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Abstract—Speaker diarization is the task of determining “who
spoke when?” in an audio or video recording that contains an
unknown amount of speech and also an unknown number of
speakers. Initially, it was proposed as a research topic related to
automatic speech recognition, where speaker diarization serves
as an upstream processing step. Over recent years, however,
speaker diarization has become an important key technologyfor
many tasks, such as navigation, retrieval, or higher-levelinference
on audio data. Accordingly, many important improvements in
accuracy and robustness have been reported in journals and
conferences in the area. The application domains, from broadcast
news, to lectures and meetings, vary greatly and pose different
problems, such as having access to multiple microphones and
multimodal information or overlapping speech. The most recent
review of existing technology dates back to 2006 and focuseson
the broadcast news domain. In this paper we review the current
state-of-the-art, focusing on research developed since 2006 that
relates predominantly to speaker diarization for conference
meetings. Finally, we present an analysis of speaker diarization
performance as reported through the NIST Rich Transcription
evaluations on meeting data and identify important areas for
future research.

Index Terms—Speaker diarization, rich transcription, meetings

I. I NTRODUCTION

SPEAKER diarization has emerged as an increasingly im-
portant and dedicated domain of speech research. Whereas

speaker and speech recognition involve, respectively, the
recognition of a person’s identity or the transcription of
their speech, speaker diarization relates to the problem of
determining ‘who spoke when?’. More formally this requires
the unsupervised identification of each speaker within an audio
stream and the intervals during which each speaker is active.

Speaker diarization has utility in a majority of applications
related to audio and/or video document processing, such as
information retrieval for example. Indeed, it is often the case
that audio and/or video recordings contain more than one
active speaker. This is the case for telephone conversations (for
example stemming from call centers), broadcast news, debates,
shows, movies, meetings, domain-specific videos (such as
surgery operations for instance) or even lecture or conference
recordings including multiple speakers or questions/answers
sessions. In all such cases, it can be advantageous to automat-
ically determine the number of speakers involved in addition
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to the periods when each speaker is active. Clear examples
of applications for speaker diarization algorithms include
speech and speaker indexing, document content structuring,
speaker recognition (in the presence of multiple or competing
speakers), to help in speech-to-text transcription (i.e. so-called
speaker attributed speech-to-text), speech translation and, more
generally, Rich Transcription (RT), a community within which
the current state-of-the-art technology has been developed.
The most significant effort in the Rich Transcription do-
main comes directly from the internationally competitive RT
evaluations, sponsored by the National Institute of Standards
and Technology (NIST) in the Unites States [1]. Initiated
originally within the telephony domain, and subsequently in
that of broadcast news, today it is in the domain of conference
meetings that speaker diarization receives the most attention.
Speaker diarization is thus an extremely important area of
speech processing research.

An excellent review of speaker diarization research is pre-
sented in [2], although it predominantly focuses its attention
to speaker diarization for broadcast news. Coupled with the
transition to conference meetings, however, the state-of-the-
art has advanced significantly since then. This paper presents
an up-to-date review of present state-of-the-art systems and
reviews the progress made in the field of speaker diarization
since 2005 up until now, including the most recent NIST
RT evaluation that was held in 2009. Official evaluations
are an important vehicle for pushing the state-of-the-art for-
ward as it is only with standard experimental protocols and
databases that it is possible to meaningfully compare different
approaches. Whilst we also address emerging new research
in speaker diarization, in this article special emphasis is
placed on established technologies within the context of the
NIST RT benchmark evaluations, which has become a reliable
indicator for the current state-of-the-art in speaker diarization.
This article aims at giving a concise reference overview of
established approaches, both for the general reader and for
those new to the field. Despite rapid gains in popularity over
recent years the field is relatively embryonic compared to the
mature fields of speech and speaker recognition. There are
outstanding opportunities for contributions and we hope that
this article serves to encourage others to participate.

Section II presents a brief history of speaker diarization
research and the transition to the conference meeting domain.
We describe the main differences between broadcast news
and conference meetings and present a high-level overview
of current approaches to speaker diarization. In Section III we
present a more detailed description of the main algorithms
that are common to many speaker diarization systems, in-
cluding those recently introduced to make use of information
coming from multiple microphones, namely delay-and-sum
beamforming. Section IV presents some of the most recent
work in the field including efforts to handle multimodal
information and overlapping speech. We also discuss the useof
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features based on inter-channel delay and prosodics and also
attempts to combine speaker diarization systems. In Section
V, we present an overview of the current status in speaker
diarization research. We describe the NIST RT evaluations,
the different datasets and the performance achieved by state-
of-the-art systems. We also identify the remaining problems
and highlight potential solutions in the context of currentwork.
Finally, our conclusions are presented in Section VI.

II. SPEAKER DIARIZATION

Over recent years the scientific community has developed
research on speaker diarization in a number of different
domains, with the focus usually being dictated by funded
research projects. From early work with telephony data, broad-
cast news (BN) became the main focus of research towards
the late 1990’s and early 2000’s and the use of speaker
diarization was aimed at automatically annotating TV and
radio transmissions that are broadcast daily all over the world.
Annotations included automatic speech transcription and meta
data labeling, including speaker diarization. Interest inthe
meeting domain grew extensively from 2002, with the launch
of several related research projects including the European
Union (EU) Multimodal Meeting Manager (M4) project, the
Swiss Interactive Multimodal Information Management (IM2)
project, the EU Augmented Multi-party Interaction (AMI)
project, subsequently continued through the EU Augmented
Multi-party Interaction with Distant Access (AMIDA) project
and, and finally, the EU Computers in the Human Interaction
Loop (CHIL) project. All these projects addressed the research
and development of multimodal technologies dedicated to the
enhancement of human-to-human communications (notably in
distant access) by automatically extracting meeting content,
making the information available to meeting participants,or
for archiving purposes.

These technologies have to meet challenging demands such
as content indexing, linking and/or summarization of on-going
or archived meetings, the inclusion of both verbal and non-
verbal human communication (people movements, emotions,
interactions with others, etc.). This is achieved by exploiting
several synchronized data streams, such as audio, video and
textual information (agenda, discussion papers, slides, etc.),
that are able to capture different kinds of information that
are useful for the structuring and analysis of meeting content.
Speaker diarization plays an important role in the analysisof
meeting data since it allows for such content to be structured in
speaker turns, to which linguistic content and other metadata
can be added (such as the dominant speakers, the level of
interactions, or emotions).

Undertaking benchmarking evaluations has proven to be
an extremely productive means for estimating and comparing
algorithm performance and for verifying genuine technologi-
cal advances. Speaker diarization is no exception and, since
2002, the US National Institute for Standards and Technology
(NIST) has organized official speaker diarization evaluations1

involving broadcast news (BN) and, more recently, meeting
data. These evaluations have crucially contributed to bringing
researchers together and to stimulating new ideas to advance
the state-of-the-art. Whilst other contrastive sub-domains such

1Speaker diarization was evaluated prior to 2002 through NIST Speaker
Recognition (SR) evaluation campaigns (focusing on telephone speech) and
not within the RT evaluation campaigns.
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Fig. 1. General Diarization system: (a) Alternative clustering schemas, (b)
General speaker diarization architecture

as lecture meetings and coffee breaks have also been consid-
ered, the conference meeting scenario has been the primary
focus of the NIST RT evaluations since 2004. The meeting
scenario is often referred to as “speech recognition complete”,
i.e. a scenario in which all of the problems that arise in
any speech recognition can be encountered in this domain.
Conference meetings thus pose a number of new challenges
to speaker diarization that typically were less relevant inearlier
research.

