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Abstract. We consider a slow fading multiuser environment with pri-
mary and secondary users. The secondary users have only partial knowl-
edge of the channel and are subjected to transmitted power constraints
by the primary users. Their communications are intrinsically affected
by outage events. We propose and analyze two algorithms for joint rate
and power allocation. In one algorithm, the secondary transmitters coop-
erate to maximizing a common utility function accounting for the total
throughput of the network. In a second approach based on a game frame-
work, the secondary users aim at maximizing selfishly their own utilities.
The latter approach shows better fairness properties at the expenses of
some global performance loss compared to the optimum cooperative ap-
proach.

1 Introduction

Spectrum sharing in cognitive radio [1] enables an efficient use of the scarce
frequency spectrum by allowing the coexistence of licensed and unlicensed users
in the same spectrum. In a typical scenario where independent systems do not
cooperate and there is no centralized authority to handle the network access
for secondary users, distributed algorithms to share the available resources play
a key role. Game theory offers a natural framework to construct distributed
algorithms. The literature in the field is copious and an exhaustive overview
exceeds the scope of this work. The interested reader can refer to [2, 3]. However,
the spectrum allocation problem among secondary users has been neglected for
the case of practical and theoretical interest when the channel is slow fading
and the secondary users have only a partial channel state information. In these
conditions, the secondary users suffer from outage events and a certain level of
information loss need to be tolerated. In this work we propose two algorithms,
one based on game theory and the other on optimization for the joint power
and rate allocation among secondary users. We analyze the characteristics of
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the game approach in terms of existence and multiplicity of the Nash equilibria
in the extreme regimes of high and low noise plus interference from primary
users. In the former case, a closed form expression for the Nash equilibrium
is provided. In the latter case, criteria for the convergence of a best response
algorithm are discussed. The optimization approach is also analyzed in the two
above mentioned regimes and closed form expressions for the resource allocation
are provided.

Due to space constraints, the proofs of the theoretical results are omitted in
this paper.

2 System Model

We consider a multiuser environment consisting of two secondary users and a
primary user sharing the same time and frequency band but transmitting to inde-
pendent receivers. The independent systems do not cooperate and no centralized
authority is assumed to handle the network access for secondary users. The sec-
ondary users compete for the shared bandwidth constrained by a target quality
of service for the primary user. We denote by S∗ and D∗ the transmitter and the
receiver of the primary user while Si and Di, for i = 1, 2 denote the source and
the destination of the secondary users, respectively. Let I = {∗, 1, 2}. We denote
by gp, with p ∈ I, the channel attenuation of the direct link Sp−Dp. The chan-
nel attenuations of the interfering links between transmitter Sp and receiver Dq,
with p 6= q and p, q ∈ I are denoted by hpq. The rate and the power of the signal
transmitted by Sp are Rp and Pp, respectively. The primary system broadcasts
the transmitted power on the signaling channel such that all the transmitters
know it, or, alternatively, the transmitters estimate it. The channel is fading and
each link fades independently with statistics known at the secondary sources and
given by a probability density function Θpq(hpq), with p, q ∈ I. We assume also
that the fading is Rayleigh distributed and ΘHpq (hpq) = 1

σ2
pq

exp(ppq/σ2
pq). The

sources transmit Gaussian symbols and the received signals at the destinations
are impaired by white additive Gaussian noise with variance N0.

3 Problem Statement

We will consider the problem of joint power and rate allocation by the secondary
sources under constraints on the quality of service of the primary communication
in the case of block fading, i.e. varying channel which is constant in the timeframe
of a codeword but independent and identically distributed from a codeword to
a codeword.
We assume that all the receivers estimate their respective direct links gp, p ∈ I
and broadcast it on the signaling channel such that all the transmitters in the
system know them. Furthermore, the secondary sources are supposed to track
the interference link from the primary source and exchange this information with
the other secondary users, i.e. transmitter Si, i ∈ {1, 2} has knowledge of both
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h∗1 and h∗2. Only statistical knowledge of the reverse link from a secondary
transmitter to the primary user is available at the secondary users.

