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Abstract—For existing localization algorithms, Non-Line-of-
Sight (NLOS) propagation introduces some problems for the
determination of the mobile position. This is because most of
these algorithms depend on the information extracted from
the Line-of-Sight (LOS) path such as Time-of-Arrival (ToA)
or Time-Difference-of-Arrival (TDoA) received by either one
or more Base Stations. On the contrary, algorithms based on
Power Delay Profile Fingerprinting (PDP-F) take advantage
of the uniqueness of the multipath channel between the Base
Station (BS) and the Mobile Station (MS) over the geographical
region of interest. The fingerprinting approach as its name
implies performs a matching between a simulated database
quantity and its corresponding measured quantity and indicates
a match based on some cost function between the two. In this
paper, we introduce an extension to this approach by including
the effects of the Doppler shifts of the paths which we call
the method as Power Delay Doppler Profile Fingerprinting
(PDDP-F). With the inclusion of this extra information,
we aim to increase the localization accuracy by resolving the
paths not only in delay dimension but also in Doppler dimension.

keywords: mobile positioning, ray tracing, localization, power
delay doppler profile fingerprinting.

I. INTRODUCTION

For the past few years, there has been a high interest in mobile
positioning systems from both academic and industrial world [1], [2].
The primary motivation for the development of mobile positioning
systems was due to the mandatory requirement of E-911 service
by the U.S. Federal Communications Commission (FCC) [3]. Al-
though the starting was because of security-emergency need, later
it has found various applications in many fields. With the position
information of the mobile, it is possible to make beamforming in
the direction of the mobile to decrease the interference between the
users in the cell, increase the range and throughput of the system
and so on. Also intra and inter-system handoff can be handled more
properly.
The localization algorithms are based on collecting position-
dependent information from the MS, and then making a position
estimate by processing this information. Depending on the technique
used, either one or multiple BSs are required for identifiability of the
position. Many of the well-known localization algorithms depend on
the existence of the LOS path between the BS and MS. For example
by using ToA information from three BSs obtained from the LOS
paths, localization of the mobile is possible. Here the difficulty is
to have three LOS paths at all the MS-BS links at the same time.
Another technique which uses the combination of Angle of Arrival
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(AoA) and ToA information makes the localization possible with one
MS-BS link. However, obtaining AoA requires multiple antennas at
the BS, also LOS path may not always be present. So to make the
algorithm work even in NLOS conditions, Nájar et al. [4] proposes an
alternative approach. During LOS condition, by estimating the TOA
of the LOS and a NLOS path, the time offset (bias) between the two
ToAs is calculated. When LOS condition is no longer present, the bias
is then subtracted from the ToA of the NLOS path to estimate ToA
of the LOS path. In general by adding a Kalman filtering stage, the
accuracy of position estimate can be improved. The use of Kalman
filter allows the tracking of the position trajectory, the velocity of
the mobile and ToA bias caused by multipaths. As can be deduced
from the examples, these techniques work robust in LOS conditions
and try to minimize the effects of the NLOS conditions. However its
effect cannot be eliminated completely, leading to some irreducible
errors in the position estimates for the techniques relying on LOS
paths. Therefore new techniques have been developed which try not to
eliminate NLOS effects, but instead get use of it. The idea is to store
the position dependent parameter of the environment in a database
from the coverage area of the BS. Then a correlation algorithm is
used to determine the position by comparing the measured parameter
with the entries stored in the database. These kinds of techniques are
generally called Fingerprinting techniques. Location Fingerprinting
technique (LF) (introduced by U.S. Wireless Corp. of San Ramon,
Calif.) relies on signal structure characteristics [1], [5]–[7]. By using
multipath propagation pattern, the LF creates a signature unique to a
given location. The position of the mobile is determined by matching
measured signal characteristics from the BS-MS link to an entry of
the database. The location corresponding to the highest match of
the database entry is considered as the location of the mobile. For
LF, it is enough to have only one BS-MS link (multiple BSs are
not required) to determine the location of the mobile. Ahonen and
Eskelinen suggest using the measured Power Delay Profiles (PDPs)
in the database [8] for fingerprints, because amplitudes and delays
of the multipath components create a unique position dependent
signature. In [9], authors provide deterministic and Bayesian methods
for PDP-F based localization. However, bandwidth limitations in
the system might result in several rays arriving in the same sam-
pling interval disturbing identifiability or the localization accuracy.
For Ultra-WideBand (UWB) systems employing ToA algorithms,
localization accuracy is quite good [10], [11] due to the very high
bandwidth utilized in the system, but on the other hand its range
is quite limited. Therefore it is mainly used in indoor localization
applications. Outdoor localization which is also the scope of this
paper, suffers from the considerably lower bandwidth used in the
system. Due to lower bandwidth, number of resolvable paths of
the multipath channel defined in [12] is less resulting in worse
accuracy than UWB systems. We propose an alternative to increase
the localization accuracy without changing the system. The main idea
is to resolve the multipath components not just in one dimension
but also in the Doppler dimension. So, the rays arriving in the
same sampling duration but with different Doppler shifts can still