A. Broadcast News versus Conference Meetings

With the change of focus of the NIST RT evaluations from
BN to meetings diarization algorithms had to be adapted
according to the differences in the nature of the data. First,
BN speech data is usually acquired using boom or lapel mi-
crophones with some recordings being made in the studio and
others in the field. Conversely, meetings are usually recorded
using desktop or far-field microphones (single microphonesor
microphone arrays) which are more convenient for users than
head-mounted or lapel microphones2. As a result the signal-to-
noise ratio is generally better for BN data than it is for meeting
recordings. Additionally, differences between meeting room
configurations and microphone placement lead to variations
in recording quality, including background noise, reverberation
and variable speech levels (depending on the distance between
speakers and microphones).

Second, BN speech is often read or at least prepared in
advance while meeting speech tends to be more spontaneous
in nature and contains more overlapping speech. Although BN
recordings can contain speech that is overlapped with music,
laughter, or applause (far less common for conference meeting
data), in general, the detection of acoustic events and speakers
tends to be more challenging for conference meeting data than
for BN data.

Finally, the number of speakers is usually larger in BN but
speaker turns occur less frequently than they do in conference
meeting data, resulting in BN having a longer average speaker
turn length. An extensive analysis of BN characteristics is
reported in [3] and a comparison of BN and conference
meeting data can be found in [4].

2Meeting databases recorded for research purposes usually contain head-
mounted and lapel microphone recordings for ground-truth creation purposes
only
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B. Main Approaches

Most of present state-of-the-art speaker diarization systems
fit into one of two categories: the bottom-up and the top-down
approaches, as illustrated in Fig. 1(a). The top-down approach
is initialized with very few clusters (usually one) whereasthe
bottom-up approach is initialized with many clusters (usually
more clusters than expected speakers). In both cases the aimis
to iteratively converge towards an optimum number of clusters.
If the final number is higher than the optimum then the system
is said to under-cluster. If it is lower it is said to over-cluster.
Both bottom-up and top-down approaches are generally based
on Hidden Markov Models (HMMs) where each state is
a Gaussian Mixture Model (GMM) and corresponds to a
speaker. Transitions between states correspond to speaker
turns. In this section we briefly outline the standard bottom-
up and top-down approaches as well as two recently proposed
alternatives: one based on information theory; and a second
one based on a non parametric Bayesian approach. Although
these new approaches have not been reported previously in
the context of official NIST RT evaluations they have shown
strong potential on NIST RT evaluation datasets and are
thus included here. Additionally, some other works propose
sequential single-pass segmentation and clustering approaches
[5]–[7], although their performance tends to fall short of the
state-of-the-art.

1) Bottom-Up Approach:The bottom-up approach is by far
the most common in the literature. Also known as agglomer-
ative hierarchical clustering (AHC or AGHC), the bottom-up
approach trains a number of clusters or models and aims at
successively merging and reducing the number of clusters until
only one remains for each speaker. Various initializationshave
been studied and, whereas some have investigated k-means
clustering, many systems use a uniform initialization, where
the audio stream is divided into a number of equal length
abutted segments. This simpler approach generally leads to
equivalent performance [8]. In all cases the audio stream is
initially over-segmented into a number of segments which
exceeds the anticipated maximum number of speakers. The
bottom-up approach then iteratively selects closely matching
clusters to merge, hence reducing the number of clusters by
one upon each iteration. Clusters are generally modeled with
a GMM and, upon merging, a single new GMM is trained on
the data that was previously assigned to the two individual
clusters. Standard distance metrics, such as those described
in Section III-C, are used to identify the closest clusters.A
reassignment of frames to clusters is usually performed after
each cluster merging, via Viterbi realignment for example,
and the whole process is repeated iteratively, until some
stopping criterion is reached, upon which there should remain
only one cluster for each detected speaker. Possible stopping
criteria include thresholded approaches such as the Bayesian
Information Criterion (BIC) [9], Kullback-Leibler (KL)-based
metrics [10], the Generalized Likelihood Ratio (GLR) [11]
or the recently proposedTs metric [12]. Bottom-up systems
submitted to the NIST RT evaluations [9], [13] have performed
consistently well.

2) Top-Down Approach:In contrast with the previous ap-
proach, the top-down approach first models the entire audio
stream with a single speaker model and successively adds new
models to it until the full number of speakers are deemed
to be accounted for. A single GMM model is trained on all
the speech segments available, all of which are marked as

unlabeled. Using some selection procedure to identify suitable
training data from the non-labeled segments, new speaker
models are iteratively added to the model one-by-one, with
interleaved Viterbi realignment and adaptation. Segmentsat-
tributed to any one of these new models are marked as labeled.
Stopping criteria similar to those employed in bottom-up
systems may be used to terminate the process or it can continue
until no more relevant unlabeled segments with which to train
new speaker models remain. Top-down approaches are far less
popular than their bottom-up counterparts. Some examples
include [14]–[16]. Whilst they are generally out-performed by
the best bottom-up systems, top-down approaches have per-
formed consistently and respectably well against the broader
field of other bottom-up entries. Top-down approaches are
also extremely computationally efficient and can be improved
through cluster purification [17].

3) Other Approaches: A recent alternative approach,
though also bottom-up in nature, is inspired from rate-
distortion theory and is based on an information-theoretic
framework [18]. It is completely non parametric and its results
have been shown to be comparable to those of state-of-the-art
parametric systems, with significant savings in computation.
Clustering is based on mutual information, which measures
the mutual dependence of two variables [19]. Only a single
global GMM is tuned for the full audio stream, and mutual
information is computed in a new space of relevance variables
defined by the GMM components. The approach aims at
minimizing the loss of mutual information between successive
clusterings while preserving as much information as possible
from the original dataset. Two suitable methods have been
reported: the agglomerative information bottleneck (aIB)[18]
and the sequential information bottleneck (sIB) [19]. Even
if this new system does not lead to better performance than
parametric approaches, results comparable to state-of-the-art
GMM systems are reported and are achieved with great
savings in computation.

Alternatively, Bayesian machine learning became popular
by the end of the 1990s and has recently been used for speaker
diarization. The key component of Bayesian inference is that
it does not aim at estimating the parameters of a system
(i.e. to perform point estimates), but rather the parameters
of their related distribution (hyperparameters). This allows
for avoiding any premature hard decision in the diarization
problem and for automatically regulating the system with
the observations (e.g the complexity of the model is data
dependent). However, the computation of posterior distribu-
tions often requires intractable integrals and, as a result,
the statistics community has developed approximate inference
methods. Monte Carlo Markov Chains (MCMC) were first
used [20] to provide a systematic approach to the computation
of distributions via sampling, enabling the deployment of
Bayesian methods. However, sampling methods are generally
slow and prohibitive when the amount of data is large, and
they require to be run several times as the chains may get
stuck and not converge in a practical number of iterations.