Because of the partial knowledge of the channel by the sources and the as-
sumption of block fading, reliable communications, i.e. with error probability
arbitrarily small, are not feasible and outage events may happen. If the source
p ∈ I transmits at a certain rate with constant transmitted power Pp, an outage
event happens if

Rp > log
(

1 +
Ppgp

N0 + Pq1hq1p + Pq2hq2p

)
, p, q1, q2 = I with i 6= j, (1)

and the outage probability of source p depends on the choice of Rp, Pp, Pq1 and
Pq2 . We define the throughput as the average information that can be reliably
received by the destination. The throughput is given by

Tp(Pp, Rp, Pq1 , Pq2) = RpPr
{

Rp ≤ log
(

1 +
Ppgp

N0 + Pq1hq1p + Pq2hq2p

)}
(2)

where p, q1, q2 = I with p 6= q1 6= q2, , and Pr{E} denotes the probability of
the event E . We assume that the metric to measure the performance loss of the
primary user is the average interference σ2

i∗Pi + σ2
j∗Pj and the secondary users

pay a penalty proportional to the average interference caused to the primary
communication.

We study joint power and rate allocation for the secondary communications
by applying two different criteria. In the optimization approach the secondary
transmitters cooperate to maximize a global utility function accounting for the
total throughput of the secondary users and their costs due to the transmitted
power and the interference caused to the primary user,

u (P1, P2, R1, R2) =
∑2

i=1,i 6=j

(
Ti (Pi, Ri, Pj , Rj)− CiPi −Kiσ

2
i∗Pi

)

=
∑2

i=1

(
RiFi(ti)− CiPi −Kiσ

2
i∗Pi

)
.

(3)

where Fi(ti) = 1 − exp
(
− ti

Pjσ2
ji

)
, with ti = Pigi

eRi−1
− N0 − P∗σ2

i∗, and Ci and
Ki are unit costs per transmitted power and per average generated interference,
respectively. Note that the costs Ci and Ki can be interpreted as the Lagrangian
multipliers of constraints on the maximum power and maximum average inter-
ference to the primary user. Then, the utility function (3) corresponds to the
dual function (see e.g. [4]) of a constrained optimization problem with objective
function 2.

Alternatively, we investigate the case as the secondary users are rational
and selfish and allocate their rates and powers to maximize their own utility
functions. The utility function of transmitter i = 1, 2 is given by

ui(Pi, Pj) = Ti(Pi, Ri, Pj , P∗)− CiPi −Ki(σ2
i∗Pi + σ2

j∗Pj)
= RiFi(ti)− CiPi −Ki(σ2

i∗Pi + σ2
j∗Pj) with i 6= j.

(4)
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4 Game-Based Resource Allocation

Power and rate allocation for the two secondary transmitters can be formulated
as a game G = {S,U ,P}, where S is the set of players (the two secondary
transmitters), U = {u1, u2} is the utility functions defined in (4), and P is the
strategy set defined by P ≡ {(P1, R1), (P2, R2)|P1, P2, R1, R2 > 0}. The power
and rate allocation of the secondary transmitter is obtained as an equilibrium
point of the system. When both transmitters aims at maximizing their utility
function, on equilibrium point is the Nash equilibrium defined by the allocation
strategy (P ∗1 , R∗1, P

∗
2 , R∗2) such that

u1 (P ∗1 , R∗1, P
∗
2 , R∗2) ≥ u1 (P1, R1, P

∗
2 , R∗2) for ∀P1, R1 ∈ R++

u2 (P ∗1 , R∗1, P
∗
2 , R∗2) ≥ u2 (P ∗1 , R∗1, P2, R2) for ∀P2, R2 ∈ R++

where R++ denotes the set of positive reals.
Nash equilibria of the game G necessarily satisfy the following system of

equations
∂ui

∂Pi
=

Rigi

(eRi − 1)Pjσ2
ji

− Ci −Kiσ
2
i∗ = 0

∂ui

∂Ri
= Fi(ti)− RiPigieRi

(eRi − 1)2
F
′
i (ti) = 0

or equivalently,

1− exp

(
− ti

Pjσ2
ji

)
= Pi

(
Ci + Kiσ

2
i∗

) eRi

eRi − 1
(5)

1
Pjσ2

ji

exp

(
−ti

Pjσ2
ji

)
=

(
Ci + Kiσ

2
i∗

) (
eRi − 1

)

Rigi
(6)

From (5) and (6) we obtain

Pi
eRi

eRi − 1
(
Ci + Kiσ

2
i∗

)
+

(eRi − 1)σ2
ji(Ci + Kiσ

2
i∗)