be discriminated if the difference between their Doppler frequencies
are more than the discretization in the Doppler domain which we
will explain later in the text. We call this technique as PDDP-F, and
provide two versions of the algorithm, namely Frequency-Domain
PDDP-F and the Time-Domain PDDP-F.
Notations: upper-case and lower-case boldface letters denote ma-

trices and vectors, respectively. (.)T and (.)H represent the transpose
and the transpose-conjugate operators. E {.} is the statistical expec-
tation, and tr {.} is the trace operator defined for square matrices.

II. FREQUENCY-DOMAIN PDDP FINGERPRINTING FOR

MOBILE LOCALIZATION

The database which we mention at the beginning is constructed
offline either by ray tracing or ray launching simulation methods or
by performing channel measurements over the geographical area of
interest. The main objective while creating the database is to obtain
location dependent channel information of the BS-MS link as we
described before. The area is divided into several discrete sections,
each section having a unique fingerprint. First we begin with the
channel model. All the parameters for localization can be found or
extracted from it. For the techniques relying on PDPs, PDP is just the
magnitude squared version of the channel impulse response (CIR).
But before using the measured PDPs, it must be averaged over some
time duration. However, if the mobile moves rapidly and/or some
paths are not resolvable (due to the limited bandwidth of the pulse-
shape p(t), paths contributions can overlap), the averaging gives a
poor PDP estimation, and then a poor location accuracy. The time
varying channel impulse response between the BS and MS can be
written as:

h(t, τ) =

NpX

i=1

Ai(t) ej2πfit p(τ − τi(t)) (1)

where Np denotes the number of paths (rays), p(t) is the convolution
of the transmit and receive filters (pulse shape), fi, τi(t), Ai(t)
denote the Doppler shift, delay and complex attenuation coefficient
(amplitude and phase of the ray) of the ith path respectively. Path
delays and amplitudes vary slowly with the position, whereas the
phase varies rapidly due to the high carrier frequency. Change of
location on the order of a wavelength can result in a complete
change of the phases. Thus one can assume that delays and fading
amplitudes of individual paths are constant over a reasonable amount
of (T ) channel observations, but not the fading phases. The sampled
estimated CIR with τs being the sampling period can be written as:

bh(t, kτs) =
LX

l=1

Al(t) p(kτs − τl) + v(t, kτs) (2)

where

Al(t) =

KlX

k=1

Al,kejϕl,k(t) ej2πfl,kt, (3)

Al,k and ϕl,k(t) being the amplitude and phase of the ray respec-
tively. In Equation (2), v(t, kτs) is the additive white Gaussian

noise vector, τl’s are in discrete sample units, and bh(t, kτs) =h
bh(t, t0) · · ·bh(t, t0 + (N − 1)τs)

iT

is a vector of length N , N

denoting the delay spread in samples. Equation (3) is just an expres-
sion of the superposition of rays arriving within the same sampling
duration. It is easy to see that K1 + K2 + ... + KL = Np. It is
highly probable that in systems having low bandwidths, many paths
will arrive in the same sampling durations which will decrease the
resolvability of individual paths. So for such systems, PDP averaging

might result in a poor PDP estimation. This is our main motivation
in the paper to include the Doppler effect, so that a 2D resolvability
is possible. Equation (2) can also be written in matrix notation as:

bh(t, kτs) = [pτ1
· · ·pτL

]| {z }
Pτ

2
64

A1(t)
...

