20) to estimate

our true parameters of interest, using all observations.

The reason for using only spatial (and no temporal) information to estimate
AoA and AoD is that the terms due to the Doppler frequency shift cancel
out of the expression (this is why υr, ωr, υt, ωt are not contained in p̃nuis)
leading to fewer nuisance parameters, therefore easier implementation and
higher estimation accuracy. This is essentially an ML estimator for direction
finding. Instead of implementing this ML algorithm in steps one and two
of the above method, subspace-based algorithms like the ones in [24], [25]



6.3 Simulation Results 97

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10

12

14

16

18

x 10
−3

u
r
 (m/sec)

−
1

/l
n

(P
(S

Y
|u

r))

 

 

2x4

2x2

1x1

Figure 6.1: Log-likelihood for speed magnitude estimation at high SNR

could be employed. For a system with a single transmit and a single receive
antenna (SISO), only the third step can be implemented, since the channel
matrix reduces to a scalar that does not depend on angles.

6.3 Simulation Results

In most practical scenarios of interest, the BS is fixed. We will therefore
assume that υt = αt = 04. We further assume that the main lobe of the
transmitting and the receiving antenna array is steered to a direction per-
pendicular to the array and has a beamwidth of 180o. The energy of the
signal components transmitted to or received from other directions is negli-
gible. This implies that the AoA and the AoD are either in [−π/2, π/2] or
in [π/2, 3π/2]. The power gains of the steering directions are also assumed
to be known, i.e. calibration has preceded the estimation procedure. To
compute the value of the multidimensional integral in (6.20), Monte Carlo
simulations have been performed. Normally 100 iterations are enough for
the algorithm to converge to the true density. To make our graphs more
clear and emphasize our results, we have plotted the 1-dimensional normal-
ized log-likelihoods − 1

ln f(SY|υr) and − 1
ln f(SY|ωr) as a function of υr and ωr,

4Or υr = αr = 0 if we had considered transmission in the uplink.
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Figure 6.2: Log-likelihood for speed direction estimation at high SNR

respectively, for different nr × nt systems. In other words, once we derive
the 2-dimensional log-likelihood f(SY|pυ) we marginalize it further, just for
demonstration purposes. The vertical dashed line in the figures depicts the
true value of the estimated parameter (υr or ωr).

In figures 6.1 and 6.2 the advantage of MIMO over SISO at high SNR
(20dB) is clearly illustrated. With just one antenna at each side of the
communication link, it is impossible to track the mobile. With as many as
2 antennas at each side, the estimation error becomes already very small.
In figures 6.3 and 6.4 we show that even with noisy measurements (SNR=
10dB), υr and ωr can be estimated correctly in a 4 × 4 and a 2 × 8 system.
On the other hand in a 2 × 2 or a 2 × 4 system our parameters of interest
are slightly misestimated at low SNR as shown in figure 6.5. As expected,
decreasing the SNR or the number of antennas leads to an increase of the
estimation error. It further results in a second peak in the log-likelihood
corresponding to ωr. This stems from the fact that our expression (r.h.s. of
6.20) depends on ωr only through its cosine and cos(φl − ωr) = cos(ωr −
φl), ∀l. Thus if there exist AoA that cannot be estimated in the first 2 steps
of the algorithm (SISO case or MIMO with just a few antennas) or if their
effect cannot be removed successfully by integration (very noisy estimates),
this ambiguity cannot be resolved. These results illustrate clearly that when
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Figure 6.3: Log-likelihood for speed magnitude estimation at various SNR
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Figure 6.4: Log-likelihood for speed direction estimation at various SNR
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Figure 6.5: Log-likelihoods for speed magnitude and direction estimation at
low SNR

a complex model like the DDM -and not its simplified version that assumes
single-bounces and distinct paths- is used, one should seek solutions that
utilize MIMO systems, which operate at high SNR and are equipped with
large number of antennas at both ends. These requirements must be fulfilled
in order to be able to localize (or more precisely to track) the MT.



Chapter 7

Conclusions and Future
Work

Conducting research in the wider area of parameter estimation and in the
more narrow area of localization, has undoubtedly been fruitful. Many re-
sults have been obtained, including but not limited to algorithms based on
closed-form solutions, performance bounds, theorems on identifiability and
performance for the problems of estimating parameters of interest in the
presence of nuisance parameters. Furthermore many intuitive conclusions
have been reached. We will try to summarize these conclusions below:

• “Traditional” geometrical localization methods that utilize the wireless
network infrastructure, can not achieve sufficient accuracy when the
signal propagates in NLoS environments. One needs to choose between
fingerprinting and advanced geometrical methods.

• Choosing between fingerprinting and advanced geometrical methods
is still under investigation. The two approaches are fundamentally
different and thus it is difficult to compare them taking into account
performance, complexity, cost for the user and cost for the provider.
Under the assumptions made in this work, low-complexity geometrical
localization algorithms (eg. LS) were derived, rendering this approach
the most appealing.
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• Within the geometrical methods framework, there also exist two fun-
damentally different approaches to attack the NLoS localization prob-
lem. The first approach introduces some errors that are induced from
the NLoS propagation and tries to mitigate them. The second one in-
troduces a more accurate but also more complex representation of the
environment and thus leads to new unknown parameters. These nui-
sance parameters need to be eliminated or jointly estimated. Choos-
ing between these two approaches, creates a performance-complexity
trade-off. The second approach leads to improved accuracy at the cost
of increased complexity. On the other hand, in the first approach at
least some for the communications links must be LoS for the estimates
to be accurate. Due to the non-satisfactory performance of the first
approach in strictly NLoS environments, we focused our study on the
second approach and searched for appropriate channel models.

• Choosing an appropriate -for NLoS localization- channel model, is still
an open issue. Making too many assumptions on the environment leads
to simplistic models, which in turn leads to powerful localization al-
gorithms. However, their applicability is limited. On the other hand,
using generic models leads to a very high-dimensional parameter esti-
mation problem that is cumbersome to solve. Even when it’s solved,
either the performance is low or the complexity incredibly high. Com-
bining this with the previous remark, it becomes obvious that there
is actually a performance-complexity-applicability trade-off. Overall,
we believe that the best way to attack the NLoS localization problem
is to start with a simple model and try to generalize it. We therefore
consider the SBM to be an excellent solution, that simplifies analysis
without being unrealistic.

• On top of choosing an appropriate channel model, if the channel is
time-varying, one should choose an appropriate mobility model. Sim-
ilar conclusions as before can be reached for the choice of mobility
model. We again strongly believe, that if an attempt to exploit the
information in the time-variation of the LDP is made, a rather simple
model should be used. It suffices to say that exploiting this new di-
mension, namely the variation in time, leads to a huge improvement
in performance (and identifiability), at the cost of increased complex-
ity that depends on the mobility model. Constant-speed and constant
acceleration models have been proved to be good candidates.
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• Depending on the model introduced, there exist several different kinds
of LDP that the researcher must chose from and utilize in the localiza-
tion algorithm. Of course choosing all available LDP results in higher
accuracy at a marginal increment of complexity. However, not always
all possible LDP are available and/or not always all the LDP estimates
are trustworthy. We attacked the NLoS problem assuming lack of an-
gle information at the MT (lack of AoA if DL is considered), which
is a case of great practical interest. We showed that localization is
feasible even for that scenario. One LDP that we have intentionally
ignored in our work, is the RSS. Despite the fact that it is available
in almost all existing systems, it can barely lead to any improvement
if accurate ToA estimates are available.

• Identifiability and performance are related, when both are derived us-
ing the CRB. We studied both and this enabled us to classify estima-
tors that utilize different kinds of LDP, based on whether they render
the parameters identifiable or not and based on their performance with
respect to the best achievable performance.

• In multipath environments, exploring the LDP of the MPC addition-
ally to exploring the LDP of the LoS component, can enhance accuracy
of the SBM-based localization methods.

• In the absence of knowledge on the priors of the unknown parameters,
the least informative, which are the uniform ones, should be assumed.
A MAP estimator then becomes equivalent to a ML estimator.

• The relative performance of choosing between elimination (marginal-
ization) or joint estimation (maximization) of the nuisance parameters
is still an open issue. We chose the former for cases when the nuisance
can be easily integrated out of the likelihood and the latter for all
other cases.

• Once the localization method has been defined, algorithms for obtain-
ing the estimates can be derived and implemented. Independently of
the choice of the algorithm, the best attainable performance for the
defined method can be determined, using theoretical bounds like eg.
the CRB. This is of great value, since it enables the researcher to get
an overall idea on what accuracy to roughly expect. The actual per-
formance of any algorithm used for a specific method, along with the
bounds for the method’s performance depend on 3 factors:
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– The standard deviation of the LDP estimates, or equivalently,
the SNR (and the BW) of the received signal.

– The number of data samples (LDP estimates), which depends on
the observation duration and the sampling rate.

– The geometric configuration of the environment.

We have studied extensively the impact, of all of these factors, on
the CRB of NLoS localization methods. This enables us to be able
to recognize -almost immediately- the scenarios under which a NLoS
localization method can output meaningful estimates.

• MIMO-OFDM was certainly not a random choice. Besides being
the technology adopted for 4-G wireless communications, it has cer-
tain benefits for localization algorithms. To start with, MIMO sys-
tems, having multiple antennas at both ends, can exploit the space
dimension for direction finding. OFDM signals on the other hand,
due to the cyclic prefix, can transform a frequency-selective channel
into a group of parallel frequency-flat channels. This essentially en-
ables us to write the discrete time-frequency io relation as Y(fk, tl) =
H(fk, tl)X(fk, tl)+N(fk, tl). This was a key relation in deriving a 4D
Unitary ESPRIT algorithm for the estimation of the LDP from the
received signal. Furthermore, using the SBM model to parameterize
H(fk, tl), this also proved to be a key relation in deriving the DLE
algorithm.

• DLE is a method that combines the 2 steps of localization methods into
1. By doing so, it takes advantage of the fact that all LDP estimates
correspond to the same MT location. While 2-step approaches can
asymptotically - for high SNR and sufficient number of data samples-
achieve the CRB, in (rapidly) time-varying environments this can not
always assumed to be the case. We therefore find the DLE an attrac-
tive solution for such environments.

It’s true that there are still many questions that need to be answered and
many uninvestigated issues that need to be addressed, in order to formulate
a complete solution for the NLoS localization problem. A few rather trivial
extensions of the work presented in this document, include but are not
limited to the following:

• Redefine the same methods for 3D environments. Introduce the new
LDP, like the elevation angle and the new unknown parameters, like
the position and speed components on the z-axis.
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• Introduce the RSS as an available LDP for the cases when ToA es-
timates have limited resolution due to eg. small BW. Redefine the
same methods in a way that the path lengths estimates come from
RSS measurements. New nuisance parameters, like eg. the path-loss
exponent should then be considered.

• Introduce TDoA as an alternative to ToA for the cases when there is
no synchronization between the MT and the BS. Define new methods
and derive closed-formed solutions.

• Compare the 2 different approaches for localizing in NLoS environ-
ments, the one based on channel modeling with the one that attempts
to mitigate the errors in the NLoS components.