Another alternative approach, known as Variational Bayes,
has been popular since 1993 [21], [22] and aims at providing a
deterministic approximation of the distributions. It enables an
inference problem to be converted to an optimisation problem
by approximating the intractable distribution with a tractable
approximation obtained by minimising the Kullback-Leibler
divergence between them. In [23] a Variational Bayes-EM
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algorithm is used to learn a GMM speaker model and optimize
a change detection process and the merging criterion. In [24]
Variational Bayes is combined successfully with eigenvoice
modeling, described in [25], for the speaker diarization of
telephone conversations. However these systems still consider
classical Viterbi decoding for the classification and differ from
the nonparametric Bayesian systems introduced in Subsec-
tion IV-F.

Finally, the recently proposed speaker binary keys [26] have
been successfully applied to speaker diarization in meetings
[27] with similar performance to state-of-the-art systemsbut
also with considerable computational savings (running in
around0.1 times real-time). Speaker binary keys are small
binary vectors computed from the acoustic data using a UBM-
like model. Once they are computed all processing tasks take
place in the binary domain. Other works in speaker diarization
concerned with speed include [28], [29] which achieve faster
than real-time processing through the use of several processing
tricks applied to a standard bottom-up approach ( [28]) or by
parallelizing most of the processing in a GPU unit ( [29]).
The need for efficient diarization systems is emphasized when
processing very large databases or when using diarization as
a preprocessing step to other speech algorithms.

III. M AIN ALGORITHMS

Fig. 1(b) shows a block diagram of the generic modules
which make up most speaker diarization systems. The data
preprocessing step (Fig. 1(b)-i) tends to be somewhat domain
specific. For meeting data, preprocessing usually involves
noise reduction (such as Wiener filtering for example), multi-
channel acoustic beamforming (see Section III-A), the pa-
rameterization of speech data into acoustic features (such
as MFCC, PLP, etc.) and the detection of speech segments
with a speech activity detection algorithm (see Section III-B).
Cluster initialization (Fig. 1(b)-ii) depends on the approach
to diarization,i.e. the choice of an initial set of clusters in
bottom-up clustering [8], [13], [30] (see Section III-C) ora
single segment in top-down clustering [15], [16]. Next, in
Fig. 1(b)-iii/iv, a distance between clusters and a split/merging
mechanism (see Section III-D) is used to iteratively merge
clusters [13], [31] or to introduce new ones [16]. Optionally,
data purification algorithms can be used to make clusters more
discriminant [13], [17], [32]. Finally, as illustrated in Fig. 1(b)-
v, stopping criteria are used to determine when the optimum
number of clusters has been reached [33], [34].

A. Acoustic beamforming

The application of speaker diarization to the meeting do-
main triggered the need for dealing with multiple microphones
which are often used to record the same meeting from different
locations in the room [35]–[37]. The microphones can have
different characteristics: wall-mounted microphones (intended
for speaker localization), lapel microphones, desktop micro-
phones positioned on the meeting room table or microphone
arrays. The use of different microphone combinations as well
as differences in microphone quality called for new approaches
to speaker diarization with multiple channels.

The multiple distant microphone (MDM) condition was
introduced in the NIST RT‘04 (Spring) evaluation. A variety
of algorithms have been proposed to extend mono-channel
diarization systems to handle multiple channels. One option,

proposed in [38], is to perform speaker diarization on each
channel independently and then to merge the individual out-
puts. In order to do so, a two axis merging algorithm is used
which considers the longest detected speaker segments in each
channel and iterates over the segmentation output. In the same
year, a late-stage fusion approach was also proposed [39]. In it,
speaker segmentation is performed separately in all channels
and diarization is applied only taking into account the channel
whose speech segments have the best signal-to-noise ratio
(SNR). Subsequent approaches investigated preprocessingto
combine the acoustic signals to obtain a single channel which
could then be processed by a regular mono-channel diarization
system. In [40] the multiple channels are combined with a
simple weighted sum according to their signal-to-noise (SNR)
ratio. Though straightforward to implement, it does not take
into account the time difference of arrival between each
microphone channel and might easily lead to a decrease in
performance.

Since the NIST RT‘05 evaluation, the most common ap-
proach to multi-channel speaker diarization involves acoustic
beamforming as initially proposed in [41] and described in
detail in [42]. Many RT participants use the free and open-
source acoustic beamforming toolkit known as BeamformIt
[43] which consists of an enhanced delay-and-sum algo-
rithm to correct misalignments due to the time-delay-of-arrival
(TDOA) of speech to each microphone. Speech data can be
optionally preprocessed using Wiener filtering [44] to attenuate
noise using, for example, [45]. A reference channel is selected
and the other channels are appropriately aligned and combined
with a standard delay-and-sum algorithm. The contribution
made by each signal channel to the output is then dynamically
weighted according to its SNR or by using a cross-correlation-
based metric. Various additional algorithms are availablein the
BeamformIt toolkit to select the optimum reference channel
and to stabilize the TDOA values between channels before the
signals are summed. Finally, the TDOA estimates themselves
are made available as outputs and have been used successfully
to improve diarization, as explained in Section IV-A. Note
that, although there are other algorithms that can provide
better beamforming results for some cases, delay-and-sum
beamforming is the most reliable one when no information on
the location or nature of each microphone is known a priori.
Among alternative beamforming algorithms we find maximum
likelihood (ML) [46] or generalized sidelobe canceller (GSC)
[47] which adaptively find the optimum parameters, and
minimum variance distortionless response (MVDR) [48] when
prior information on ambient noise is available. All of these
have higher computational requirements and, in the case of the
adaptive algorithms, there is the danger of converging to in-
accurate parameters, especially when processing microphones
of different types.

B. Speech Activity Detection

Speech Activity Detection (SAD) involves the labeling of
speech and non-speech segments. SAD can have a significant
impact on speaker diarization performance for two reasons.
The first stems directly from the standard speaker diarization
performance metric, namely the diarization error rate (DER),
which takes into account both the false alarm and missed
speaker error rates (see Section VI.A for more details on
evaluation metrics); poor SAD performance will therefore
lead to an increased DER. The second follows from the fact
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that non-speech segments can disturb the speaker diarization
process, and more specifically the acoustic models involvedin
the process [49]. Indeed, the inclusion of non-speech segments
in speaker modelling leads to less discriminant models and
thus increased difficulties in segmentation. Consequently, a
good compromise between missed and false alarm speech error
rates has to be found to enhance the quality of the following
speaker diarization process.

SAD is a fundamental task in almost all fields of speech
processing (coding, enhancement, and recognition) and many
different approaches and studies have been reported in the
literature [50]. Initial approaches for diarization triedto solve
speech activity detection on the fly,i.e. by having a non-
speech cluster be a by-product of the diarization. However,
it became evident that better results are obtained using a
dedicated speech/non-speech detector as pre-processing step.
In the context of meetings non-speech segments may include
silence, but also ambient noise such as paper shuffling, door
knocks or non-lexical noise such as breathing, coughing and
laughing, among other background noises. Therefore, highly
variable energy levels can be observed in the non-speech
parts of the signal. Moreover, differences in microphones
or room configurations may result in variable signal-to-noise
ratios (SNRs) from one meeting to another. Thus SAD is far
from being trivial in this context and typical techniques based
on feature extraction (energy, spectrum divergence between
speech and background noise, and pitch estimation) combined
with a threshold-based decision have proven to be relatively
ineffective.