AL(t)

3
75

| {z }
b(t)

+v(t, kτs), (4)

where pτ1
is the complex pulse delayed by τ1 samples.

A. Obtaining PDDP from Ray Tracing Data

After expressing the time varying channel model, we can
construct the PDDP from the ray tracing data. Here in this
section, we will first introduce a formulation of PDDP for a
general MIMO channel, then simplify the case for the SISO
case which we are interested in the paper. Finally we will explain
step by step how to apply the formulation to a given ray tracing data.

Consider a specular wireless MIMO channel model with multiple
(Nt) transmit and (Nr) receive antennas. The time-varying channel
impulse response is:

h(τ, t) =

NpX

i=1

Ai(t) ej2π fi t
aR(φi)a

T
T (θi) p(τ − τi) (5)

where h is rank 1 in 3 dimensions. The Np pathwise contributions
are characterized by these additional parameters:

• θi: angle of departure (AoD)
• φi: angle of arrival (AoA)
• aR(.), aT (.): (Rx/Tx side) antenna array response (if only a
single antenna is present on one side or the other, then the
corresponding a(.) = 1)

We shall assume here 2D propagation, an extension to 3D is
immediate. Note: in case the Tx & Rx array responses are unknown,
one should instead consider a parameterization of the following form:

h(τ, t) =

NpX

i=1

Ai(t) ej2π fi t
aR,i a

T
T,i p(τ − τi) (6)

with aR,i, aT,i unknown vectors. Note that also the pulse shape may
need to be adjusted to measurements.
The channel impulse response in (5) results in fact from the

propagation channel

c(τ, t, φ, θ, v, φv) =PNp

i=1 Ai(t) ej2π fi t δ(φ − φi) δ(θ − θi) δ(τ − τi)
(7)

where we shall assume the channel evolution over a short time period
t so that the AoA φ, the AoD θ, the path delay τi and even the path
complex amplitude Ai can be considered as constant.
Any Doppler shift in the propagation channel is actually assumed

to be due to the mobility of the mobile terminal (any mobility in
the environment would have to be captured by Ai(t)). Assume the
terminal speed vector to have a magnitude µ and an orientation φµ

(if φi = φµ, then incoming wave and speed vector are aligned, but
are evolving in opposite directions). Mobility of the terminal leads
to a Doppler shift for path i as follows:

fi = cos(φi − φµ) µ /λ (8)

where λ is the carrier wavelength. The channel impulse response in
(5) is the convolution of the propagation channel with the system
elements:

h(τ, t) = c(τ, t, φ, θ, v, φv) ∗ p(τ) ∗ aR(φ) ∗ a
T
T (θ) . (9)



Consider now sampling the impulse response with a sampling
period τs leading to Nτ samples and then vectorizing it:

h(t)|{z}
N×1

=

2
664

h(τs, t)
h(2τs, t)
...
h(Nττs, t)

3
775 =

NpX

i=1

Ai(t) ej2π fi t
hi (10)

where h(τs, t) is the vectorized version of the Nr x Nt channel for
the first delay element at time t and

hi = p(τi) ⊗ aT (θi) ⊗ aR(φi) , p(τ) =

2
664

p(τs − τ)
p(2τs − τ)
...
p(Nττs−τ)

3
775 (11)

where N = NtNrNτ = # TX antennas x # RX antennas x delay
spread, and ⊗ denotes the Kronecker product: for two matrices A
and B, we get the block matrix A ⊗ B = [aijB]. Two possible
models can now be considered for the path amplitudes:

• Gaussian model: Ai(t) Gaussian, characterized by a power
(variance)

• deterministic model: Ai(t) deterministic unknowns

We shall consider here the Gaussian case (other random models could
be considered also, at least for the introduction of the profiles). We
are now ready to introduce the Power Delay Doppler Space Profile
(PDDSP). At the propagation level we get

PDDSPc(τ, f, φ, θ, v, φv)
=

R
E c(τ, t1 + t, ...)c∗(τ, t1, ...) e−j2πftdt

=
PNp

i=1 σ2
i δ(τ − τi) δ(f − fi) δ(φ − φi) δ(θ − θi) .