• Design and implement algorithms, like EM, to solve the ML optimiza-
tion problem.

• Investigate further the elimination vs joint estimation choice for the
nuisance parameters. Prove why one is preferable over the other for
the location estimation problem.

• Study the degradation in the performance of the 1st step of localization
and in the performance of the DLE method due to non-calibrated
arrays.

• Extend the study on the impact of network geometry to the DSBM
case. Investigate how the location of the scatterers and the BS rela-
tively to the direction of speed affects the performance of DSBM-based
methods.

• Improve and complete the ToA/AoD/DS localization method of chap-
ter 3. Improvement is necessary for the method to perform accurately
with noise-impaired LDP estimates.

• Derive the CRB for the 4D Unitary ESPRIT and compare it with the
actual performance.

• Simulate the actual RMSE for the SBM-based DLE method and com-
pare it with the CRB.

• Compare the DSBM method with a method that utilizes SBM and
then uses filtering (KF, EKF etc) to improve performance.
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More important than extending the results obtained so far is to generalize
the SBM (DSBM) method and broaden its applicability. After all, the main
objective of this work, has always been to derive a method with excellent
performance in real propagation environments. So at this point, although
the argument supporting the single-bounce assumption is valid, we are forced
to respond to the question:

“Can SBM be utilized when the signal components have bounced more
than once?”

Surprisingly enough, the answer is: “Yes”. After careful thought, it
occurred to us that the SBM can be used to describe any environment
by introducing the concept of “virtual scattering”. Without getting into

details, it suffices to say that introducing an unknown bias τ̃0 ∈ R only

for the ToA measurements and possibly an orientation offset ψ̃0 ∈ {0, π}
only for the AoD estimates, will render the SBM capable of describing any
environment while increasing the complexity only slightly compared to using
generic channel models. This is exactly why we advocate above that the best
way to attack the NLoS localization problem is to start with a simple model
and try to generalize it.
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Appendix A

Matrix Algebra and
Statistics

Useful equalities and inequalities between random and/or deterministic vec-
tors and matrices are provided below. Some of these are standard rules
that can be found in textbooks, like eg. [76] while the others can be easily
proved. Following the rules indicated in the Index of Symbols, if a matrix
A is defined, aij will denote its {i, j} entry and a = vec{A}. Similarly,
at = vec{At}. If a vector a is defined, ai will denote its ith entry and
A = diag{a}.

• |A|2 = tr{AA†} = a†a

• Ab = (I ⊗ bt)at

• (a ⊙ b)(ct ⊙ dt) = act ⊙ bdt

• 1 ⊗ AB = (1 ⊗ A)B

• Ab ⊗ Cd = (A ⊗ Cd)b = (Ab ⊗ C)d

• Ab ⊙ c = CAb

• B ⊙ act = ABC

Now let a ∼ N (0, σ2I). It follows that
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• E{A} = O

• E{ABA} = σ2B ⊙ I

• E{ABACA} = O

•

E{ABACADA} = σ4 [(B ⊙ I)C(D ⊙ I)

+B ⊙ Ct ⊙ D(B ⊙ (C ⊙ I) ⊙ D) ⊙ I + 3(B ⊙ I)(C ⊙ I)(D ⊙ I)
]

Similarly if a ∼ N (m, σ2I). It follows that

• E{A} = M

• E{ABA} = σ2B ⊙ (σ2I + mmt)



Appendix B

Mapping of a tangent
y = tan(x) to its argument

It’s a well known fact that the inverse trigonometric functions satisfy the
injection (one-to-one) property only if their ranges are a subset of the do-
mains of the original trigonometric functions. For the case of the inverse
tangent, its range is usually restricted to a principal branch of −π

2 < x ≤ π
2 .

We can extend this principal branch to −π < x ≤ π, if we utilize the sign
of cos(x), since it is positive in the right half plane and negative in the left
one. We can therefore write for the mapping of a tangent y = tan(x) to its
argument

x =
π

2
(1 − sgn{cos(x)}) + tan−1(y) (B.1)
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Appendix C

Mapping of Complex to Real
Matrices

In this section we briefly explain how to map a complex matrix into a real
one. For more details within the ESPRIT context the interested reader can
refer to [51] where the authors restate the results originally published in [77].

Let Π denote the permutation matrices obtained by reversing the order
of the rows of I, eg.

Π =




1
1

1
1


 . (C.1)

A complex matrix Ā ∈ C
m×n is called Centro-Hermitian if

ΠmA
∗Πn = A. (C.2)

A complex matrix Q ∈ C
m×n is called left Π-real if it satisfies

ΠmQ
∗ = Q. (C.3)
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The following unitary matrices

Q = 1√
2

[
I jI
Π −jP i

]
(C.4)

Q = 1√
2




I 0 jI

0t
√

2 0t

Π 0 −jΠ


 (C.5)

are typical examples of left Π-real of even and odd order respectively. From
any complex matrixA ∈ C

m×n, we can construct a Centro-Hermitian matrix
Ā ∈ C

m×2n as follows
Ā = [A ΠmAΠn] . (C.6)

Subsequently, we can map the Centro-hermitian matrix Ā to a real one ¯̄A,
by using two arbitrary non-singular left Π-real matrices,

¯̄A = Q†
mĀQ2n. (C.7)



Appendix D

Optimal Weighting Matrix
for SBM WLS

In the WLS formulation and solution presented in section 3.2 we have omit-
ted the hats (̂·) of all symbols denoting estimates for clarity. Herein, since
we are interested in deriving the covariance matrix of vector b̂, true values
and estimates will be involved in the expressions. So we need to replace b
in eq. (3.21) with b̂ = b + b̃ and rewrite it so that any symbol representing
an estimate has a (̂·) as follows:ting an estimate has a (̂·) as follows:

b̂ =




(D̂Ĉψ + Xbs)Ĉφ1

(D̂Ŝψ + Ybs)Ŝφ1

(D̂Ŝψ + Ybs)Ĉφ1

(D̂Ĉψ + Xbs)Ŝφ1




∆
=




b̂1

b̂2

b̂3

b̂4


 (D.1)

To compute C
b̂

= C
b̃
, the prior distributions of the LDP estimates (or

errors) are required. In the ML estimator presented in section 1.8 it was
assumed the vector θ̃ containing the errors of all available LDP estimates, is
distributed according to θ̃ ∼ N (0,C

θ̃
) (assumption A). However, in chapter

2, an ESPRIT-based algorithm that estimates the delays, the DS and the
sines of the AoA and the AoD, was derived. Therefore, instead of considering
the errors of the angles to be Gaussian distributed, we could alternatively
consider the errors in the estimates of their trigonometric functions to be
Gaussian distributed (assumption B). Independently of the choosing A or
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B, we will assume that LDP estimates of the same kind are i.i.d. and are
also independent of the LDP estimates of other kinds.It follows that for
assumption A

d̃ ∼ N (0, σ2
dI) ⇔ d̂ ∼ N (d, σ2

dI) (D.2)

φ̃ ∼ N (0, σ2
φI) ⇔ φ̂ ∼ N (φ, σ2

φI) (D.3)

ψ̃ ∼ N (0, σ2
ψI) ⇔ ψ̂ ∼ N (ψ, σ2

ψI) (D.4)

and thus for the trigonometric function of the errors in the AoA estimates
we have

E{s̃φ} = 0 (D.5)

E{c̃φ} ≈ (1 − σ2
φ

2 )1
∆
= mcφ (D.6)

Rs̃φ = Cs̃φ = 1
2I (D.7)

Rc̃φ = (mcφ − m2
cφ

)I +m2
cφ

11t (D.8)

Cc̃φ = (mcφ − m2
cφ

)I (D.9)

The mean value and the correlation matrix of the trigonometric functions of
the AoD are given by replacing σφ with σψ and mcφ with mcψ in the equa-
tions above. If assumption B is made, i.e. if it is assumed that trigonometric
functions are estimated directly, then

E{s̃φ} = 0 (D.10)

E{c̃φ} = 0 (D.11)

Rs̃φ = Cs̃φ = σ2
sφ

I (D.12)

Rc̃φ = Cc̃φ = σ2
cφ

I (D.13)

and similarly for the AoD by replacing the variances corresponding to the
AoA with the ones corresponding to the AoD. We will first proceed with
the computation assuming B is true. As can be seen from eq. (D.1), b̃
is composed of 4 subvectors b̃i. Under assumption B, E{b̃i} = 0 , ∀i. To
avoid repeating the same derivation for the cross-covariances of all pairs
of subvectors, lets define the matrices Qφ,Q

′
φ ∈ {Sφ,Cφ} and Qψ,Q

′
ψ ∈

{Sψ,Cψ}, along with their estimates and the error of their estimates and
also Zbs,Z

′
bs ∈ {Xbs,Ybs}. We can now derive simultaneously the solution

for all submatrices of C
b̃
, since, with the aid of these matrices any b̂i can

be written as

b̂i = (D̂Q̂ψ + Zbs)Q̂φ1. (D.14)
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Substituting each matrix of LDP estimates by the sum of a matrix of LDP
true values and a matrix of errors, we get

b̂i = (DQψ + Zbs)Qφ1 + (D̃Qψ + DQ̃ψ + D̃Q̃ψ)Qφ1 + (D̂Q̂ψ + Zbs)Q̃φ1.
(D.15)

From this equation it becomes obvious that

b̃i = (D̃Qψ + DQ̃ψ + D̃Q̃ψ)Qφ1 + (D̂Q̂ψ + Zbs)Q̃φ1

≈ (D̃Qψ + DQ̃ψ)Qφ1 + (D̂Q̂ψ + Zbs)Q̃φ1. (D.16)

It is straightforward to show that for i = i′

C
b̃ib̃i

= C
d̃
⊙ (QψQφ11tQφQψ) + Cq̃ψ ⊙ (DQφ11tQφD)

+R
d̂
⊙ Rq̂ψ ⊙ Cq̂φ + DQψCq̂φZbs + ZbsCq̂φQψD + ZbsCq̂φZbs ,(D.17)

for Qψ = Q′
ψ, i.e. when (i, i′) ∈ {(1, 4), (4, 1), (2, 3), (3, 2)}

C
b̃ib̃i′

= C
d̃
⊙ (QψQφ11tQ′

φQψ) + Cq̃ψ ⊙ (DQφ11tQ′
φD), (D.18)

for Qφ = Q′
φ, i.e. when (i, i′) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)}

C
b̃ib̃i′

= C
d̃
⊙ (QψQφ11tQφQ

′
ψ) + DQψCq̃φZbs

+ZbsCq̃φQ
′
ψD + ZbsCq̃φZbs (D.19)

and last for (i, i′) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}, C
b̃ib̃i′

= O. Using these

submatrices, C
b̃

can be constructed and thus optimal weighted least squares
can be applied to solve eq. (3.21).
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Appendix E

CRB for NLoS Static
Environments

To compute the entries of G lets introduce some key variables

Dmts
∆
= ((Ys − ymtI)

2 + (Xs − xmtI)
2)

1
2 (E.1)

Dbs
∆
= ((Ys − Ybs)

2 + (Xs − Xbs)
2)