Model-based approaches tend to have better performances
and rely on a two-class detector, with models pre-trained with
external speech and non-speech data [6], [41], [49], [51], [52].
Speech and non-speech models may optionally be adapted to
specific meeting conditions [15]. Discriminant classifierssuch
as Linear Discriminant Analysis (LDA) coupled with Mel
Frequency Cepstrum Coefficients (MFCC) [53] or Support
Vector Machines (SVM) [54] have also been proposed in
the literature. The main drawback of model-based approaches
is their reliance on external data for the training of speech
and non-speech models which makes them less robust to
changes in acoustic conditions. Hybrid approaches have been
proposed as a potential solution. In most cases, an energy-
based detection is first applied in order to label a limited
amount of speech and non-speech data for which there is
high confidence in the classification. In a second step, the
labeled data are used to train meeting-specific speech and non-
speech models, which are subsequently used in a model-based
detector to obtain the final speech/non-speech segmentation
[9], [55]–[57]. Finally, [58] combines a model-based with a
4Hz modulation energy-based detector. Interestingly, instead
of being applied as a preprocessing stage, in this system SAD
is incorporated into the speaker diarization process.

C. Segmentation

In the literature, the term ‘speaker segmentation’ is some-
times used to refer to both segmentation and clustering.
Whilst some systems treat each task separately many of
present state-of-the-art systems tackle them simultaneously,
as described in Section III-E. In these cases the notion of
strictly independent segmentation and clustering modulesis
less relevant. However, both modules are fundamental to the
task of speaker diarization and some systems, such as that

reported in [6], apply distinctly independent segmentation and
clustering stages. Thus the segmentation and clustering models
are described separately here.

Speaker segmentation is core to the diarization process and
aims at splitting the audio stream into speaker homogeneous
segments or, alternatively, to detect changes in speakers,also
known as speaker turns. The classical approach to segmenta-
tion performs a hypothesis testing using the acoustic segments
in two sliding and possibly overlapping, consecutive windows.
For each considered change point there are two possible
hypotheses: first that both segments come from the same
speaker (H0), and thus that they can be well represented
by a single model; and second that there are two different
speakers (H1), and thus that two different models are more
appropriate. In practice, models are estimated from each of
the speech windows and some criteria are used to determine
whether they are best accounted for by two separate models
(and hence two separate speakers), or by a single model (and
hence the same speaker) by using an empirically determined
or dynamically adapted threshold [10], [59]. This is performed
across the whole audio stream and a sequence of speaker turns
is extracted.

Many different distance metrics have appeared in the liter-
ature. Next we review the dominant approaches which have
been used for the NIST RT speaker diarization evaluations
during the last 4 years. The most common approach is that of
the Bayesian Information Criterion (BIC) and its associated
∆BIC metric [33] which has proved to be extremely popular
e.g.[60]–[62]. The approach requires the setting of an explicit
penalty term which controls the tradeoff between missed turns
and those falsely detected. It is generally difficult to estimate
the penalty term such that it gives stable performance across
different meetings and thus new, more robust approaches have
been devised. They either adapt the penalty term automatically,
i.e. the modified BIC criterion [33], [63], [64], or avoid the use
of a penalty term altogether by controlling model complexity
[65]. BIC-based approaches are computationally demanding
and some systems have been developed in order to use the
BIC only in a second pass, while a statistical-based distance
is used in a first pass [66]. Another BIC-variant metric,
referred to as cross-BIC and introduced in [67], [68], involves
the computation of cross-likelihood: the likelihood of a first
segment according to a model tuned from the second segment
and vice versa. In [69], different techniques for likelihood
normalization are presented and are referred to as bilateral
scoring.

A popular and alternative approach to BIC-based measures
is the Generalized Likelihood Ratio (GLR),e.g. [70], [71].
In contrast to the BIC, the GLR is a likelihood-based metric
and corresponds to the ratio between the two aforementioned
hypotheses, as described in [39], [72], [73]. To adapt the
criterion in order to take into account the amount of training
data available in the two segments, a penalized GLR was
proposed in [74].

The last of the dominant approaches is the Kullback-Leibler
(KL) divergence which estimates the distance between two
random distributions [75]. However, the KL divergence is
asymmetric, and thus the KL2 metric, a symmetric alternative,
has proved to be more popular in speaker diarization when
used to characterize the similarity of two audio segments [75]–
[77].

Finally, in this section we include a newly introduced
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distance metric that has shown promise in a speaker diarization
task. The Information Change Rate (ICR), or entropy can be
used to characterize the similarity of two neighboring speech
segments. The ICR determines the change in information that
would be obtained by merging any two speech segments under
consideration and can thus be used for speaker segmentation.
Unlike the measures outlined above, the ICR similarity is
not based on a model of each segment but, instead, on the
distance between segments in a space of relevance variables,
with maximum mutual information or minimum entropy. One
suitable space comes from GMM component parameters [18].
The ICR approach is computationally efficient and, in [78],
ICR is shown to be more robust to data source variation than
a BIC-based distance.

D. Clustering

Whereas the segmentation step operates on adjacent win-
dows in order to determine whether or not they correspond to
the same speaker, clustering aims at identifying and grouping
together same-speaker segments which can be localized any-
where in the audio stream. Ideally, there will be one clusterfor
each speaker. The problem of measuring segment similarity
remains the same and all the distance metrics described in
Section III-C may also be used for clustering,i.e. the KL
distance as in [10], a modified KL2 metric as in [61], a BIC
measure as in [79] or the cross likelihood ratio (CLR) as in
[80], [81].

However, with such an approach to diarization, there is no
provision for splitting segments which contain more than a
single speaker, and thus diarization algorithms can only work
well if the initial segmentation is of sufficiently high quality.
Since this is rarely the case, alternative approaches combine
clustering with iterative resegmentation, hence facilitating the
introduction of missing speaker turns. Most of present di-
arization systems thus perform segmentation and clustering
simultaneously or clustering on a frame-to-cluster basis,as
described in Section III-E. The general approach involves
Viterbi realignment where the audio stream is resegmented
based on the current clustering hypothesis before the models
are retrained on the new segmentation. Several iterations are
usually performed. In order to make the Viterbi decoding more
stable, it is common to use a Viterbi buffer to smooth the state,
cluster or speaker sequence to remove erroneously detected,
brief speaker turns, as in [16]. Most state-of-the-art systems
employ some variations on this particular issue.

An alternative approach to clustering involves majority
voting [82], [83] whereby short windows of frames are entirely
assigned to the closest cluster,i.e. that which attracts the
most frames during decoding. This technique leads to savings
in computation but is more suited to online or live speaker
diarization systems.

E. One-Step Segmentation and Clustering

Most state-of-the-art speaker diarization engines unify the
segmentation and clustering tasks into one step. In these
systems, segmentation and clustering are performed hand-in-
hand in one loop. Such a method was initially proposed by
ICSI for a bottom-up system [31] and has subsequently been
adopted by many others [9], [41], [52], [84]–[86]. For top-
down algorithms it was initially proposed by LIA [14] as used
in their latest system [16].

In all cases the different acoustic classes are represented
using HMM/GMM models. EM training or MAP adaptation
is used to obtain the closest possible models given the current
frame-to-model assignments, and a Viterbi algorithm is used
to reassign all the data into the closest newly-created models.
Such processing is sometimes performed several times for the
frame assignments to stabilize. This step is useful when a class
is created/eliminated so that the resulting class distribution is
allowed to adapt to the data.