(12)

where σ2
i = E |Ai|

2, and the expectation is at least over the
(independent and uniformly distributed) random phases in the Ai,
and possibly over the amplitudes also if they are not deterministic.
At the channel response level, we get

PDDSPh(τ, f)
=

R
E h(τ, t1 + t)hH(τ, t1) e−j2πftdt

=
PNp

i=1 σ2
i |p(τ − τi)|

2 δ(f − fi)aia
H
i

=
PNp

i=1 σ2
i |p(τ − τi)|

2 δ(f − fi) RT (θi) ⊗ RR(φi)

(13)

where ai = aT (θi) ⊗ aR(φi) and we introduced the spatial covari-
ances

RT (θi) = aT (θi)a
H
T (θi) , RR(φi) = aR(φi)a

H
R (φi) . (14)

In the case of a SISO channel, we get the Power Delay Doppler
Profile (PDDP)

PDDPh(τ, f) =

NpX

i=1

σ2
i |p(τ − τi)|

2 δ(f − fi) . (15)

Now the formulation is complete and we explain how to apply the
above formulation to the ray tracing data. The construction of the
PDDP is explained step-by-step below:

1) First we create the 2D Delay-Doppler profile by only taking
the rays into account (pulse shape and windowing effects not
included yet). Delay, Doppler and power information of each
ray is known. One thing to keep in mind is that delay and
Doppler domains should be discretized properly according to
the parameters in the measurement data.

The discretization in delay domain which we call ∆τ is fixed,
and equal to the sampling duration τs like in the measurement
data defined before. For the Doppler domain discretization,
channel estimations are carried out every ts seconds for
the measurement data, so the highest Doppler frequency +

Frequency Offset (FO) that can be observed is in the range
[−fs/2, fs/2] where fs = 1/ts. The FFT length we use in
the measurement data is denoted by NFFT , so the Doppler
discretization in the measurement data is given by fs/NFFT .
Therefore we use the same for the ray tracing data which we
call ∆Ω.

The FO, that we mentioned above is due to the difference
between the carrier frequencies of the local oscillators of
the transmitter and receiver. Normally in a uniform scattering
environment, the mean Doppler spread Ω̄ given by:

Ω̄ =

R
Ψ

Ω D(Ω) dΩR
Ψ

D(Ω) dΩ
(16)

would be close to 0, where D(Ω) is the Doppler spectrum and
Ψ denotes the range of possible Doppler shifts. So if there is
FO, there will be a nonzero mean Doppler spread Ω̄. Unless
the FO is too high, leading to aliasing, it is not a problem for
our algorithm, also the delay offset is not a problem either.

2) Next step is summing up the power of the rays which are in the
same grid. Here we directly sum up their individual powers,
as we compute the expected average power by the following
formula in the grid (we are averaging over the random phases
assuming uniform distribution over [0, 2π]):

Eϕl,1...ϕl,n
|(Al,1e

jϕl,1 + · · · + Al,nejϕl,n)|2 =

nX

i=1

A2
l,i (17)

where n is the number of rays in the grid, Al,i is the magnitude
of the ith ray. It is also easy to see that mean of the rays is
equal to 0, where we will use this fact in the Bayesian PDDP-F
part.

3) Last step is to include the effects of pulse shape in the delay
domain, and the windowing in the Doppler domain. This is an
easy process. It is enough to make linear convolution in the
Delay domain of the PDDP matrix with the absolute squared
pulse shape.

And the other operation as we mentioned before is for
windowing effect in the measurement data. We have M
channel estimates per point. And we choose a certain number
of consecutive channel estimates (NWindow) among them
for computing Fourier Transforms. This process is called
windowing, and should be included in the ray tracing PDDP.

Also it is important to choose a suitable window and a
window length NWindow. Although Rectangular window has
the narrowest main lobe for a given NWindow, its side lobes
are not negligible leading to spectral leakage [13]. Therefore
we decided to choose the Hamming window whose side lobes
decay much faster than the Rectangular window. To include the
effect of windowing, it is enough to make cyclic convolution
in the Doppler domain of the PDDP matrix with the absolute
squared DFT of the window.

In Figure 1, we show a sample PDDP obtained from a ray tracing
data. In fact, as we did not have very reliable ray tracing data, we
have used synthetically generated ray tracing data instead to test our
algorithms.