1
2 (E.2)

cz
∆
= [cos(z1), . . . , cos(zNs)]

t (E.3)

sz
∆
= [sin(z1), . . . , sin(zNs)]

t (E.4)

where the last two vectors are defined for every vector z that contains angles.
If the MT communicates only with 1 BS through a multipath environment,
then Ybs = ybsI and Xbs = xbsI. Lets further define the vectors and matrices
containing partial derivatives

Dxs
∆
= ∂dt

∂xs
= Cφ + Cψ (E.5)

Dys
∆
= ∂dt

∂ys
= Sφ + Sψ (E.6)

dtx
∆
= ∂dt

∂xmt
= −ctφ = −1tCφ (E.7)

dty
∆
= ∂dt

∂ymt
= −stφ = −1tSφ (E.8)
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Φxs
∆
= ∂φt

∂xs
= −SφD

−1
mts (E.9)

Φys
∆
= ∂φt

∂ys
= CφD

−1
mts (E.10)

φtx
∆
= ∂φt

∂xmt
= stφD

−1
mts = 1tSφD

−1
mts (E.11)

φty
∆
= ∂φt

∂ymt
= −ctφD

−1
mts = −1tCφD

−1
mts (E.12)

Ψxs
∆
= ∂ψt

∂xs
= −SψD−1

bs (E.13)

Ψys
∆
= ∂ψt

∂ys
= CψD−1

bs (E.14)

ψtx
∆
= ∂ψt

∂xmt
= 0t (E.15)

ψtx
∆
= ∂ψt

∂ymt
= 0t . (E.16)

Based on this we can compute each of the submatrices in (3.35). J22 is
a 2 × 2 block matrix, each Ns × Ns submatrix of which is diagonal. Thus,
we can again use block inversion and the solution is very simple since it
resembles the solution of the 2 × 2 matrix inversion problem. Let

J22 =

[
J22a J22b

J22b J22d

]
. (E.17)

Then

J−1
22 =

[
J22dJ

−1
det −J22bJ

−1
det

−J22bJ
−1
det J22aJ

−1
det

]
(E.18)

where Jdet = J22aJ22d−J2
22b and the 3 different submatrices composing J22

are given by:

J22a = σ−2
d D2

xs
+ σ−2

φ Φ2
xs

+ σ−2
ψ Ψ2

xs
(E.19)

J22b = σ−2
d DxsDys + σ−2

φ ΦxsΦys + σ−2
ψ ΨxsΨys (E.20)

J22d = σ−2
d D2

ys
+ σ−2

φ Φ2
ys

+ σ−2
ψ Ψ2

ys
(E.21)

J21 = Jt12 can also be expressed as a 2 × 2 block matrix,

J21 =

[
j21a j22b
j22c j22d

]
. (E.22)

each element of which is a vector:

j12a = σ−2
d Dxsdx + σ−2

φ Φxsφx (E.23)

j12b = σ−2
d Dysdx + σ−2

φ Φysφx (E.24)

j12c = σ−2
d Dxsdy + σ−2

φ Φxsφy (E.25)

j12d = σ−2
d Dysdy + σ−2

φ Φysφy (E.26)
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Last,

J11 =

[
σ−2
d dtxdx + σ−2

φ φ
t
xφx σ−2

d dtxdy + σ−2
φ φ

t
xφy

σ−2
d dtxdy + σ−2

φ φ
t
xφy σ−2

d dtydy + σ−2
φ φ

t
yφy

]
. (E.27)

Substituting the 4 submatrices given by(E.18),(E.22),(E.27) into (3.35) we
obtain after some algebraic computations the following 4 elements for Jp:

jp11 = dtxFDdx + φtxFΦφx + 2dtxFφx (E.28)

jp22 = dtyFDdy + φtyFΦφy + 2dtyFφy (E.29)

jp12 = jp21 = dtxFDdy + φtxFΦφy + dtxFφy + dtyFφx (E.30)

where we have introduced the matrices

FD = σ−2
d I − σ−4

d

(
D2

xs
J22a + D2

ys
J22d − 2DxsDysJ22b

)
J−1
det (E.31)

FΦ = σ−2
φ I − σ−4

φ

(
Φ2

xs
J22a + Φ2

ys
J22d − 2ΦxsΦysJ22b

)
J−1
det (E.32)

F = −σ−2
d σ−2

φ (DxsΦxsJ22a + DysΦysJ22d − (DxsΦys + DysΦxs)J22b)J
−1
det

(E.33)

Replacing the vectors that contain partial derivatives into the entries of Jint,
we obtain

jp11 = 1t(C2
φFD + D−2

mtsS
2
φFΦ − 2D−1

mtsCφSφF)1 (E.34)

jp22 = 1t(S2
φFD + D−2

mtsC
2
φFΦ + 2D−1

mtsCφSφF)1 (E.35)

jp12 = jp21 = 1t
(
CφSφFD − D−2

mtsCφSφFΦ + D−1
mts(C

2
φ − S2

φ)F
)
1 (E.36)

Finally, replacing the matrices that contain the partial derivatives from
(E.5)-(E.13) into the submatrices of J22 and the matrices F and subse-
quently the results into the entries of G, we obtain

jp11 = 1t(Q′
φ+ψJ̄

−1
det)1 (E.37)

jp22 = 1t(Qφ+ψJ̄
−1
det)1 (E.38)

jp12 = jp21 = −1t(Sφ+ψJ̄
−1
det)1 (E.39)
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where

J̄det = (σ2
dσ

2
φσ

2
ψ)D2

bsD
2
mtsC

−1
I Jdet

= ((σ2
ψD

2
bs + σ2

φD
2
mts)Qφ−ψ + σ2

dQ
′
φ−ψ) (E.40)

and we have introduced

Qφ−ψ = I + Cφ−ψ (E.41)

Q′
φ−ψ = I − Cφ−ψ (E.42)

Qφ+ψ = I + Cφ+ψ (E.43)

Q′
φ+ψ = I − Cφ+ψ . (E.44)



Appendix F

Optimal Weighting Matrix
for K = 4 DSBM WLS

The results for the optimal weighting matrix derived in appendix D for the
SBM-based localization method, can be easily extended to the DSBM-based
localization method with K = 4 kinds of LDP available. We again need to
introduce hats (̂·) in our notation since both true values of LDP and their
estimates will be involved in the expressions. This time we need to replace b′

in eq. (4.12) with b̂′ = b′+b̃′ and rewrite it so that any symbol representing
an estimate has a (̂·) as follows:ting an estimate has a (̂·) as follows:

b̂′ =

[
b̂

F′
d1

]
(F.1)

To compute C
b̂′ = C

b̃′ , we will use the prior distributions of the LDP
estimates and errors introduced in appendix D and further introduce the
priors for the DS estimates and errors

f̃d ∼ N (0, σ2
fd

I) ⇔ f̂d ∼ N (fd, σ
2
fd

I) (F.2)

As before, we assume that LDP estimates (and errors) of different kind are
independent. Thus, the vector f̃d containing the errors in DS estimates is
independent of b̃ and since both have zero mean, it follows that E{f̃db̃t} =
O. Since the covariance matrix of b was derived in appendix D, it follows
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immediately that

C
b̃′ =

[
C

b̃
O

O σ2
fd

I

]
. (F.3)

Using this covariance matrix an optimal WLS solution to the DSBM-based
localization method with K = 4 kinds of LDP available, can be derived.



Appendix G

Formulation of the 2nd step
of K = 3 DSBM WLS

In this appendix we will derive eq. (4.35), i.e. we will formulate the WLS
algorithm for the 2nd step of the K = 3 DSBM-based localization algorithm.
To do so, we need to put the set of eq. (4.30) in a meaningful vector form.
Lets start with the r.h.s. and define the following vectors

bi
∆
= [bi1, . . . , biNs ]

t (G.1)

b
∆
= [bt1, . . . ,b

t
Nt

]t (G.2)

q
∆
= 1 ⊗ [q1, . . . , qNs ]

t (G.3)

pbs
∆
= 1 ⊗ [pbs1 , . . . , pbsNs ]

t. (G.4)

According to eq. (4.33)we can write

b(Ns) = −1

2
(d ⊙ d − 2(d + q) ⊙ (1 ⊗ d̂bs) − pbs)

= −(d ⊙ (
1

2
d − (1 ⊗ d̂bs)) − q ⊙ (1 ⊗ d̂bs) −

1

2
pbs)

= d ⊙ ((1 ⊗ d̂bs) −
1

2
d) + q ⊙ (1 ⊗ d̂bs) +

1

2
pbs). (G.5)

It should be noted that the subscript (Ns) is used to denote that the MT
can communicate with up to Ns BS through 1 signal component (path) for
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each BS. If the MT is communicating with just 1 BS through several MPC,
the expression for the above vector simplifies to:

b(1) = d ⊙ ((1 ⊗ d̂bs) −
1

2
d) (G.6)

From the 1st step of K = 3 DSBM WLS method, the estimates of the
distances between scatterers and the corresponding BS are given by

d̂bs = (ZtfC
−1
w PZf )

−1ZtfC
−1
w Pw

= (ZtfC
−1
w PZf )

−1ZtfC
−1
w PRt(fd ⊙ d)

= (ZtfC
−1
w PZf )

−1(1t ⊗ I)FtdR
t
tC

−1
w PRtFdd

= (ZtfC
−1
w PZf )

−1(1t ⊗ I)(Rt
tC

−1
w PRt ⊙ fdf

t
d)d

= (ZtfC
−1
w PZf )

−1(1t ⊗ I)Bf︸ ︷︷ ︸
Gf

d (G.7)

Using the above expression we can write

1 ⊗ d̂bs = 1 ⊗ (ZtfC
−1
w PZf )

−1(1t ⊗ I)Bfd

= (1 ⊗ (ZtfC
−1
w PZf )

−1)(1t ⊗ I)Bfd

= (11t ⊗ (ZtfC
−1
w PZf )

−1)
︸ ︷︷ ︸

Hf

Bfd

(G.8)

Substituting this quantity in eq. (G.5) and using the “space difference”
matrix given by eq. (4.34) we get the r.h.s of eq. (4.35)

b
∆
= Rsb(Ns) = Rs(d ⊙ (HfBfd − 1

2
d) + q ⊙ (HfBfd) +

1

2
pbs)

= Rs(d ⊙ ((HfBf −
1

2
I)

︸ ︷︷ ︸
Γf

d) + QHfBf︸ ︷︷ ︸
∆f

d +
1

2
pbs)

= Rs(d ⊙ Γfd + ∆fd +
1

2
pbs). (G.9)

or equivalently, for the case of 1 BS,

b = Rs(d ⊙ Γfd). (G.10)

To procede with the derivation of the l.h.s. lets define the matrix of time
instances Tn, which depends on the order of the mobility model n. It is
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given by

Tn =

{
[1|t], n = 1

[1|t|12(t ⊙ t)], n = 2
(G.11)

For the constant speed mobility model, the Nt × 1 vectors of the MT coor-
dinates are given by:

xmt = x01 + υxt = [1|t]
[
x0

υx

]
= T1pint,x (G.12)

ymt = y01 + υyt = [1|t]
[
y0

υy

]
= T1pint,y (G.13)

where we have introduced the vectors containing the parameters of interest
along a specific axis (eg. x-axis). Similarly for the constant acceleration
mobility model

xmt = T2pint,x (G.14)

ymt = T2pint,y (G.15)