The one-step segmentation and clustering approach, al-
though much slower, constitutes a clear advantage versus
sequential single-pass segmentation and clustering approaches
[5]–[7]. On the one hand, early errors (mostly missed speaker
turns from the segmentation step) can be later corrected by
the re-segmentation steps. On the other hand, most speaker
segmentation algorithms use only local information to decide
on a speaker change while when using speaker models and
Viterbi realignment all data is taken into consideration.

When performing frame assignment using Viterbi algorithm
a minimum assignment duration is usually enforced to avoid
an unrealistic assignment of very small consecutive segments
to different speaker models. Such minimum duration is usually
made according to the estimated minimum length of any given
speaker turn.

IV. CURRENT RESEARCH DIRECTIONS

In this section we review those areas of work which are
still not mature but which have the potential to improve
diarization performance. We first discuss the trend in recent
NIST RT evaluations to use spatial information obtained from
multiple microphones, which are used by many in combination
with MFCCs to improve performance. Then, we discuss the
use of prosodic information which has led to promising
speaker diarization results. Also addressed in this section is
the ‘Achilles heel’ of speaker diarization for meetings, which
involves overlapping speech; many researchers have started
to tackle the detection of overlapping speech and its correct
labeling for improved diarization outputs. We then consider a
recent trend towards multimodal speaker diarization including
studies of multimodal, audiovisual techniques which have been
successfully used for speaker diarization, at least for laboratory
conditions. Finally we consider general combination strategies
that can be used to combine the output of different diarization
systems. The following summarizes recent work in all of these
areas.

A. Time-Delay Features

Estimates of inter-channel delay may be used not only for
delay-and-sum beamforming of multiple microphone channels,
as described in Section III-A, but also for speaker localization.
If we assume that speakers do not move, or that appropri-
ate tracking algorithms are used, then estimates of speaker
location may thus be used as alternative features, which
have nowadays become extremely popular. Much of the early
work, e.g. [87], requires explicit knowledge of microphone
placement. However, as is the case with NIST evaluations,
such a priori information is not always available. The first
work [88] that does not rely on microphone locations led
to promising results, even if error rates were considerably
higher than that achieved with acoustic features. Early efforts
to combine acoustic features and estimates of inter-channel
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delay clearly demonstrated their potential,e.g. [89], though
this work again relied upon known microphone locations.

More recent work, and specifically in the context of NIST
evaluations, reports the successful combination of acoustic
and inter-channel delay features [86], [90], [91] when they
are combined at the weighted log-likelihood level, though
optimum weights were found to vary across meetings. Better
results are reported in [42] where automatic weighting based
on an entropy-based metric is used for cluster compari-
son in a bottom-up speaker diarization system. A complete
front-end for speaker diarization with multiple microphones
was proposed in [42]. Here a two-step TDOA Viterbi post-
processing algorithm together with a dynamic output signal
weighting algorithm were shown to greatly improve speaker
diarization accuracy and the robustness of inter-channel delay
estimates to noise and reverberation, which commonly afflict
source localization algorithms. More recently an approachto
the unsupervised discriminant analysis of inter-channel delay
features was proposed in [92] and results of approximately
20% DER were reported using delay features alone.

In the most recent NIST RT evaluation, in 2009, all but
one entry used estimates of inter-channel delay both for
beamforming and as features. Since comparative experiments
are rarely reported it is not possible to assess the contribution
of delay features to diarization performance. However, those
who do use delay features report significant improvements in
diarization performance and the success of these systems in
NIST RT evaluations would seem to support their use.

B. Use of Prosodic Features in Diarization

The use of prosodic features for both speaker detection
and diarization is emerging as a reaction to the theoreti-
cal inconsistency derived from using MFCC features both
for speaker recognition (which requires invariance against
words) and speech recognition (which requires invariance
against speakers) [93]. In [84] the authors present a sys-
tematic investigation of the speaker discriminability of 70
long-term features, most of them prosodic features. They
provide evidence that despite the dominance of short-term
cepstral features in speaker recognition, a number of long-
term features can provide significant information for speaker
discrimination. As already suggested in [94], the consideration
of patterns derived from larger segments of speech can reveal
individual characteristics of the speakers’ voices as wellas
their speaking behavior, information which cannot be captured
using a short-term, frame-based cepstral analysis. The authors
use Fisher LDA as a ranking methodology and sort the 70
prosodic and long-term features by speaker discriminability.
The combination of the top-ten ranked prosodic and long-term
features combined with regular MFCCs leads to a 30% relative
improvement in terms of DER compared to the top-performing
system of the NIST RT evaluation in 2007. An extension of
the work is provided in [95]. The article presents a novel,
adaptive initialization scheme that can be applied to standard
bottom-up diarization algorithms. The initialization method
is a combination of the recently proposed ‘adaptive seconds
per Gaussian’ (ASPG) method [96] and a new pre-clustering
method in addition to a new strategy which automatically
estimates an appropriate number of initial clusters based on
prosodic features. It outperforms previous cluster initialization
algorithms by up to 67% (relative).

C. Overlap Detection

A fundamental limitation of most current speaker diarization
systems is that only one speaker is assigned to each segment.
The presence of overlapped speech, though, is common in
multiparty meetings and, consequently, presents a significant
challenge to automatic systems. Specifically, in regions where
more than one speaker is active, missed speech errors will
be incurred and, given the high performance of some state-of-
the-art systems, this can be a substantial fraction of the overall
diarization error. A less direct, but also significant, effect of
overlapped speech in diarization pertains to speaker clustering
and modeling. Segments which contain speech from more than
a single speaker should not be assigned to any individual
speaker cluster nor included in any individual speaker model.
Doing so adversely affects the purity of speaker models, which
ultimately reduces diarization performance. Approaches to
overlap detection were thoroughly assessed in [97], [98] and,
even whilst applied to ASR as opposed to speaker diarization,
only a small number of systems actually detects overlapping
speech well enough to improve error rates [99]–[101].

Initially, the authors in [102] demonstrated a theoretical
improvement in diarization performance by adding a second
speaker during overlap regions using a simple strategy of
assigning speaker labels according to the labels of the neigh-
boring segments, as well as by excluding overlap regions from
the input to the diarization system. However, this initial study
assumed ground-truth overlap detection. In [100] a real overlap
detection system was developed, as well as a better heuristic
that computed posterior probabilities from diarization topost
process the output and include a second speaker on overlap
regions. The main bottleneck of the achieved performance gain
is mainly due to errors in overlap detection, and more work on
enhancing its precision and recall is reported in [99], [101].
The main approach consists of a three state HMM-GMM
system (non-speech, non-overlapped speech, and overlapped
speech), and the best feature combination is MFCC and
modulation spectrogram features [103], although comparable
results were achieved with other features such as root mean
squared energy, spectral flatness, or harmonic energy ratio.
The reported performance of the overlap detection is 82%
precision and 21% recall, and yielded a relative improvement
of 11% DER. However, assuming reference overlap detection,
the relative DER improvement goes up to 37%. This way, this
area has potential for future research efforts.