Rigi
= 1 (7)

which yields

Pi =

(
1− (Ci + Kiσ

2
i∗)Pjσ

2
ji

Rigi
(eRi − 1)

)
(eRi − 1)

(Ci + Kiσ2
i∗)eRi

i = {1, 2} . (8)

A solution of the 4-equation system (5)-(6) is a Nash equilibrium if it satisfies
the conditions

∂2ui

∂R2
i

< 0,
∂2ui

∂P 2
i

< 0,H =
∂2ui

∂R2
i

∂2ui

∂P 2
i

−
(

∂2
ui

∂Pi∂Ri

)2

> 0. (9)
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It is straightforward to verify that the utility function is not concave in Ri.
Hence, the results of N-concave games can not be applied here. Additionally,the
analysis of the general case results complex. In order to get additional insights
into the system behavior, we consider firstly the following extreme cases : (1) the
interference from the primary user and the noise tend to zero, (secondary-user
interference limited regime ), (2) the noise is much higher than the transmitted
power (high noise regime).

Secondary-User Interference Limited Regime When N0+P∗h∗i is negligible com-
pared to the interference, the payoff function is still given by (4), with ti = Pigi

eRi−1
.

Proposition 1. When the interference from the primary user and the noise
tend to zero, the Nash equilibrium of game G satisfy the system of equations

x1 = κ1f(x2) (10)
x2 = κ2f(x1) (11)

where xi = gi

(Ci+κiσ2
i∗)Pjσ2

ji
, κi = (Ci+Kiσ

2
i∗)gj

(Cj+Kjσ2
j∗)σ

2
ij

, i, j ∈ 1, 2, i 6= j and

f(x) =
(

1− eR(x) − 1
xR(x)

)−1 (
1− e−R(x)

)−1

(12)

for 1 < x < ∞. In (12), R(x) is the unique positive solution of the equation

1− xR

eR − 1
exp

(
− x

eR
+

eR − 1
ReR

)
= 0 (13)

such that

−x +
eR − 1

R
6= 0 (14)

Let (x0
1, x

0
2) be solutions of system (12). The corresponding Nash equilibrium is

given by

P1 =
g2

(C2 + K2σ2
2∗)x

0
2σ

2
12

, R1 = R(x0
1),

P2 =
g1

(C1 + K1σ2
1∗)x

0
1σ

2
21

, R2 = R(x0
2).

Remarks Note that the solution R(x) to

eR − 1
R

= x

is also a solution to (13). It is possible to verify that such a solution corresponds
to a minimizer of the utility function. The solution R(xj) to (13) is the rate
which maximizes the utility function corresponding to the transmit power of the
other transmitter Pi = gj

(Cj+Kjσ2
j∗)xjσ2

ji
. It lies in the interval

(
0, R(xj)

)
and we
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refer to it as the best response in terms of rate of player j to strategy Pi of
player i. Similarly, κif(xj) is the best response in terms of power of users to the
strategy Pi of its opponent.

The solution (x0
1, x

0
2) to system (10) depends on the system parameters only

through the constants κ1 and κ2. The existence and uniqueness of Nash equilib-
rium for the class of systems considered in Proposition I reduces to the analysis
of the solution of system (10) and depends on the system via x1 and x2. The
solution to equation (13) can be effectively approximated by R(x) ≈ 0.8 log(x).
Then, the function f(x) is approximated by

f(x) ≈
(

1− e0.8 log(x) − 1
x0.8 log(x)

)−1 (
1− e−0.8 log(x)

)−1

.

The following proposition provides sufficient conditions for the existence of
a Nash equilibrium.

Proposition 2. When the interference from the primary user and the noise
tend to zero, a Nash equilibrium of the game G exists if

(κ1 − 1)(κ2 − 1) > 0

with κi defined in Proposition 1.