Let

s
∆
= [s1, . . . , sNs ]

t (G.16)

c
∆
= [c1, . . . , cNs ]

t. (G.17)

From eq. (4.31-4.32) we can write

c = xbs + Cψd̂bs (G.18)

s = ybs + Sψd̂bs. (G.19)

According to eq. (4.30), each entry of xmt should be multiplied with each
entry of c and each entry of ymt should be multiplied with each entry of s,
in order to form the NtNs × 1 vector, the product of which with Rs will be
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equal to the l.h.s. of eq. (4.35)

Rs(x ⊗ c + y ⊗ c) = Rs(Tnpint,x ⊗ c + Tnpint,y ⊗ s)

= Rs((Tn ⊗ c)pint,x + (Tn ⊗ s)pint,y)

= Rs

(
[(Tn ⊗ c)|(Tn ⊗ s)]

[
pint,x
pint,y

])

= Rs([(Tn ⊗ c)|(Tn ⊗ s)]pint)

= Rs((Tn ⊗ [xbs + Cψd̂bs|ybs + Sψd̂bs])pint)

= Rs (Tn ⊗ [xbs + CψGfd|ybs + SψGfd])︸ ︷︷ ︸
A(Ns)

pint

= RsA(Ns)︸ ︷︷ ︸
A

pint

(G.20)

Again the subscript (Ns) is used to denote that the MT can communicate
with up to Ns BS through 1 signal component (path) for each BS. If the
MT is communicating with just 1 BS through several MPC, the expression
for the A(·) simplifies to:

A(1) = Tn ⊗ [CψGfd|SψGfd] (G.21)



Appendix H

Optimal Weighting Matrix
for K = 3 DSBM WLS

We derive herein the covariance matrix of b̂′, given by

b̂′ = (Γ̂f d̂ ⊙ d̂) (H.1)

where

Γf = H(Rt
tC

−1
ŵ

PRt ⊙ f̂df̂
t
d) −

1

2
I (H.2)

and the matrices composing Γf have already been defined in section 4.3.
Throughout this derivation we make extensive use of the formulas given in
app. A with referencing them. The vector b̂′ contains errors and so we can
write

b̂′ = b′ + b̃′ ⇒ E{b̂′} = b′ + E{b̃′}
where the error vector and its mean are given by

b̃′ = Γfd ⊙ d̃ + Γf d̃ ⊙ d + Γf d̃ ⊙ d̃ + Γ̃fd ⊙ d

+Γ̃fd ⊙ d̃ + Γ̃f d̃ ⊙ d + Γ̃f d̃ ⊙ d̃ (H.3)

and we have introduced

Γ̃f = H(Xr ⊙ Φ̃) (H.4)

Φ̃ = fdf̃
t
d + f̃df

t
d + f̃df̃

t
d (H.5)
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with mean

E{Γ̃f} = σ2
fd

H(Xr ⊙ I). (H.6)

It is straightforward to show that

E{b̃′} =
[
σ2
fd

DH(Xr ⊙ I)D + σ2
dΓf ⊙ I + σ2

fd
σ2
d(H(Xr ⊙ I)) ⊙ I

]
1. (H.7)

It becomes obvious that the (W)LS estimator will be biased unless we sub-
tract the mean of the error E{b̃} from b̂. Since

C
b̂′ = C

b̃′ = R
b̃′ − E{b̃′}E{b̃′t} (H.8)

we will again restrict ourselves to deriving the correlation matrix R
b̃′ of the

error vector. The product of b̃′ obtained from (H.3), with its transpose,
leads to a sum of 49 terms. Out of 49 terms, only 25 are non-zero (pairs of
terms with 1 error vector d̃ and pairs of terms with none or 2 error vectors
d̃). From these 25 terms we only need to compute the 7 covariance terms
and 9 cross-covariance terms (the other 9 cross-covariance terms are the
transposes of the ones computed). Furthermore, to reduce computations
significantly, without introducing a noticeable approximation error, we will
ignore terms that depend only on moments of order 6 or higher1 and thus
we only need to compute approximately the 6 covariance terms and the 8
cross-covariance terms. The 6 covariance terms are given by

E{ΓfddtΓtf ⊙ d̃d̃t} = σ2
dΓfddtΓtf ⊙ I (H.9)

E{Γf d̃d̃tΓtf ⊙ ddt} = σ2
dΓfΓ

t
f ⊙ ddt (H.10)

E{Γ̃fddtΓ̃tf ⊙ d̃d̃t} = σ2
dHC

Γ̃2
Ht ⊙ I (H.11)

E{Γ̃f d̃d̃tΓ̃tf ⊙ ddt} = σ2
dHC

d̃d̃t
Ht ⊙ ddt (H.12)

E{Γf d̃d̃tΓtf ⊙ d̃d̃t} = σ4
dCd4 (H.13)

E{Γ̃fddtΓ̃tf ⊙ ddt} = H(C
Γ̃2

+ C
Γ̃4

)Ht ⊙ ddt (H.14)

1Similarly we could also ignore all the terms that depend only on moments of order 4
or higher
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and the 8 cross-covariance terms are given by

E{Γfdd̃tΓtf ⊙ d̃dt} = σ2
d(Γfd1t ⊙ I)ΓtfD (H.15)

E{ΓfddtΓ̃tf ⊙ d̃d̃t} = σ2
dΓfddtE{Γ̃tf} ⊙ I (H.16)

E{Γfdd̃tΓ̃tf ⊙ d̃dt} = σ2
d(Γfd1t ⊙ I)E{Γtf}D (H.17)

E{Γf d̃dtΓ̃tf ⊙ dd̃t} = σ2
dDΓf (1dtE{Γtf} ⊙ I) (H.18)

E{Γf d̃d̃tΓ̃tf ⊙ ddt} = σ2
dΓfE{Γ̃tf} ⊙ ddt (H.19)

E{Γ̃fdd̃tΓ̃tf ⊙ d̃dt} = σ2
dCd̃t

HtD (H.20)

E{Γ̃fdd̃tΓtf ⊙ dd̃t} = σ2
dDE{Γf}d1t(Γtf ⊙ I) (H.21)

E{Γ̃f d̃dtΓ̃tf ⊙ d̃dt} = σ2
dCd̃

HtD (H.22)

where we have introduced the matrices

C
Γ̃2

= σ2
fd

(FdXr(ddt ⊙ I)XrFd + XrFdddtFdXr ⊙ I

+ (XrFdddt ⊙ I)XrFd + FdXr(ddtFdXr ⊙ I)) (H.23)

C
Γ̃4

= σ4
fd

((Xr ⊙ I)ddt(Xr ⊙ I) + Xr ⊙ ddt ⊙ Xr

+ Xr(ddt ⊙ I)Xr + 3(Xr ⊙ I)(ddt ⊙ I)(Xr ⊙ I)) (H.24)

C
d̃d̃t

= σ2
fd

(FdXrXrFd + XrFdFdXr ⊙ I

+ (XrFd ⊙ I)XrFd + FdXr(FdXr) ⊙ I) (H.25)

Cd4 = (Γf ⊙ I)11t(Γtf ⊙ I) + (ΓfΓ
t
f ) ⊙ I

+ Γf ⊙ 11t ⊙ Γtf + 3(Γf ⊙ I)(Γtf ⊙ I) (H.26)

C
d̃t

= σ2
fd

((HFdXr ⊙ D)XrFd + H ⊙ 1dtFdXr ⊙ FdXr

+ (H ⊙ 1dtFdXr ⊙ I)XrFd + HFdXr ⊙ 1dt ⊙ FdXr) (H.27)

C
d̃

= σ2
fd

((HFdXr ⊙ D)XrFd + H ⊙ 1dtFdXr ⊙ FdXr

+ (H ⊙ 1dt ⊙ FdXr)XrFd + HFdXr ⊙ 1dtFdXr ⊙ I) (H.28)

Summing up the terms give by eq. (H.9)-(H.22), we obtain C
b̂′ . The optimal

weighting matrix for the WLS solution given by eq. (4.36) is simply given
by C

b̂
= RsCb̂′R

t
s.
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Appendix I

Derivatives of LDP w.r.t.
the Unknown Parameters

In what follows we consider a dynamic environment where the MT moves
with constant speed. In such an environment, the DSBM can be utilized
to describe the most significant signal components and therefore the LDP
of the corresponding paths are given by eq. (1.27) and (1.38)-(1.40). The
computation of the partial derivatives of the AoA φ, AoD ψ, path lengths
d and DS fd is straightforward and the results are given below [66]:

∂φij
∂ysj

= −∂φij
∂y0

= − 1

ti

∂φij
∂υy

=
xsj − x0 − υxti

d2
mts,ij

(I.1)

−∂φij
∂xsj

=
∂φij
∂x0

=
1

ti

∂φij
∂υx

=
ysj − y0 − υyti

d2
mts,ij

(I.2)

∂ψij
∂ysj

=
xsj − xbsj
d2
bs,j

(I.3)

∂ψij
∂xsj

= −ysj − ybsj
d2
bs,j

(I.4)

∂ψij
∂y0

=
∂ψij
∂υy

=
∂ψij
∂x0

=
∂ψij
∂υx

= 0 (I.5)
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∂dij
∂ysj

=
ysj − y0 − υyti

dmts,ij
+
ysj − ybsj
dbs,j

(I.6)

∂dij
∂y0

=
1

ti

∂dij
∂υy

= −ysj − y0 − υyti

dmts,ij
(I.7)

∂dij
∂xsj

=
xsj − x0 − υxti

dmts,ij
+
xsj − xbsj
dbs,j

(I.8)

∂dij
∂x0

=
1

ti

∂dij
∂υx

= −xsj − x0 − υxti

dmts,ij
(I.9)

∂fd,ij
∂ysj

= −∂fd,ij
∂y0

=
fc
c

1

d
3/2
mts,ij

[υy(xsj − x0 − υxti)
2 − υx(xsj − x0 − υxti)

(ysj − y0 − υyti) ] (I.10)

∂fd,ij
∂xsj

= −∂fd,ij
∂x0

=
fc
c

1

d
3/2
mts,ij

[υx(ysj − y0 − υyti)
2 − υy(xsj − x0 − υxti)

(ysj − y0 − υyti) ] (I.11)

∂fd,ij
∂υy

=
fc
c

1

d
3/2
mts,ij

[ (ysj − y0 − υyti) + υyti((ysj − y0 − υyti)
2 − 1)

+ υxti(xsj − x0 − υxti)(ysj − y0 − υyti) ] (I.12)

∂fd,ij
∂υx

=
fc
c

1

d
3/2
mts,ij

[ (xsj − x0 − υxti) + υxti((xsj − x0 − υxti)
2 − 1)

+ υyti(xsj − x0 − υxti)(ysj − y0 − υyti) ] (I.13)
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Résumé en français

J.1 Introduction

Le chapitre d’introduction a deux objectifs: D’une part, nous introduisons
les principes fondamentaux des méthodes de localisation. Suivi par les
sources principales d’erreurs rencontrées dans les méthodes de localisation
et les tentatives actuelles pour les résoudre. D’autre part, nous présentons
des notions qui nous utilisons dans ce document, comme par exemple, les
modèles de canaux géométriques et statistiques, les expressions utiles pour
un système MIMO-OFDM, l’ estimation ML de la position et une discussion
sur l’identifiabilité et la performance, sera présentée dans certains chapitres
suivants. Pour des raisons de brièveté d’espace, nous allons présenter juste
les notions qui nous utilisons.