D. Audiovisual Diarization

[104] presents an empirical study to review definitions of
audiovisual synchrony and examine their empirical behavior.
The results provide justifications for the application of audio-
visual synchrony techniques to the problem of active speaker
localization in broadcast video. The authors of [105] present
a multi-modal speaker localization method using a specialized
satellite microphone and an omni-directional camera. Though
the results seem comparable to the state-of-the-art, the solution
requires specialized hardware. The work presented in [106]
integrates audiovisual features for on-line audiovisual speaker
diarization using a dynamic Bayesian network (DBN) but
tests were limited to discussions with two to three people
on two short test scenarios. Another use of DBN, also called
factorial HMMs [107], is proposed in [108] as an audiovisual
framework. The factorial HMM arises by forming a dynamic
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Bayesian belief network composed of several layers. Each of
the layers has independent dynamics but the final observation
vector depends upon the state in each of the layers. In [109]
the authors demonstrate that the different shapes the mouthcan
take when speaking facilitate word recognition under tightly
constrained test conditions (e.g.frontal position of the subject
with respect to the camera while reading digits).

Common approaches to audiovisual speaker identification
involve identifying lip motion from frontal faces,e.g. [110]–
[114]. Therefore, the underlying assumption is that motion
from a person comes predominantly from the motion of the
lower half of their face. In addition, gestural or other non-
verbal behaviors associated with natural body motion during
conversations are artificially suppressed,e.g. for the CUAVE
database [115]. Most of the techniques involve the identifica-
tion of one or two people in a single video camera only where
short term synchrony of lip motion and speech are the basis for
audiovisual localization. In a real scenario the subject behavior
is not controlled and, consequently, the correct detectionof
the mouth is not always feasible. Therefore, other forms of
body behavior,e.g. head gestures, which are also visible
manifestations of speech [116] are used. While there has
been relatively little work on using global body movements
for inferring speaking status, some studies have been carried
out [82], [117]–[119] that show promising initial results.

However, until the work presented in [120], approaches
have never considered audiovisual diarization as a single,
unsupervised joint optimization problem. The work in [120],
though, relies on multiple cameras. The first article that
discusses joint audiovisual diarization using only a single, low-
resolution overview camera and also tests on meeting scenarios
where the participants are able to move around freely in the
room is [121]. The algorithm relies on very few assumptions
and is able to cope with an arbitrary amount of cameras
and subframes. Most importantly, as a result of training a
combined audiovisual model, the authors found that speaker
diarization algorithms can result in speaker localizationas side
information. This way joint audiovisual speaker diarization can
answer the question “who spoken when and from where”. This
solution to the localization problem has properties that may
not be observed either by audio-only diarization nor by video-
only localization, such as increased robustness against various
issues present in the channel. In addition, in contrast to audio-
only speaker diarization, this solution provides a means for
identifying speakers beyond clustering numbers by associating
video regions with the clusters.

E. System combination

System or component combination is often reported in the
literature as an effective means for improving performancein
many speech processing applications. However, very few stud-
ies related to speaker diarization have been reported in recent
years. This could be due to the inherent difficulty of merging
multiple output segmentations. Combination strategies have to
accommodate differences in temporal synchronization, outputs
with different number of speakers, and the matching of speaker
labels. Moreover, systems involved in the combination haveto
exhibit segmentation outputs that are sufficiently orthogonal in
order to ensure significant gains in performance when com-
bined. Some of the combination strategies proposed consistof
applying different algorithms/components sequentially,based
on the segmentation outputs of the previous steps in order

to refine boundaries (referred to as ‘hybridization’ or ‘piped’
systems in [122]). In [123] for instance, the authors combine
two different algorithms based on the Information Bottleneck
framework. In [124], the best components of two different
speaker diarization systems implemented by two different
French laboratories (LIUM and IRIT) are merged and/or used
sequentially, which leads to a performance gain compared
to results from individual systems. An original approach is
proposed in [125], based on a ‘real’ system combination. Here,
a couple of systems uniquely differentiated by their input
features (parameterizations based on Gaussianized against
non-Gaussianized MFCCs) are combined for the speaker
diarization of phone calls conversations. The combination
approach relies on both systems identifying some common
clusters which are then considered as the most relevant. Allthe
segments not belonging to these common clusters are labelled
as misclassified and are involved in a new re-classification
step based on a GMM modeling of the common clusters and
a maximum likelihood-based decision.

F. Alternative models

Among the clustering structures recently developed some
differ from the standard HMM insofar as they are fully
nonparametric (that is, the number of parameters of the
system depends on the observations). The Dirichlet process
(DP) [126] allows for converting the systems into Bayesian
and nonparametric systems. The DP mixture model produces
infinite Gaussian mixtures and defines the number of compo-
nents by a measure over distributions. The authors of [127]
illustrate the use of the Dirichlet process mixtures, showing
an improvement compared to other classical methods. [128]
propose another nonparametric Bayesian approach, in which
a stochastic hierarchical Dirichlet process (HDP) defines a
prior distribution on transition matrices over countably infinite
state spaces, that is, no fixed number of speakers is assumed,
nor found through either split or merging approaches using
classical model selection approaches (such as the BIC crite-
rion). Instead, this prior measure is placed over distributions
(called a random measure), which is integrated out using
likelihood-prior conjugacy. The resulting HDP-HMM leads to
a data-driven learning algorithm which infers posterior distri-
butions over the number of states. This posterior uncertainty
can be integrated out when making predictions effectively
averaging over models of varying complexity. The HDP-
HMM has shown promise in diarization [129], yielding similar
performance to the standard agglomerative HMM with GMM
emissions, while requiring very little hyperparameter tuning
and providing a statistically sound model. Globally, these
non parametric Bayesian approaches did not bring a major
improvement compared to classical systems as presented in
Section III. However, they may be promising insofar as they do
not necessarily need to be optimized for certain data compared
to methods cited in Section II. Furthermore, they provide
a probabilistic interpretation on posterior distributions (e.g.
number of speakers).

V. PERFORMANCEEVALUATION

In this section we report an analysis of speaker diarization
performance as reported during the four most recent NIST
RT evaluations. The analysis focuses solely on conference
meetings which are the core evaluation condition. We also
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present an analysis of the ground-truth references in orderto
underline the characteristics of the data with respect to meeting
sources and the different evaluation campaigns. Finally we
show state-of-the-art system results, collated from four NIST
RT‘07 and RT‘09 evaluation participants, which aim at giving
a baseline for future research.

A. Benchmarking Evaluations

Since 2004, NIST has organized a series of benchmark eval-
uations within the Rich Transcription (RT) campaigns3. One of
the tasks involves speaker diarization of different sets ofdata.
A common characteristic of these evaluations is that the only
a priori knowledge available to the participants relates tothe
recording scenario/source (e.g.conference meetings, lectures,
or coffee breaks for the meetings domain), the language (En-
glish), and the formats of the input and output files. Evaluation
participants may use external or background data for building
world models and/or for normalization purposes but no a priori
information relating to speakers in the recordings is available.
The number of speakers is also not known.

In recent years, the NIST RT evaluations have focussed on
the conference meeting domain, where the spontaneous speak-
ing style presents a considerable challenge for speaker diariza-
tion. Each meeting used in the evaluations was recorded using
multiple microphones (of different types and quality) which
are positioned on the participants or in different locations
around the meeting room. By grouping these microphones into
different classes, NIST created several contrastive evaluation
conditions. These include: individual headphone microphones
(IHM), single distant microphones (SDM), multiple distant
microphones (MDM), multiple mark III arrays (MM3A) and
all distant microphones (ADM). MM3A microphones are
those exclusively found within the arrays built and provided
by NIST. These are usually not included within the MDM
condition, they are included within the ADM condition. In this
section we show results for the MDM and SDM conditions
since we consider them to be the most representative of
standard meeting room recording equipment. These conditions
have also proven to be the most popular among evaluation
participants.