B. Obtaining PDDP from Measurement Data and The Finger-

printing Operation

Obtaining the PDDP from the measurement data is easier.
NWindow consecutive channel estimates are chosen with the
Hamming window explained before. Each channel estimate is a



Fig. 1. A Sample PDDP obtained from Ray Tracing Data

vector of length N . For each delay element among N , absolute
squared DFT is computed with respect to the time variable to see
its variation in time (Doppler information). Consequently this gives
the 2D Delay-Doppler profile of the measurement data. One thing
to pay attention is that all hardware related effects must be removed
from the channel estimates e.g. Automatic Gain Control (AGC) and
others to make a true comparison.

After computing ray tracing and measurement data PDDPs, next
step is to check the similarity between these matrix profiles. There
are consecutive channel measurements, obtained in the BS, and the
objective is to see which ray tracing data in the database will give the
highest match to this measurement. The cost function is defined as
the similarity between the matrices. Among the K element database,

the one corresponding to the position of the k̂th ray tracing data will
be chosen:

k̂ = arg max
k∈[1,K]

J(PDDPM , PDDPRTk
) (18)

where J is the likelihood function, PDDPM is the PDDP obtained
from the measurement data and PDDPRTk

is the PDDP from the

kth entry in the ray tracing database. For the likelihood function J,
one reasonable candidate is to use the inner product criteria defined
for matrices normalized by their norms as below:

tr(ATB)q
tr(ATA)tr(BTB)

= J(A,B). (19)

But one thing to note is that, before using the above formula, the
ray tracing and measurement PDDPs must be perfectly aligned in
the delay and Doppler dimensions. Any delay offset or FO must
be handled very precisely. Therefore it is reasonable to choose a
computationally effective solution. 2D FFT operation to check the
highest correlation between the two matrices normalized by their
norms is a very fast operation given by:

IFFT (FFT (A) ⊙ conj(FFT (B)))q
tr(ATA)tr(BTB)

(20)

where ⊙ is the Hadamard (element-wise) multiplication and conj
denotes conjugate. The maximum entry in the resulting matrix is the
highest correlation between the two in the perfectly aligned case.
Also the position of the maximum entry gives the delay offset and FO.

C. Simulation Results

Figure 2 is the simulation result for the comparison of deterministic
PDP-F and Frequency-Domain PDDP-F over a range of SNR values.
In our simulation environment, we have created 15 ray tracing points
(K = 15), and then generated a measurement data from the first
ray tracing point by adding noise. The objective is to see in how
many cases the algorithms will match with the first point. The path
loss exponent is taken as 2, and we generate more than 1000 rays
in every iteration. There is no spatial relation between these 15
points, we just generate random channel parameters for each of
them. For the system parameters, we have a sampling frequency
of 9.1429 MHz and a wavelength of 0.4249 m. For the PDDP-F,
the size of the 2D FFT is 1024 x 512 when we are computing the
correlation. To compute the spectrum, we use an FFT length of 512.
The delay spread N is taken as 135 samples. The channel estimates
are obtained every 4 ms, window length is 200, speed magnitude is
chosen randomly between 1-60 km/h and direction angle between 0-
359 degrees. We see that the Frequency-Domain PDDP-F algorithm
is almost independent of the SNR whereas the deterministic PDP-F
improves with the increasing SNR over the range of interest. As we
see in the plot, Frequency-Domain PDDP-F always outperforms the
deterministic PDP-F algorithm in all the SNR values. This difference
comes from the usage of the additional Doppler dimension which
PDP-F cannot benefit from.
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Fig. 2. Performance Comparison of PDP-F and PDDP-F over SNR