J.1.1 Modèles du Canal

Afin de localiser le MT, les modèles 2-D du canal qui nous permettent
d’exprimer les LDP en fonction de les coordonnées du MT et d’autres
paramètres, sont nécessaires. Pour les environnements LoS, il suffit d’utiliser
les fonctions trigonométriques simples et les distances euclidiennes. Toute-
fois, pour les environnements NLoS statiques, certaines hypothèses de l’environnement
de propagation doivent être prises en compte. Á cette fin, nous utilisons le
modèle SBM (seule réflexion) et nous introduisons le modèle DSBM (dy-
namique seule réflexion), qui est le résultat de la fusion de la SBM avec
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Figure J.1: LDP in a NLoS environment: Dynamic single bounce model

un modèle de mobilité. La utilisation de la SBM nous permet d’exprimer
les LDP explicitement en fonction des coordonnées des BS, des MT et des
diffuseurs, comme le suivant

φj = π
2 (1 − sgn{xsj − xmt}) + tan−1 ysj−ymt

xsj−xmt
(J.1)

ψj = π
2 (1 − sgn{xsj − xbsj}) + tan−1 ysj−ybsj

xsj−xbsj
(J.2)

dj = dmts,j + dbs,j (J.3)

dmts,j =
√

(ysj − ymt)2 + (xsj − xmt)2 (J.4)

dbs,j =
√

(ysj − ybsj )
2 + (xsj − xbsj )

2 . (J.5)

Ces approches considèrent un environnement statique de propagation, c’est
à dire qu’elles supposent que le MT ne bouge pas. En revanche, nous sommes
également intéressés par l’évolution des environnements dynamiques, où l’on
suppose que le MT se déplace à une vitesse qui a une magnitude υi =√
υ2
xi + υ2

yi et une direction ωi = π
2 (1 − sgn{υxi}) + tan−1 (υyi/υxi). Dans

tels environnements, les LPD sont variables dans le temps. Pour en tenir
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compte et en même temps en bénéficier, nous introduisons le DSBM qui est
le résultat de la fusion de la SBM avec un modèle de mobilité approprié.
Deux modèles de mobilité sont considérés: le modèle “vitesse constante ” et
le modèle “ accélération constante”. Si la vitesse est constante, la position
de MT a l’ instant i est donnée par

[
xi
yi

]
=

[
x0

y0

]
+

[
υx
υy

]
ti. (J.6)

où ti est la différence de temps entre les instants i et 0. L’extension du
modèle au cas d’accélération constante est triviale. Egalemement au scénario
statique, nous pouvons utiliser la DSBM pour exprimer une variable dans le
temps LDP (y compris le décalage Doppler) explicitement en fonction des
coordonnées des BS, MT et des diffuseurs, comme le suivant

φij =
π

2
(1 − sgn{xsj − x0 − υxti}) + tan−1 ysj − y0 − υyti

xsj − x0 − υxti
(J.7)

dmts,ij =
√

(ysj − y0 − υyti)2 + (xsj − x0 − υxti)2 (J.8)

fd,ij =
fc
c

υxi(xsj − x0 − υxti) + υyi(ysj − y0 − υyti)√
(ysj − y0 − υyti)2 + (xsj − x0 − υxti)2

. (J.9)

L’AoD et les distances entre les BS et les diffuseurs correspondants sont
encore données par les équations (J.2) et (J.5) respectivement.

En plus des modèles géométriques, les modèles statistiques du canal sont
nécessaires pour exprimer la matrice de la réponse impulsionnelle du canal
(CIR) en fonction de la LDP et éventuellement d’autres paramètres. Un
modèle très général est le modèle double directionnel (DDM), qui décrit un
variant dans le temps, le canal sélectif en fréquence, en tenant compte des
AoA, des AoD, des retards, des effets Doppler (DS) et des puissances des
chemins aux instructions de direction à l’émetteur et le récepteur de taille.
L’hypothèse que l’environnement de diffusion ne change pas au cours de la
transmission est prise en consideration, donc la variation dans le temps est
le résultat du mouvement de la MT et/ou de la BS. Selon le DDM, la nr×nt
matrice MIMO H dans le domaine temps-fréquence, est donnée par

Hnr×nt(f, t) =
1√
srst

Φnr×sr(t)Pr(Θsr×st ⊙Dsr×st(f))PtΨ
t
st×nt(t) (J.10)

où nr,nt,sr et st sont le nombre d’antennes de réception et de transmission
et le nombre de diffuseurs dans le domaine du récepteur et l’émetteur, re-
spectivement (voir la figure 1.7). Les entrées de Θ sont i.i.d. gaussiennes
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complexes de moyenne nulle et de variance unité. Pr et Pt sont des matrices
diagonales contenant les puissances. Le reste des matrices sur la r.h.s. de
(J.10) sont définis dans les équations (1.45) - (1.47).

Il faut introduire un cas particulier du DDM qui est plus approprié pour
les problèmes de localisation NLoS, car il est beaucoup plus simple que
le DDM. Il peut être utilisé pour décrire les environnements, où chaque
composante de signal rebondit qu’une seule fois. Selon ce modèle, le nr×nt
matrice MIMO H dans le domaine temps-fréquence, est donnée par

Hkl = 1√
Ptot

∑Ns
j=1

√
Pjγje

j2πl∆tfd,ljaR(φlj)a
t
T (ψlj)HTR,ke

−j2πk∆fτlj

= AR,l(Γ ⊙ (DkFd,l))A
t
T,l = AR,lΓDkFd,lA

t
T,l. (J.11)

La dernière égalité découle du fait que, dans un scénario de rebond unique Γ,
Dk et Fd,l sont matrices diagonales. Les indices k, 1 ≤ k ≤ Nf et l, 0 ≤ l <
Nt− 1 désignent l’échantillon de fréquence et de temps respectivement, soit
Hkl = H(fk, tl). L’indice j, 1 ≤ j ≤ Ns désigne le diffuseur ou le composant
du signal par trajets multiples. La définition de tous les paramètres de la
première représentation (somme de rang 1 termes) de la châıne de matrice
est donnée par le tableau 1.1. Les matrices nouvellement introduites dans
la deuxime représentation sont définies dans l’équation (1.55).

Les matrices du canal MIMO données par les équations (J.10) et (J.11)
sont fondées sur l’hypothèse d’un environnement strictement NLoS. Si une
composante LoS existe, alors, afin de représenter l’environnement multi-
trajets, la matrice du canal peut s’ écrire comme la somme des 2 composantes
suivants

Hkl = HNL,kl + HL,kl. (J.12)

La composante NLoS HNL,kl est donnée par l’équation (J.10) ou (J.11) et
la composante LoS HL,kl est donnée par

HL,kl =

√
P0√
Ptot

ejθnej2πfd,l0tlaR(φl0)a
t
T (ψ0)HTR,ke

−j2πfkτl0 . (J.13)

Dans l’équation ci-dessus, nous avons introduit l’indice j = 0 qui sera utilisé
dans ce document pour LDP qui correspond à la composante LoS et le
décalage de phase inconnu (à cause de bruit de phase) de la trajectoire de
LoS θn ∼ U [0, 2π].

Si nous avons besoin d’exprimer le signal reçu directement en fonction
du LPD, une relation discrète entrée-sortie (io) est nécessaire. La relation
io d’un nr × nt système MIMO-OFDM peut s’écrire comme

Ykl = HklXkl + Nkl. (J.14)
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Hkl est la nr × nt matrice du canal, donnée par l’équation (J.12) pour les
environnements à trajets multiples et se réduit à celle donnée par l’équation
(J.10) ou (J.11) pour les environnements strictement NLoS. Xkl est la nt×N
matrice du signal transmis, que nous considérons composée d’une séquence
formative des symboles. N est le nombre de symboles OFDM par sous-
porteuse émis pendant le temps de cohérence du canal. Ykl est la nr × N
matrice du signal reçu et Nkl est la nr × N matrice du bruit. Toutes les
matrices sont données à la fréquence k, 1 ≤ k ≤ Nf et temps l, 1 ≤ l ≤ Nt.
Les entrées de Nkl sont iid gaussiennes complexes de moyenne null et de
variance σ2

n.

J.1.2 Estimation ML

Chaque fois que des chercheurs s’attaquent à un problème d’estimation
de paramètres, ils sont confrontés au dilemme de choisir entre la ML et
l’estimation bayésienne (BE). Dans l’approche ML, les paramètres inconnus
sont traités comme des quantités déterministes. L’estimation est alors basée
sur la maximisation de la densité des données, conditionnée par le vecteur
de paramètres. Dans l’approche bayésienne, les paramètres inconnus sont
traités comme des variables aléatoires. Si leurs distributions à priori ne sont
pas connues, une méthode connue sous le nom Inférence bayésienne peut
être utilisée pour produire des a-priori significatifs. L’estimation peut alors
être basée sur la maximisation de la densité du vecteur des paramètres,
conditionnée par les données (Estimation MAP). En général, les estima-
teurs MAP ont des performances supérieures à celles des estimateurs ML,
en supposant que les a-priori utilisés sont les bons. Cependant, nous no-
tons que lorsque les a-priori sont non-informatifs, comme c’est le cas de
paramètres uniformément répartis, l’estimation MAP et l’estimation ML
sont équivalentes.

Dans cette section nous présentons un estimateur ML général pour la
2e étape de tout algorithme de localisation SBM à base des 2 étapes. Il
est basé sur les estimations de LDP disponibles. Soit θ = [θt1, . . . ,θ

t
K ]t le

Nθ = KNtNs vecteur contenant les vraies valeurs de la K = {3, 4} types
différents de LPD et θ̂ le vecteur contenant les estimations disponibles. Pour
le cas DSBM, θ peut contenir un sous-ensemble de 3 ou l’ensemble des LDP,
donnée ci-dessous

θk =





d, k = 1
φ, k = 2
ψ, k = 3
fd, k = 4

(J.15)
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Pour le cas SBM, Nt = 1, K = 3 et θ est composé uniquement des 3 premièrs
vecteurs ci-dessus. En supposant que les estimations de LDP ne sont pas
parfaites, mais elles contiennent une erreur θ̃, nous pouvons écrire

θ̂ = θ + θ̃. (J.16)

Nous supposons que θ̂ est un estimateur sans biais qui possède la propriété de
normalité asymptotique et qu’un nombre suffisant d’échantillons du signal
reçu a été utilisée dans l’estimation de θ. En raison de ces hypothèses,
θ̃ ∼ N (0,C

θ̃
) et donc θ̂ ∼ N (θ,C

θ̃
).