General conditions for the uniqueness of the Nash equilibrium are difficult
to determine analytically. Let us observe that in general a system with noise
and interference from the primary source that tend to zero may have more than
one Nash equilibrium. Let us consider the two systems corresponding to the
two pairs of coefficients κ

(1)
1 = κ

(1)
2 = 1.05 and κ

(2)
1 = κ

(2)
2 = 2. The two curves

x2 = κ
(1)
1 f(x1), for i = {1, 2} cross each other in x1 = x2. Additionally, the curve

x2 = κ
(1)
1 f(x1) has two asymptotics in x1 = 1 and x2 = 1. Then, by observing

Figure 1 , it becomes apparent that the curves with κ
(1)
1 = κ

(1)
2 = 1.05 will cross

again for high x1 and x2 values. In contrast, the curves with κ
(1)
1 = κ

(1)
2 = 2 will

diverge from each other, and these crossing points correspond to Nash equilibria,
it is worth noticing that for x1 À 1, x2 ≈ 1, (and for x2 À 1, x1 ≈ 1 ). Then,
from a telecommunication point of view, it is necessary to question whether the
model for N0 +P∗h∗i → 0 is still applicable. In fact, in such a case, P1 ¿ g1

C1σ2
12

,
but also P1 À N0 + P∗h∗1 has to be satisfied because of the system model
assumptions. Typically, the additional Nash equilibria with some κi ≈ 1 are not
interesting from a physical point of view since the system model assumptions
are not satisfied.

By numerical simulations, we could observe that games with multiple Nash
equilibrium exist for a very restricted range of system parameters, more specifi-
cally for 1 ≤ κi ≤ 1.1.

Proposition 1 suggests also an iterative algorithm for computing Nash equi-
librium based on the best response. Choose an arbitrary point x

(0)
1 and compute
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the corresponding value x
(0)
2 = κ1f(x(0)

1 ). From a practical point of view, this is
equivalent to choose arbitrarily the transmitted power P

(0)
2 = g1

σ2
21x

(0)
1 (C1+κ1σ2

1∗)
for transmitter 2 and determine the power allocation for user 1 which maxi-
mizes its utility function. The optimum power allocation for user 1 is P

(0)
1 =

g2

σ2
12x

(0)
2 (C2+κ2σ2

2∗)
. We shortly refer to P

(0)
1 as the best response of user 1 to user

2. Then, by using x
(0)
2 it is possible to compute x

(1)
1 = κ2f

(
x

(0)
2

)
, the best re-

sponse of user 2 to user 1. By iterating on the computation of the best responses
of user 1 and user 2 we can obtain resource allocations closer and closer to the
Nash equilibrium and converge to the Nash equilibrium. We refer to this algo-
rithm as the best response algorithm.
The best response algorithm is very appealing for its simplicity. Nevertheless, its
convergence is not guaranteed. This issue is illustrated in Figure 1. Let us con-
sider the interference channel with κ1 = κ2 = 1.05 and the corresponding solid
and dashed curves x2 = f(x1) and x1 = f(x2). The Nash equilibrium exists and
is unique but the best response algorithm diverges from the Nash equilibrium
even for choices of the initial point arbitrarily close to the Nash equilibrium but
different from it. Numerical results show that if κ1 and κ2 are both greater than
1.2, the best response algorithm always converges to a Nash equilibrium.
Analytically, it is possible to prove the following Proposition.

Proposition 3. For sufficiently large κ1 and κ2, the fixed point iterations
{

x
(k+1)
1 = κ1f(x(k)

2 ),
x

(k+1)
2 = κ2f(x(k)

1 ),
(15)

converge.

In fact, large values of κ1 and κ2 correspond to a realistic situation for system
where the noise plus the interference from the primary source are negligible
compared to the transmitted powers of the secondary users.

High noise regime Let us turn to the case when noise is much higher than the
transmitted power, Pigi ¿ N0 + P∗h∗i. The throughput can be approximated
by

T i (Pi, Ri, Pj , P∗) = RiPr
{

Ri ≤ Pigi

N0+Pjhji+P∗h∗i

}

= RiPr
{

hji ≤ 1
Pj

(
Pi

gi

Ri
−N0 − P∗h∗i

)} (16)

The utility function is given by

vi = Ri


1− exp


− 1

Pjσ2
ji

(
Pi

gi

Ri
−N0 − P∗h∗i

)




−CiPi−Ki(σ2

i∗Pi+σ2
j∗Pj)
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Fig. 1. Graphical investigation of convergence of the best response algorithm in the
interference limited regime

for i = 1, 2 Correspondingly, we consider the game G = {S,V,P} , where the set
of players and policies coincide with the corresponding sets in G while the utility
function set consists of the functions (16). The joint rate and power allocation
for selfish secondary transmitters is given by Nash equilibrium of game G. The
following proposition states the conditions for the existence and uniqueness of a
Nash equilibrium in G and provides the equilibrium point.