Participating teams are required to submit a hypothesis of
speaker activity including start-stop times of speech segments
with speaker labels, which are used solely to identify the
multiple interventions of a given speaker, but do not need to
reflect the speaker’s real identity. These system outputs are
compared to the ground-truth reference in order to obtain the
overall DER. The DER metric is the sum of three sources
of error: missed speech (percentage of speech in the ground-
truth but not in the hypothesis), false alarm speech (percentage
of speech in the hypothesis but not in the ground-truth) and
speaker error (percentage of speech assigned to the wrong
speaker). The speaker error can be further classified into
incorrectly assigned speakers and speaker overlap error. In
the first case the hypothesized speaker does not correspond to
the real (ground-truth) speaker. Speaker overlap error refers to
the case when the wrong number of speakers is hypothesized
when multiple speakers speak at the same time. The inclusion
of overlapping speech error in the evaluation was restricted to
a contrastive metric in the initial RT evaluations but has been
the primary metric since 2006. Overlap errors can be classified

3See http://nist.gov/speech/tests/rt.

as missed overlap (when fewer speakers than the real number
are hypothesized) and false alarm overlap (when too many
speakers are hypothesized). In the NIST evaluations up to4

overlapping speakers are considered in the scoring.
Note that as the DER is time-weighted, it ascribes little

importance to the diarization quality of speakers whose overall
speaking time is small. Additionally, a non-scoring collarof
250ms is generally applied either side of the ground-truth
segment boundaries to account for inevitable inconsistencies
in precise start and end point labeling. When comparing the
system outputs with the ground-truth, and given that the labels
identifying the speakers are just relative identifiers, thescoring
algorithm first computes an optimum mapping between both
sets of labels in order to obtain the DER. This is normally
performed according to a standard dynamic programming
algorithm defined by NIST.

B. Ground-Truth Analysis

Ground-truth references for evaluating speaker diarization
were initially obtained via manual labeling of the acous-
tic data, however, high variations between different label-
ers proved to be problematic. Therefore, more recently, an
automatically generated forced alignment has been used in
order to extract more reliable speaker start and end points
using an automatic speech recognition (ASR) system, human-
created transcriptions, and the audio from individual head
microphones (IHM).

As meeting data come from a variety of sources some
differences between them are expected. Furthermore, large
changes in the final DER scores from different evaluations
would suggest that there are differences between the sets
of meetings used each year. To gauge the differences we
have analyzed over20 different parameters computed on the
ground-truth data. In Table I we report4 of these parameters,
which we found most interesting, and group results by meeting
source and by evaluation year.

Fig. 2. Examples of turn and speaker durations in the presence of overlapped
speech and silences.

In the left side of the table we report average speaker
and turn durations. As exemplified in Fig. 2, the average
speaker duration refers to the average time during which a
speaker is active (i.e. a single line in the RTTM reference
files). Conversely, the average turn duration refers to the
average time during which there is no change in speaker
activity and is thus always smaller than the average speaker
duration. The difference between the two statistics reflects the
degree of overlap and spontaneity. Without any overlap and
a pause between each speaker exchange the average speaker
and turn durations would be identical. Increases in overlap
and spontaneity will result in a larger speaker/turn ratio.In
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Av. speaker duration / Av. turn duration silence / overlap
Meeting Source # meetings RT‘05 RT‘06 RT‘07 RT‘09 RT‘05 RT‘06 RT‘07 RT‘09

AMI 2 2.7s/2.3s - - - 10.7%/11.4% -/- -/- -/-
CMU 6 2.0s/1.8s 1.7s/1.2s 1.8s/1.6s - 6.8%/21.6% 20.1%/13.6% 29.6%/8.8% -/-
ICSI 2 2.5s/2.2s - - - 8.4%/20.7% -/- -/- -/-
NIST 9 2.3s/1.9s 2.8s/1.6s 2.1s/1.5s 1.6s/1.3s 8.0%/21.0% 36.0%/5.8% 21.7%/6.6% 11.0%/20.5%
VT 6 3.0s/2.5s 2.8s/1.3s 2.3s/1.6s - 17.6%/5.4% 44.8%/6.0% 23.9%/5.6% -/-
EDI 6 - 2.1s/1.4s 2.0s/1.4s 1.8s/1.2s -/- 27.4%/6.4% 24.2%/9.4% 27.3%/8.3%
TNO 1 - 2.1s/1.5s - - -/- 26.5%/6.0% -/- -/-
IDI 2 - - - 2.2s/1.7s -/- -/- -/- 17.4%/8.6%

Average - 2.5s/2.1s 2.3s/1.4s 2.0s/1.5s 1.8s/1.4s 10.3%/16.0% 31.5%/7.7% 24.9%/7.6% 17.5%/13.6%

TABLE I
GROUND-TRUTH ANALYSIS FOR THE DATASETS OF THE LAST FOUR SPEAKER DIARIZATION EVALUATION CAMPAIGNS (RT‘05 TO RT‘09) AND MEETING

SOURCE. COMPARISONS ARE BASED ON THE AVERAGE SPEAKER AND TURN DURATIONS (LEFT HALF SIDE) AND THE PERCENTAGE OF SILENCE AND
OVERLAPPING SPEECH(RIGHT HALF SIDE).

the right side of Table I we report the percentage of silence
and of overlapping speech.

For RT‘05 the average speaker segment duration is2.5s.
This value decreases continuously for subsequent datasets
(2.3s for RT‘06, 2.0s for RT‘07 and1.8s for RT‘09). This
tendency leads to increasingly more frequent speaker turnsand
increases the chances of miss-classifying a speech segment.
The average turn segment duration is2.1s for RT‘05. This
value falls to1.4s for RT‘06 and remains stable for RT‘07 and
RT‘09 (1.5s and1.4s respectively). The consistent decrease
in speaker/turn duration ratio highlights a general trend of
increasing spontaneity and helps to explain the differences
in results from one dataset to another. There are no distinct
differences across different meeting sites.

There are also noticeable differences in silence and overlap
statistics. The percentage of silence is lower for the RT‘05
and RT‘09 datasets than it is for the RT‘06 and RT‘09 datasets
(10.3% and 17.5% cf. 31.5% and 24.9%). However, the RT‘05
and RT‘09 datasets have a higher overlap rate than the RT‘06
and RT‘07 datasets (16.0% and 13.6% cf. 7.7% and 7.6%).
This is primarily due to3 meetings (from CMU, ICSI and
NIST sites) which have overlap rates over25% (note that
values in Table I are averaged across sites, and do not reflect
individual meeting scores). In the case of the RT‘09 dataset
the slightly high average overlap of13% is due to a single
meeting (recorded by NIST) in which the overlap reaches31%.
Listening to this meeting we concluded that the reason of such
overlap is that it is not a professional meeting but a social
rendez-vous. Conversely, RT’05 and RT’09 have in average
a lower percentage of silence (10% and 17%) compared to
RT’06 and RT’07 (31% and25%). A lower silence rate and
higher overlap might indicate that these meetings are more
dynamic, with less idle time and more discussion, although
this does not mean that they are more spontaneous, as their
speech and speaker segment lengths are still high compared
to the RT‘09 dataset.