L’objectif principal de toute méthode de localisation est d’estimer la posi-
tion du MT. Dans les scénarios dynamiques, il serait également souhaitable
d’estimer sa vitesse. Toutefois, dans la section 1.4.2, nous avons montré
que pour un environnement NLoS qui peut être décrit par la SBM, les
LPD ne dépendent pas seulement des coordonnées et de la vitesse du MT
mais aussi des coordonnées des diffuseurs. Comme il y a en général peu
d’intérêt à connâıtre la position des diffuseurs, nous allons traiter leurs co-
ordonnées en tant que paramètres de nuisance et designer le vecteur qui les
contient comme pnui = ps = [xts,y

t
s]
t. D’autre part, nous designerons les

paramètres d’intérêt comme pint. pint peut varier, selon le scénario et le
modèle de mobilité, comme donné au tableau 1.2. En introduisant le Np×1
vecteur de tous les paramètres inconnus, p = [ptint,p

t
nui]

t, on peut réécrire
l’ensemble des équations (J.1) - (J.5) et (J.7) - (J.9) d’une manière plus com-
pacte θ = θ(p) pour montrer la dépendance de la moyenne des estimations
LDP aux paramètres inconnus. En dehors de la moyenne, il est probable
que la matrice de covariance C

θ̃
dépend également des paramètres incon-

nus, c’est à dire qu’il est probable que la précision de la méthode utilisée
pour estimer le LPD à partir des échantillons du signal reçu dépend de la
géométrie de l’environnement. Cependant, puisque nous considérons une
classe générale d’estimateurs et non pas un estimateur particulier (et donc
nous ne présentons aucune expression de la matrice de covariance), nous ne
considérerons pas une telle dépendance. Le pdf de θ̂ conditionné sur p est
donné par:

f(θ̂|p) =
1

(2π)
1
2
Nθ (detC

θ̃
)1/2

e
− 1

2
(θ̂−θ)tC−1

θ̃
(θ̂−θ)

(J.17)

Pour obtenir une estimation ML de nos paramètres d’intérêt, nous devons
maximiser f(θ̂|p) par rapport à p. Définir une log-vraisemblance obtenue en
prenant le logarithme naturel de f(θ̂|p) et en ignorant les termes constants
en tant que:

L = L(θ(p)) = (θ̂ − θ)tC−1

θ̃
(θ̂ − θ) (J.18)
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La maximisation de f(θ̂|p) est équivalente à la minimisation de L, donc
l’estimation ML de p est donnée par

p̂ = argmin
p

{L} (J.19)

Afin d’évaluer la performance d’un estimateur ML, le CRB peut être utilisé,
car les estimateurs ML sont asymptotiquement efficaces. Selon le CRB pour
un estimateur sans biais p̂, la matrice de corrélation des erreurs d’estimation
des paramètres p̃ est limitée par l’inverse de la FIM J comme indiqué ci-
dessous

Rp̃p̃ = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (J.20)

où la FIM est donnée par:

J = E
{(∂L

∂p

)(
∂L
∂p

)t }
=
∂θt

∂p
C−1

θ̃

∂θ

∂pt
= GC−1

θ̃
Gt. (J.21)

L est la log-vraisemblance donnée par (J.18) et nous avons introduit la
matrice de transformation G = ∂θt

∂p .
Le CRB peut être utilisé aussi pour étudier l’identifiabilité comme le

suivant: Les entrées de la FIM J sont des fonctions continues de p partout
dans RNp . Un point de p0 est consideré un point régulier de la matrice J si
il existe un voisinage ouvert de p0 ou J est de rang constant. En utilisant
cette définition et en faisant certaines hypothèses faibles, le théorème suivant
est prouvé

Theorem 3. Soit p0 un point régulier de la FIM J = J(p). Alors p0 est
localement identifiable si et seulement si J(p0) est non-singulière.

En supposant que le vecteur p contenant les vraies valeurs des paramètres
inconnus est un point régulier, ce qui est vrai en général, le théorème ci-
dessus nous dit que les paramètres inconnus deviennent identifiables lorsque
FIM évaluée à la valeur réelle est non-singulière. Le corollaire suivant est
une conséquence immédiate du théorème ci-dessus et de l’équation (J.21):

Corollary 2. Dans les méthodes de localisation basées sur SBM, l’ identifi-
abilité locale du vecteur paramètre p peut être réalisée lorsque la matrice de
transformation G = ∂θt

∂p est de forme carrée ou large (Nθ ≥ Np) et a plein
rang Np.

Enfin, on pourrait utiliser le CRB pour évaluer la performance des esti-
mateurs ML dans les cas où l’exploitation de nouvelles LDP est au prix
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d’estimer conjointement un nouvel ensemble de paramètres de nuisance.
Cela se produit lorsque l’examen d’une dynamique plutôt que d’un envi-
ronnement statique et donc la vitesse de la MT doit être conjointement es-
timée comme mentionné ci-dessus. Cela peut également se produire lorsque
l’ensemble des LDP non-exploitées dépend non seulement des entrées de p,
mais aussi d’un terme d’erreur inconnue. Par exemple, il peut y avoir un
offset de synchronisation inconnue qui doit être prise en compte pour les
délais (et donc pour les longueurs de chemins) ou un offset de l’orientation
et de la calibration qui doit être prise en compte pour les AoA et/ou les
AoD. Le théorème suivant s’applique à toutes les cas ci-dessus et demontre
les cas où l’estimation de la position ML sera plus précise.

Theorem 4. L’ exploitation de nouvelles LDP θ2 (données) qui dépendent
non seulement des entrées du Np1 × 1 vecteur de paramètres p1, mais aussi
des entrées du nouveau vecteur de paramètres de nuisance p2, entrâıne une
amélioration de la performance (asymptotique) de l’estimation ML seule-

ment si la matrice de transformation G22 =
∂θt2
∂p2

est large (Nθ2 > Np2) et a
rang plein Np2.

J.2 Estimation des LDP

Les techniques traditionnelles géométrique de localisation s’articulent en
deux étapes: d’abord un ensemble de LDP sont estimés dans un ou plusieurs
BS. La position du MT est alors estimée par trouver les valeurs des coor-
données xmt et ymt qui correspondent le mieux aux estimations LDP. Le
chapitre 2 contient une méthode sous-espace-basée, qui peut être utilisée
pour estimer simultanément différents types de LDP pour tous les MPC.
Nous considérons un MT qui communique avec un BS dans un environ-
nement de propagation NLoS. Le MT se déplace et, en conséquense, le CIR
est affecté par DFS. Nous limiterons notre étude au système MIMO et au
signal OFDM. Nous paramétrons la matrice CIR de telle manière, qu’un al-
gorithme 4-D unitaire ESPRIT peut être utilisé pour estimer conjointement
4 sous-ensembles des LDP, les AoA, les AoD, les longueurs de chemins et
les DFS.

J.2.1 Modèle du canal

La relation discrète d’entrée-sortie d’un nr×nt système MIMO-OFDM dans
le domaine temps-fréquence est donnée par l’équation (J.14). Toutefois, con-
trairement à l’équation (J.11), les LDP sont traitées comme des constantes,
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vu que leur variation pour une période d’observation brève (de l’ordre de
ms) est négligeable. En conséquense, la nr × nt matrice du canal Hkl est
donnée par

Hkl = 1√
Ptot

∑Ns
j=1

√
Pjγje

j2πl∆tfd,jaR(φj)a
t
T (ψj)HTR,ke

−j2πk∆fτj

= AR(Γ ⊙ (DkFd,l))A
t
T = ARΓDkFd,lA

t
T (J.22)

et le reste des paramètres sont définis dans les sections 1.5.2 et 1.6. Par la
suite, nous supposons que Xkl = X, c’est à dire la séquence formative trans-
mise par sous-porteuses différentes et à des instants différents, ne change pas.
Nous supposons en outre que les Tx et Rx sont équipés de ULA. Chaque
antenne qui peut être décomposé en 2 sous antennes avec des éléments iden-
tiques séparés par une distance arbitraire d peut être considérée à la place
de ULA.

J.2.2 4D ESPRIT

Figure J.2: 4D ESPRIT block diagram

Pour mettre en oeuvre l’algorithme ESPRIT 4D unitaire, nous avons be-
soin de réécrire la relation d’entrée-sortie sous une forme telle que la matrice
du canal hérite une propriété d’invariance de changement dans les 4 dimen-
sions. Le prétraitement des données et les étapes de 4D unitaire ESPRIT
algorithme sont décrits en détail dans le chapitre 2. Ils peuvent être résumés
sur le diagramme de la fig. J.2.

J.2.3 Exemple numérique

Dans cette section, nous évaluons la performance de la méthode proposée
en termes de RMSE des prévisions LDP pour un système 2 × 4 MIMO
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Figure J.3: RMSE of sine of AoA and sine of AoD

équipé d’ULA des deux côtés. Le signal transmis se propage par Ns = 4
chemins distincts NLoS. Les coordonnées des 4 diffuseurs correspondants
ainsi que les coordonnées du MT sont donnés dans le tableau 2.1. Les
valeurs des paramètres prises en considération se trouvent dans la section
2.5. Nous lançons N = 50 essais indépendants et moyennons les résultats.
Nous calculons les RMSE, comee les suivant

RMSE(µir) =

√√√√ 1

N

N∑

n=1

|µ̂ir − µir|2 (J.23)

où les termes µir dépendent des LDP en fonction de

µir =
2

π
arctan(ωir), 1 ≤ i ≤ Ns, 1 ≤ r ≤ 4. (J.24)

Dans les figures, nous traçons les RMSE en fonction de SNR, défini comme

SNR = 10 log10

(
E{tr(( ¯̄HΓ̄)( ¯̄HΓ̄)†)}

E{tr( ¯̄N ¯̄N†)}

)
(J.25)

Les résultats montrent que l’erreur quadratique moyenne des estimations
est très petite, même pour les petites et moyennes SNR (5 − 10 dB). Gràce
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Figure J.4: RMSE of scaled delays and scaled DS

à son excellente performance et son coût de calcul réduit, cet algorithme
estune solution interéssante pour des problèmes d’estimation des LDP et
nous motive à concevoir des algorithmes pour la 2e étape de la localisation,
en supposant l’existence d’estimations exactes des LDP.

J.3 Localisation hybride pour les environnements
NLoS statiques

Dans le chapitre 3, les fondements de la LS et la localisation ML basée sur
le SBM sont présentés. Notre contribution consiste en une extension de la
méthode de localisation basée sur SBM pour inclure une solution WLS, une
brève discussion sur l’identifiabilité et une étude approfondie de l’impact de
la géométrie du réseau sur les performances.