III. TIME-DOMAIN PDDP FINGERPRINTING FOR MOBILE

LOCALIZATION

As in the Frequency-Domain version of the algorithm, here we
first provide the formulation of the Time-Domain algorithm, then we
explain in detail the application of the algorithm on the ray tracing
data. Equation (3) shows that, sampled channel taps might be the
superposition of several rays which arrive within the same sampling
duration. As we explained before, mean of these channel taps is 0, due
to averaging over random phases. Also the expected average power is
just the summation of the individual powers of the incoming rays. The
central limit theorem lets us model these taps as Gaussian random
variables with mean 0. In this section, we propose the Time-Domain
version of the PDDP-F algorithm which makes use of the second-
order statistics of the channel. We assume that the complex fading
vector b(t), and the additive noise v(t) are i.i.d. zero-mean Gaussian
vector processes, i.e.,

b(t) ∼ N (0,Cb)
v(t) ∼ N

`
0, σ2

vIN

´ (21)



where N (0,Cb) denotes the zero-mean complex Gaussian vector
with covariance matrix Cb (we will soon explain how to derive it),
and σ2

v is the channel estimation error variance. With the statistical

model of Equation (21), bh(t) is modeled as an i.i.d. complex Gaus-

sian vector with bh(t) ∼ N
`
0,Cbh

´
,Cbh

= PτCbPτ
H + σ2

vIN .

With the Bayesian modeling of bh(t), we can propose a Maximum
Likelihood solution to the localization problem. Our aim is also to
take into account the Doppler variation of the channel. Therefore we

stack consecutive bh(t) channel estimates in a vector, instead of taking
just one, and compute the covariance matrices based on this. Now
consider the channel response at multiple consecutive time instants
t = ts, 2ts, . . . , nts :

h|{z}
nNτ NrNt×1

=

2
664

h(ts)
h(2ts)
...
h(nts)

3
775 (22)

Then we get

h =

NpX

i=1

Ai e(fi) ⊗ hi , e(f) =

2
6664

ej2πfts

ej2πf2ts

...

ej2πfnts

3
7775 (23)

We get for the covariance matrix of h

Chh =

NpX

i=1

σ2
i Rf (fi) ⊗ Rτ (τi) ⊗ RT (θi) ⊗ RR(φi) (24)

where

Rf (f) = e(f)eH(f) , Rτ (τ) = p(τ)pH(τ) . (25)

Note that Rf is Toeplitz. In the case of a SISO channel, we have

Chh =
PNp

i=1 σ2
i Rf (fi) ⊗ Rτ (τi) and the PDDP is related to the

diagonal part of this matrix, after taking DFT of the Rf part.
To be more specific, there are M channel estimates, and they are

divided into M − n + 1 groups each group having n consecutive
channel estimates. For example there can be 2 such groups for M =
4 and n = 3, i.e. bh(ts, kτs), bh(2ts, kτs), bh(3ts, kτs) for group 1

and bh(2ts, kτs), bh(3ts, kτs), bh(4ts, kτs) for group 2. We stack these
vector groups into a longer vector as:

bh(i) =

2
64

bh(i ts, kτs)
...

bh((i + n − 1) ts, kτs)

3
75 . (26)

Now, the Gaussian Log-Likelihood can be constructed with M−n+1
vectors as:

LL ∝ − (M − n + 1) ln
“
detCbh

”
−

M−n+1X

i=1

bh(i)H
Cbh

−1bh(i) (27)

where Cbh
is the covariance matrix of bh. Instead of the usual

Maximum Likelihood approaches to estimate the path parameters
by maximizing the likelihood with respect to the parameters, the
likelihood is evaluated by substituting the position dependent path
parameters and hence it provides the likelihood of position. In other
words, covariance matrices of the ray tracing database (Cbh

) are

created offline by the position dependent parameters (using delays,
powers, Doppler shifts of the rays), then the likelihood is evaluated
with the above formulation for the measurement data. The position
giving the highest likelihood is the position estimate of the mobile.
Equation (27) can be written equivalently as:

LL ∝ − ln
“
detCbh

”
− tr

n
Cbh

−1 bCh

o
(28)

where bCh =
1

M − n + 1

M−n+1X

i=1

bh(i)bh(i)H
is the observed sample

covariance matrix which is asymptotically unbiased. Equation (28)
clearly shows that the Log-Likelihood is just a Covariance Matching
operation between the measurement covariance matrix and the pre-
computed K covariance matrices of the database. One last thing to
mention is the derivation of the covariance matrices of the ray tracing
database (Cbh

). We will begin with Equation (26). To simplify the

notation, bh(its, kτs) will be denoted as bhi, v(its, kτs) as vi and
we will just present the derivation for n = 2. Deriving for any n is
straightforward afterwards.