Overall we see that, although all recordings belong to the
same task, there are large differences between the datasetsused
for each evaluation campaign, as well as between recordings
from the same source (recording site), but from different
datasets. This emphasizes the need for robust systems which
perform well regardless of particular dataset characteristics.
It is important to note, however, that the NIST RT datasets
discussed here typically contain around 8 meetings per dataset,
each of them contributing to a single DER score. Random
variations on any meeting from these small datasets have
a significant impact on average results. It is then difficult

to reliably interpret results and hence also difficult to draw
meaningful conclusions.

Comparisons with the work of the speech and speaker
recognition communities highlight the rapid accelerationin
research effort and progress stemming from the availability
of huge datasets. Advances in sophisticated modeling and
normalization strategies have revolutionized research inthese
related fields over recent years. It becomes apparent that
the fundamental lack of larger speaker diarization datasets,
which makes it difficult to assess novel algorithms, is a
critical barrier to further research in our field. Significantly
larger datasets are needed in order to obtain more robust
and meaningful performance estimates and comparisons. As
a result of processing more data, faster algorithms will also
need to be investigated for research in speaker diarizationto
be feasible with standard computing resources.

C. Evaluation Results

To assess the current state-of-the-art and provide a baseline
for future research we present results for the RT‘07 (Fig.
3 left half) and RT‘09 (Fig. 3 right half) NIST evaluations
for the MDM (Fig. 3a) and SDM (Fig. 3b) conditions. Both
figures have been compiled from a comparison of results from
four of the participating sites (LIA/Eurecom4, I2R/NTU, ICSI
and UPC) and by selecting the result with lowest DER for
each meeting recording. Given the volatility of the results
described and studied in [3], by selecting the best result
in each case we hypothesize that these results are a more
meaningful estimation of the state-of-the-art performance in
speaker diarization for conference meeting data than selecting
all results from any single system output. To illustrate the
variation in performance for different meetings we provide
results for individual meetings. In both figures errors are
decomposed into the speaker error (Spkr error), overlap error
(OVL error), false alarm speech error (FA speech) and missed
speech error (MISS speech).

For the MDM condition (Fig. 3)(a) the average DER for
the RT‘07 and RT‘09 datasets is7.5% and10.1% respectively.
Performance varies between3.5% and 15.7% for the RT‘07
dataset whereas for the RT‘09 dataset performance varies
between5.3% and22.2%. For the SDM condition the average
DER is 11.6% and17.7% for the RT‘07 and RT‘09 datasets,
respectively. Performance is always poorer than that for the
MDM condition and varies between3.7% and19.9% for the

4Eurecom was associated with the LIA for the RT‘09 campaign only.
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(a) (b)

Fig. 3. DERs for the RT’07 and RT’09 (a) in multiple distant microphone (MDM) condition, and (b) single distant microphone (SDM) condition (note that
spkr error in meeting NIST20080201-1405 has been trimmed to fit the screen, with a speaker error of 31.79% and a total DER of 49.65%)

RT‘07 dataset and between7.4% and 49.7% for the RT‘09
dataset. Thus, there is a large variation in performance across
different meetings and in all cases we observe significant
overlap errors and their often-dominant impact upon the final
DER. Of particular note is the poor performance obtained
on the single NIST20080201-1405, which correlates with
the particularly high percentage of overlapping speech for
this meeting as illustrated in Table I. Hence, the detection
and appropriate treatment of overlapping speech remains an
unsolved problem. In fact, the overlap error shown in Fig. 3 is
entirely due to missed overlap regions, as none of the speaker
diarization systems considered in this analysis included an
overlap detector. Also of note is the general stability of speech
activity detection (SAD) algorithms which achieve impressive
levels of performance in both MDM and SDM conditions (i.e.
they are robust to the quality of the signal). Values of around
1% to 2% missed speech error rates and2% to 3% false alarm
error rates are currently typical. The main difference between
MDM and SDM performance rests mainly in the speaker error.
Here diarization systems are affected by the reduced signal
quality which characterises the SDM condition.

Overall, the large variations in DER observed among the dif-
ferent meetings and meeting sets originate from the large vari-
ance of many important factors for speaker diarization, which
makes the conference meeting domain not as easily tractableas
more formalized settings such as broadcast news, lectures,or
court house trials. Previous work has highlighted the difficulty
in assessing the performance of speaker diarization algorithms
with the view of improving performance [130]. As reported in
Section III, current approaches to speaker diarization involve
a sequence of separate stages where each stage takes its input
from the preceding stage(s). When combined in such a fashion
it is exceedingly difficult to assess the performance of each
system component since every single one is affected by the
performance of all previous processing stages. Furthermore it
is not guaranteed that improvements to one stage, for example
that of segmentation, will lead unequivocally to improvements
in later stages, for example that of clustering. This makes
the optimization of different system components rather trou-
blesome. Once again by drawing comparisons to the speech
and speaker recognition fields, it is reasonable to foresee
more unified approaches, as is already in progress with the

now commonplace combined approaches to segmentation and
clustering. In particular we believe that important decreases
in DER will have to come in the near future from systems
incorporating effective algorithms that can detect and correctly
assign overlapping speech.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

Research on speaker diarization has been developed in
many domains, from phone calls conversations within the
speaker recognition evaluations, to broadcast news and meet-
ing recordings in the NIST Rich Transcription evaluations.
Furthermore, it has been used in many applications such as
a front-end for speaker and speech recognition, as a meta-
data extraction tool to aid navigation in broadcast TV, lecture
recordings, meetings, and video conferences and even for
applications such as media similarity estimation for copyright
detection. Also, speaker diarization research has led to various
by-products. For example, with the availability of recordings
using multiple microphones, a set of algorithms has been
proposed in recent years both for signal enhancement and to
take advantage of the extra information that these offer. In
addition, the availability of other modalities, such as video,
have started to inspire multimodal diarization systems, thus
merging the visual and the acoustic domains.

This article provides an overview of the current state-of-
the-art in speaker diarization systems and underlines several
challenges that need to be addressed in future years. For
example, speaker diarization is not yet sufficiently matureso
that methods can be easily ported across different domains,
as shown in Section V, where small differences in meeting
data (recorded at identical sites) lead to large variationsin
performance. In the meantime, larger datasets need to be
compiled in order for results to become more meaningful
and for systems to be more robust to unseen variations.
Of course, with increasing dataset sizes, systems will have
to become more efficient in order to process such data in
reasonable time. Still, the biggest single challenge is proba-
bly the handling of overlapping speech, which needs to be
attributed to multiple speakers. As a relatively embryonic
community, at least compared to the more established fields
of speech and speaker recognition, there are thus outstanding
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opportunities for significant advances and important changes
to the somewhat ad hoc and heuristic approaches that currently
dominate the field.

Overall, the future of the field seems even broader and
brighter than the present, as more and more people acknowl-
edge the usefulness of audio methods for many tasks that have
traditionally been thought to be exclusively solvable in the
visual domain. Speaker diarization is one of the fundamental
problems underlying virtually any task that involves acoustics
and the presence of more than one person.
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