J.3.1 Estimation LS pour ToA/AoA/AoD localisation

En vue de formuler un système d’équations linéaires qui peut être résolu pour
obtenir une estimation LS de p, nous débutons avec les sinus et cosinus de
l’équation des angles indiqués dans la figure 3.1 et nous les résoluons pour
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les distances. Après quelques calculs nous obtenons




−Cψ1 0 (Cφ + Cψ) O
0 −Sψ1 O (Sφ + Sψ)

−Sψ1 0 Sψ Cφ

0 −Cψ1 Sφ Cψ




︸ ︷︷ ︸
=A

p =




(DCψ + Xbs)Cφ1
(DSψ + Ybs)Sφ1
(DSψ + Ybs)Cφ1
(DCψ + Xbs)Sφ1




︸ ︷︷ ︸
=b

(J.26)

et donc on peut alors obtenir une estimation LS et une estimation WLS de
p, données respectivement par

p̂LS = (AtA)−1Atb (J.27)

p̂WLS = (AtC−1
b A)−1AtC−1

b b. (J.28)

J.3.2 Impact de la géométrie du réseau sur la performance

Dans cette section, nous évaluons la performance de la méthode de locali-
sation basée sur le BSM, aux environnements LoS et NLoS statiques. Nous
dérivons des expressions pour le CRB en fonction des distances et des an-
gles, ce qui facilite l’interprétation de l’impact de la géométrie du réseau.
La FIM pour le scénario LoS est une 2 × 2 matrice et donc elle peut être
facilement inversée pour obtenir le CRBpos = tr{J−1}. Le calcul est simple
et le résultat est donné ci-dessous

CRBpos =
21t( 1

σ2
d

I − 1
2A)1

1
σ2
d

Ns1t(
1
σ2
d

I − A)1 + 1tA(11t − C̆δ2φ)A1
(J.29)

où C̆δ2φ est une matrice symétrique dont l’entrée {i, j} est égale à cos(2φi−
2φj) et A = 1

σ2
d

I− 1
σ2
φψ

D−2. Pour calculer le CRB dans un environnement sta-

tique NLoS, la (2Ns+2)×(2Ns+2) FIM doit être inversée, mais nous avons
seulement besoin de se concentrer á la partie supérieure gauche de 2 ×2 sous-
matrice de son inverse, la trace de ce qui donne la meilleure précision pos-
sible, c’est à dire, CRBpos = tr{[J−1]1:2,1:2}. Après une dérivation longue,
nous obtenons

CRBpos =
21tJ̄−1

det1

1tJ̄−1
det(11t − C̆δφ+δψ)J̄−1

det1
(J.30)

où C̆δφ+δψ est une matrice symétrique dont l’entrée {i, j} est égale à cos(φi−
φj +ψi−ψj) et les matrices restantes sont données par les équations (E.40)
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Figure J.5: CRB vs MT position for 1 BS - 2 collocated scatterers NLoS
environment
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- (E.44). La similitude entre les 2 expressions des CRB devient claire en
remplaçant ψ dans les NLoS CRBpos, en utilisant la condition LoS (1.21).
Les différences des AoA avec AoD ne dépendent plus des angles et les sommes
sont égales à deux fois les AoA, plus une constante c ∈ {−2π, 0, 2π} de sorte
que C̆δφ+δψ = C̆δ2φ. La seule différence est le terme supplémentaire dans
le dénominateur de l’expression de LoS CRB. Une autre remarque concerne
les termes impliquant les matrices notées C̆. À cause de ces termes, les
dénominateurs sont réduits, et donc les CRB sont augmentées. Les CRB
peuvent être maximisées si C̆δ2φ = C̆δφ+δψ = 11t. Cela correspond aux
BS colocalisées pour le cas LoS et aux diffuseurs colocalisées pour le cas
1 BS NLoS. Alors pour le cas LoS, le CRB reste fini, pour le cas NLoS,
la CRB tend vers l’infini et il est donc impossible d’estimer la position du
MT. La signification de ces matrices est démontrée dans les figures pour
les scénarios de 1 et 2 BS. Les courbes de niveau sont basées sur la cdf
de la CRB. Pour une ligne de contour j = 1 : 9 nous avons p(CRB <
CRB(j)) = j/10. En comparant la figure J.5 et J.6, nous observons que la
performance est vraiment mauvaise lorsque le MT communique avec 1 BS
via 2 diffuseurs colocalisées mais pas quand 2 BS sont utilisées, de façon
que chacune communique avec le MT via l’un des diffuseurs. Les cdf des
CRB pour les 4 environnements NLoS différents considérés (1 ou 2 BS avec
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diffuseurs à distance ou colocalisés) sont tracées sur la figure J.7. De cette
derniere figure, il devient évident que, si pour diffuseurs colocalisées, il est
préférable d’avoir des communications avec plus de 1 BS, mais dans les
environnements avec les diffuseurs à distance, seulement 1 BS peut mener à
de meilleures performances.

J.4 Localisation hybride pour les environnements
NLoS dynamiques

Dans le chapitre 4, deux méthodes hybrides de localisation qui utilisent le
DSBM sont présentées et leur avantage sur la méthode à base de SBM est
démontré. Les deux méthodes sont applicables à des environnements NLoS
qui changent dynamiquement à cause du mouvement de la MT. Les deux
méthodes supposent la connaissance des différents types de LDP, comme la
longueur du chemin d qui est proportionnelle au délai, l’AoD ψ à la BS et le
décalage Doppler fd. La première méthode suppose en outre la connaissance
de l’AoA φ de chemins différents à la MT. Malgré le fait que cela semble
être une petite différence, les deux méthodes effectivement diffèrent beau-
coup. À cause du manque de disponibilité des AoA à la deuxième méthode,
les paramètres qui doivent être estimés deviennent identifiables uniquement
grâce à la variation dans le temps de la LDP.

J.4.1 Estimation LS pour ToA/AoA/AoD/DS localisation

Dans la 1ere methode, K = 4 et θ = [dt,φt,ψt, f td]
t. Également au scénario

de cas statique, nous pouvons formuler un système d’équations linéaires qui
peut être résolu pour obtenir une estimation (W)LS de la vitesse et de la
position du MT. La solution pour les environnements dynamiques représente
une extension de la solution pour les environnements statiques. Si le modèle
de mobilité à vitesse constante est considéré, la matrice A dans l’équation
(J.26) doit être complétée par la matrice suivante

Aυ =




−Cψ(t ⊗ 1) 0
0 −Sψ(t ⊗ 1)

−Sψ(t ⊗ 1) 0
0 −Cψ(t ⊗ 1)

Cφ1 Sφ1




(J.31)
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Pour obtenir
[

A
AυO

]

︸ ︷︷ ︸
=A′




p
υx
υy




︸ ︷︷ ︸
=p′

=

[
b

Fd1

]

︸ ︷︷ ︸
=b′

. (J.32)

La solution WLS est alors

p̂′
WLS = (A′tC−1

b′ A
′)−1A′tC−1

b′ b
′. (J.33)

J.4.2 Estimation LS pour ToA/AoD/DS localisation

Contrairement à la 1ere methode où nous avons tiré une solution LS fondée
sur la connaissance de tous les 4 sous-ensembles de LDP, dans la 2e méthode
nous ne considérons pas la connaissance des AoA. Nous le faisons afin de
tenir compte des nombreux scénarios réalistes dans lesquels les AoA esti-
mations ne sont pas disponibles ou ne sont pas fiable. Dans cette méthode
K = 3 et θ = [dt,ψt, f td]

t. Ensuite, nous décrivons le concept de base de
l’algorithme et nous fournissons la solution finale. Le calcul de la solution
peut être trouvé dans la section 4.3. Dans la 1ere étape de cette méthode,
les paramètres de nuisance en coordonnées polaires sont estimés. Au lieu
de considérer pnui = [xts,y

t
s]
t, nous considérons p′

nui = [dtbs,p
t
υ,α]t, où ptυ,α

est un vecteur de paramètres inconnus qui dépendent de la vitesse (ou de la
vitesse et de l’accélération) du MT. Cette étape est basée sur l’observation
suivante: La DS peut être écrit comme un rapport d’une quantité sur dmtsij
et la dérivée partielle de cette quantité en fonction du temps ne dépend pas
de coordonnées inconnues. Le vecteur estimé des paramètres de nuisance
est donné par

p̂′
nui = (Zt(Cw)−1Z)−1Zt(Cw)−1w . (J.34)

En outre, il peut être démontré que

d̂bss = (ZtfC
−1
w PZf )

−1ZtfC
−1
w Pw. (J.35)

où nous avons introduit

Z = [RtFd(1 ⊗ I),−(dt)nV] (J.36)

w = Rt(fd ⊙ d) (J.37)

Cw = Rt(σ
2
fd

ddt ⊙ I + σ2
dfdf

t
d ⊙ I + σ2

fd
σ2
dI)R

t
t (J.38)

Zf = RtFd(1 ⊗ I) (J.39)

P = I − V(VtC−1
w V)−1VtC−1

w . (J.40)
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Figure J.8: Position RMSE vs SNR for various methods

Rt représente les matrices à “différence de temps”, données par l’equation
(4.24) et V est donnée dans le tableau 4.1. Dans la 2e étape, ces estimations
sont utilisées afin de formuler un problème de localisation de la ToA et afin
d’estimer les paramètres d’intérêt pint = [p0,υ0,α]t en utilisant une exten-
sion de la méthode de lignes-de-position (LoP). La solution est simplement
donnée par

p̂int = (AtC−1
b A)−1AtC−1

b b (J.41)

où la matrice A est définie dans l’équation (G.20) et le vecteur b est défini
dans l’équation (G.9).

J.4.3 Résultats de la simulation

Dans ce qui suit, nous évaluons et nous comparons les performances des 2
méthodes (K = 4 et K = 3) pour un scénario dans lequel le MT est situé
à {x0, y0} = {25, 25} et se déplaçe avec la vitesse {ux, uy} = {6, 9}m/sec
à l’intérieur d’une micro-cellule (milieu urbain) et réçoit un signal de 4 BS.
Toutes les composantes du signal reçu se propagent dans un environnement
NLoS. Les coordonnées de la BS et des diffuseurs correspondants sont donnés
dans le tableau 4.6 et l’environnement est illustré à la figure 4.2. Le temps
d’observation total est 1sec, au cours de laquelle Nt = 10 échantillions de
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10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

σ
d
=σ

ψ
=σ

f
d

(=σ
φ
)

S
p

e
e
d

 R
M

S
E

(m
)

 

 

LS w/ 4 LDP

ML w/ 4 LDP

LS w/ 3 LDP

ML w/ 3 LDP

Figure J.9: Speed RMSE vs SNR for various methods

chaque LDP et pour chaque trajet sont estimés et utilisés dans le proces-
sus de localisation. Nous effectuons N expériences indépendantes et nous
moyennons les résultats. Dans les figures J.8 et J.9 nous traçons les RMSE
de la position et de la vitesse du MT respectivement données par

RMSEp =
√

1
N

∑N
k=1 (x̂0,k − x0)2 + (ŷ0,k − x0)2 (J.42)

RMSEsp =
√

1
N

∑N
k=1 (υ̂x,k − υx)2 + (υ̂y,k − υy)2 (J.43)

en fonction de σ de toutes les estimations LDP (nous considèrons que σ est
pareille pour tous les LDP seulement pour la démonstration). Nous pouvons
observer que, lorsque seulement 3 LDP sont disponibles, l’estimation LS de
la vitesse et de la position est précise seulement pour le SNR élevé (défini
comme 1

σ2 ). C’est parce que cette méthode dépend de la variation dans le
temps des LPD et est très sensible au bruit. Cela ne semble pas provoquer
le même problème pour les estimations ML, même si la performance est
légèrement moins que la 1ere méthode, comme prévu.
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J.5 Estimation directe de la position pour les systmes
MIMO-OFDM

Comme son nom l’indique, contrairement aux traditionnelles méthodes de
localisation à 2 étapes , la DLE est une méthode qui traite les échantillons
du signal reçu et estimate de la position du MT (et éventuellement d’autres
paramètres) directement, sans explicitement estimer les LDP. La perfor-
mance des approches à 2 étapes, a été prouvée à converger vers le CRB
pour un SNR élevé et un nombre suffisant d’échantillons de données. Dans
les systèmes de communication sans fil, le SNR élevé n’est pas toujours
garanti. En outre, si le canal varie rapidement, le nombre d’échantillons
de données qui peuvent être utilisés dans le processus d’estimation est très
limité. La DLE est une méthode qui permet de localiser efficacement dans
ces circonstances. Dans le chapitre 5, nous avons proposé et mis en oeu-
vre les systèmes MIMO-OFDM qui fonctionnent dans des environnements
strictement NLoS ou à trajets multiples. En outre, nous supposons que le
MT communique uniquement avec 1 BS.