E
n

bh(i)bh(i)H
o

=

2
4 E

n
bh1

bhH
1

o
E

n
bh1

bhH
2

o

E
n

bh2
bhH

1

o
E

n
bh2

bhH
2

o
3
5 (29)

where E
n

bh1
bhH

1

o
= E

n
bh2

bhH
2

o
= Cbh

= PτCbP
H
τ +σ2

vIN , and

Cb is a diagonal matrix given as:

Cb =

2
64

PK1

k=1 A2
1,k . . . 0

...
. . .

...

0 . . .
PKL

k=1 A2
L,k

3
75 , (30)

where we used Equation (3) to derive Cb (Al,k’s are the magnitudes
of the rays). As can be seen from the formulation, there is no Doppler
information yet because the calculated covariance is for the same time
instant. The idea of stacking consecutive channel estimates brings the

Doppler information which will be clear while deriving E
n

bh1
bhH

2

o
.

We will not make the derivation for E
n

bh2
bhH

1

o
because it is just

the transpose-conjugate of the other. E
n

bh1
bhH

2

o
=

“
E

n
bh2

bhH
1

o”H

= PτCdP
H
τ , where Cd is derived as:

2
64

PK1

k=1 A2
1,k e−j2πf1,kts . . . 0

...
. . .

...

0 . . .
PKL

k=1 A2
L,k e−j2πfL,kts

3
75

by using Equation (3) again. Now, the Doppler contributions of each
ray is visible in the covariance matrix. As can be seen, the overall
covariance matrix is a function of delays, powers and Doppler
shifts of rays. We aim to increase the localization accuracy by
incorporating this additional Doppler information.

A. Simulation Results

Figure 3 is the simulation result for the comparison of Bayesian
PDP-F and the Time-Domain PDDP-F over a range of SNR values.
The simulation environment is the same as for the Frequency-Domain
PDDP-F simulations except we do not use FFT here. We see 3 curves
in the plot where n = 1 corresponds to the Bayesian PDP-F case. It
is obvious that Time-Domain PDDP-F outperforms Bayesian PDP-F.
Increasing n (number of consecutive channel estimates) also increases
the success rate. If we also compare with the Frequency-Domain
PDDP-F algorithm, we see that the Time-Domain PDDP-F is more
robust and success rate is higher for n ≥ 3. Also one drawback of
the Frequency-Domain PDDP-F is that its non-parametric spectrum
might suffer from limited resolution.
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Fig. 3. Performance Comparison of PDP-F and PDDP-F over SNR

The Time-Domain PDDP-F approach can be seen as an elegant
method for localization. Instead of trying to match only the PDPs
(diagonal elements of the covariance matrices for the same time
instant), the whole covariance matrices are compared, also by taking
into account the Doppler information. However, there are some
important things to note. First of all, the delay offset and FO problems
are also present here. So care must be taken for them. Also another
factor which is very important and not present for the Frequency-
Domain case is the channel estimation error variance. It must be
handled very carefully also. The advantage of the Time-Domain
PDDP-F over its Frequency-Domain version lies in the weighting
matrix (inverse of the covariance matrix) used. If we consider the
noiseless case, the weighting matrix tries to balance the weak and
strong rays. In other words, strong rays (rays with high power)
are weighted by small coefficients whereas weak rays are weighted
by higher coefficients. As a result, this gives the advantage of
observing even very little details which would be mostly ignored
in the Frequency-Domain case. However if we consider noise, this
could also lead to noise amplification when the path contribution is
below the noise level.

IV. CONCLUSION

In this paper, we have presented two new algorithms for localiza-
tion. Classical localization methods take into account only powers
and delays of the paths, but we also took the Doppler information
into account. For the systems having small bandwidths, rays might
not be resolvable in time. Therefore the Doppler dimension has the
effect of increasing the accuracy, and also the identifiability. Having
Np ≥ 2 paths is sufficient for the identifiability unless they arrive at
the same Delay-Doppler grid. For a channel with delay spread N ,
the probability that two paths arrive in the same sampling duration
is 1/N , however the probability that both are located in the same
Delay-Doppler grid is 1/(NNFFT ). So we see that the resolution is
increased by a factor of NFFT by exploiting the Doppler information.
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