La DLE devient possible si une application unique inversible existe en-
tre les paramètres d’intérêt (MT position, vitesse etc) et les LPD. Afin
d’exprimer toutes les LDP dont la matrice du canal MIMO dépend, à savoir
les AoA, les AoD, les délais et les DS, en fonction des coordonnées du MT.
Alors, une représentation géométrique appropriée de l’environnement est
nécessaire. À cette fin, nous avons fondé notre approche sur le SBM, que
nous avons également employé dans les méthodes de localisation à 2 étapes
présentées dans les chapitres précédents.

D’abord, nous supposons que le signal se propage dans un environnement
strictement NLoS qui change à cause du mouvement du MT, et que chaque
composante de signal a rebondi exactement une fois. Le modèle décrit dans
la section 1.5.2 peut être appliqué ici. Nous sommes intéressés à estimer
conjointement les MT coordonnées au moment t0 , x0 et y0 et les com-
posantes à vitesse constante υx et υy directement des matrices du signal
reçu Ykl. Le modèle de mobilité avec une accélération constante n’est pas
considérée ici. Soit SY = {Y11, . . . ,YNfNt} l’ensemble de matrices du signal
reçu. Pour mettre en œuvre l’estimation ML, nous définissons et calculons
la log-vraisemblance

L ∆
= L(SY|p) = ln(f(SY|p)) = − ln(det(Cy|p)) − y†C−1

y|py. (J.44)

où y = [yt11, . . . ,y
t
NfNt

]t et Cy|p est donnée par l’équation (5.11).
En présence d’une composante LoS, la matrice du canal MIMO est
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donnée comme une somme de 2 composantes. Dans cette formulation du
problème nous avons besoin d’estimer pint en présence des paramètres de
nuisance pnuis = [xts,y

t
s, θ]

t, donc notre objectif est d’estimer le (2Ns+5)×1
vecteur p = [ptint,p

t
nuis]

t. Nous pouvons appliquer directement le résultat
sur le vecteur aléatoire centré y′ = y − my pour obtenir la nouvelle log-
vraisemblance

L = − ln(det(Cy|p)) − (y − my)†C−1
y|p(y − my). (J.45)

Pour les deux environnements (NLoS et à trajets multiples), l’estimation ML
de p est donnée par la maximisation de la log-vraisemblance correspondante,
c’est à dire

p̂ = argmax
p

{L} . (J.46)

Étant donné que dans un environnement à trajets multiples, la moyenne con-
ditionnelle et la covariance conditionnelle sur le r.h.s. de (J.45) dépendent
des paramètres inconnus, en utilisant la définition de la FIM donnée par la
première égalité de l’équation (J.21), nous aboutissons à une somme de 2
termes pour chaque entrée. La solution pour l’ entrée i′, j′ est donnée par

Ji′j′ = tr
{
C−1

y|p
∂Cy|p
∂pi′

C−1
y|p

∂Cy|p
∂pj′

}
+ 2Re

{∂m†
y

∂pi′
C−1

y|p
∂my

∂pj′

}
. (J.47)

Si un environnement strictement NLoS est considéré, le deuxième terme de
r.h.s. de (J.47) est égal à zéro. Pour calculer le CRB, nous construisons
les dérivées partielles de la moyenne conditionnelle et de la covariance en
utilisant les equations (5.26) et (5.21) et nous substituons le résultat dans
(J.47).

J.5.1 Résultats de la simulation

Dans cette section, nous calculons et nous traçons le CRB pour trois envi-
ronnement différents: Un environnement LoS (l’information de composants
NLoS n’ est pas disponible), un environnement de propagation à trajets mul-
tiples avec 2 trajets NLoS et un trajet LoS, et un environnement strictement
NLoS avec 3 trajets. Les coordonnées de la BS, du MT et des diffuseurs con-
sidérés, correspondent à une pico-cellule qui s’adapte au modèle elliptique
et sont donnés dans le tableau 5.1. Les valeurs des paramètres prises en
considération se trouvent dans la section 5.5. Dans les figures J.10 et J.11,
nous traçons les RMSE de la position et de la vitesse, respectivement, pour
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Figure J.10: Position CRB vs SNR, various environments
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un estimateur efficace, en fonction de la SNR pour un système 2× 2 MIMO
. Le SNR est défini comme:

SNR = 10 log10

(
E{tr(HXX†H†)}
E{tr(NN†)}

)
= 10 log10

(
σ2
γ

σ2

)
. (J.48)

Les matrices inconnues sont définies dans l’équation (5.32). Les RMSE de
la position et de la vitesse sont définis comme

RMSEp =
√
σ2
x̃0

+ σ2
ỹ0

=
√
tr([J−1](1:2,1:2)) (J.49)

RMSEsp =
√
σ2
υ̃x

+ σ2
υ̃y

=
√
tr([J−1](3:4,3:4)) (J.50)

Nous notons que l’erreur d’estimation est très faible même pour un environ-
nement strictement NLoS. En outre, si les composantes NLoS du signal sont
pris en compte avec la composante LoS, la RMSE de la position est signi-
ficativement réduite (par exemple, 40% à 10dB) et l’estimation de la vitesse
devient possible. Dans la figure J.12, l’effet d’augmentation du nombre
d’antennes sur la précision de position est représenté, pour l’environnement
de propagation à trajets multiples seulement. Pour un système MISO, la
RMSEp < 1m pour un SNR > 11dB, tandis que le système 2 × 2 peut
obtenir la même précision avec un SNR de 3dB. Enfin, dans la figure J.13,
la RMSE de la position en fonction de la vitesse de MT est tracée. C’est
évident que le mouvement de la MT a un impact énorme sur la précision de
localisation, notamment pour l’environnement NLoS où l’erreur est réduite
de plus de 50% lorsque la vitesse est augmentée jusqu’à 2m/s.

J.6 Suivi du MT pour les systèmes MIMO-OFDM

L’algorithme présenté ici peut estimer uniquement la vitesse, donc la car-
actérisation “tracking”. Il utilise le DDM dans sa version plus générique,
comme décrit dans la section 1.5.1. L’avantage principal de l’utilisation de
la DDM est qu’aucune hypothèse sur l’environnement de diffusion (nombre
de rebonds) est faite. Le désavantage principal est les nombreux nouveaux
paramètres de nuisance apparâıssent dans cette représentation du canal.

Soient pint les paramètres d’intérêt et pnuis le vecteur de tous les autres
paramètres inconnus dans la matrice du canal H. Ces deux vecteurs sont
explicitement définis par la suite. Pour le moment, il suffit de constater
que pnuis = [θ, p̃nuis], où θ = vec(Θ) et Θ, avec toutes les autres matrices
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composant chaque H(fk, tl), sont définis dans la section 1.5.1. Selon une
estimation ML,

p̂int = argmax
pint

f(SY|pint) (J.51)

où f(SY|pint) est la densité de toutes les matrices du signal reçu, condi-
tionnées uniquement par les paramètres d’intérêt. Nous pouvons obtenir
cette densité en marginalisant la densité de tous les paramètres de nuisance,
nous obtenons

f(SY|pint) =

∫

A
f(SY|SH) · f(pnuis)dpnuis (J.52)

Toutes les paramètres, sauf θ, sont distribués uniformément et donc nous
pouvons écrire

f(pnuis) = O(sr, st)e
−θ†θ (J.53)

et nous pouvons avancer en marginalisant le vecteur gaussien θ. Après
unlong calcul, nous obtenons

f(SY|pint) =

∫

Ã
O′(sr, st)det((C∗

GCt
G + σ2I)−1)e−(y†(Ct

GC∗
G+σ2I)−1y)dp̃nuis

(J.54)
En outre, si l’on considère que Nf = 1, le r.h.s. de l’équation (J.54) ne
dépend plus de τ . Cela n’est pas surprenant, car si Nf = 1, on peut
remplacer (Θsr×st ⊙ Dsr×st(f)) avec une nouvelle matrice de Θ′

sr×st qui
a la même distribution. L’algorithme proposé pour un système MIMO est
résumé ci-dessous

• Mettre pint = [sr,φ], p̃nuis = [st,ψ,p
r,pt] et utiliser (J.54) pour

estimer les AoA, en utilisant une seule observation Nf = Nt = 1.

• Mettre pint = [st,ψ], p̃nuis = [sr,φ,p
r,pt] et utiliser (J.54) pour

estimer les AoD, en utilisant une seule observation, Nf = Nt = 1.

• Mettre pint = [υr, ωr], p̃nuis = [υt, αt,p
r,pt, τ ] et utiliser (J.54) pour

estimer les paramètres de notre véritable intérêt, en utilisant toutes
les observations.

J.6.1 Résultats de la simulation

Afin de calculer la valeur de l’intégrale multidimensionnelle (J.54) et évaluer
la performance de l’algorithme de suivi, des simulations de Monte Carlo ont
été réalisées. Normalement 100 itérations sont suffisantes pour l’algorithme
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Figure J.14: Log-likelihood for speed magnitude estimation at various SNR

de converger vers la vraie densité. Afin de rendre nos graphiques plus
claires, nous avons tracé les 1 dimensions normalisées log-vraisemblances
− 1

ln f(SY|υr)et − 1
ln f(SY|ωr) en fonction de υr et ωr, respectivement. La ligne

verticale en pointillés sur les figures représente la vraie valeur du paramètre
estimé (υr ou ωr).

Dans les figures J.14 et J.15, nous montrons que dans un environnement
bruyant (SNR = 10dB), υr et ωr peuvent être estimés correctement dans
un 4× 4 et 2× 8 système. D’autre part, dans un système 2× 2 ou 2× 4, les
paramètres d’intérêt sont mal-estimés à faible SNR. Ces résultats indiquent
que, lorsque un modèle complex comme le DDM -et pas sa version simplifiée
qui suppose un seul rebondit et des chemins distinctes-, est utilisé, il faut
chercher des solutions qui utilisent des systèmes MIMO, qui fonctionnent à
un SNR élevé et sont équipées avec un grand nombre d’ antennes aux deux
extrémités.



160 Appendix J Résumé en français
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Figure J.15: Log-likelihood for speed direction estimation at various SNR
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