Proposition 4. Game G admits Nash equilibrium if and only if

gi

Ci + Kiσ2
i∗

> N0 + P∗hi∗, i = 1, 2.

If above condition is satisfied, G has the unique equilibrium
(
(R∗i , P

∗
i ), (R∗j , P

∗
j )

)
where P ∗i and P ∗j are the unique roots of the equations

(
1− ln

(
QjPiσ

2
ij

gj

))
Piσ

2
ij =

gj

Qj
−N0 − σj2∗

and (
1− ln

(
QiPjσ

2
ji

gi

))
Pjσ

2
ji =

gi

Qi
−N0 − σi2∗



Competitive unlicensed spectrum sharing on slow fading channels 9

in the intervals
(
0,

gj

Qjσ2
ij

)
and (0, gi

Qiσ2
ji

) respectively, being Qi = Ci + Kiσ
2
i∗.

Also,

Ri =
PigiQi

gi − Pjσ2
jiQi

and Rj =
PjgjQj

gj − Piσ2
ijQj

.

General case Let us consider now the general case, when the noise, the powers
of interferences and the transmitted powers are of the same order of magnitude.
A Nash equilibrium necessarily satisfies the system of equations (6) and (8).
Substituting (8) in (6) yields

1− xiRi

eRi − 1
exp

(
− xi

eRi
+

eRi − 1
RieRi

+ ni

)
= 0 i = 1, 2 (17)

with ni = N0+P∗h∗i

Pjσ2
ji

. Equations ( 8) and (17) provide an equivalent system to
be satisfied by Nash equilibrium. In order to determine a Nash equilibrium we
can proceed as in the case of the secondary-interference limited regime. Observe
that, in this case, (17) depends on the system parameters and the other player
strategy not only via xi but also via ni. Then, the general analysis feasible for
any communication system in the secondary interference limited regime is no
longer possible and the existence and multiplicity of a Nash equilibrium should
be studied independently for each communication system. In the following, we
detail guidelines for this analysis.

From (17), it is possible to determine the best response in terms of rate of
transmitter i to policy Pj of transmitter j. Conditions for the existence of such
best response are detailed in the following statement.

Proposition 5. Equation (17) admits positive roots if and only if

1− xie−xi+1+ni > 0. (18)

If (18) is satisfied, (17) admits a single positive root in the interval (0, log xi),
which corresponds to the best response in terms of rate to policy Pj of user j.

From the best responses in terms of rate, it is straightforward to determine the
best response in terms of powers for the two players.

5 Optimum Joint Rate and Power Allocation

In this section, we study the joint rate and power allocation when both the
secondary users cooperate to maximize the utility function.
In this case we assume that the strategy set is defined by1

P = {(P1, R1), (P2, R2)|P1, P2, R1, R2 ≥ 0} .

We consider again the two extreme regimes when the noise and the interference
generated by the primary user is very high and when it is very low. In both cases
we show that the optimum resource allocation privileges a single secondary user
transmission. The following two propositions state the results.
1 Note that P is the closure of the open strategy set P of game G.
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Proposition 6. Let us assume that the noise plus the interference from the
primary user are very high compared to the power transmitted by the secondary
transmitter, or equivalently, gi

Ci
> N0 + P∗h∗i and gi

Ci
≈ N0 + P∗h∗i, i = 1, 2.

Then, if

log
gi

Ci(N0 + P∗h∗i) + Ci (N0 + P∗h∗i)
> log

gj

Cj(N0 + P∗h∗j) + Cj (N0 + P∗h∗j)

i, j = 1, 2 i 6= j (19)

transmitter i transmits at power Pi = 1
gi

(
gi

Ci
−N0 − P∗h∗i

)
and rate Ri =

log
(

gi

Ci(N0+P∗hi∗)

)
≈ gi

Ci(N0+Pi)
, and the transmitter j is silent, i.e. Pj = Rj = 0.

Similarly, for the noise and interference from the primary user negligible com-
pared to the interference from the secondary user the following result holds.

Proposition 7. Let us assume that the noise plus the interference from the
primary user are very low while the potential interference from the secondary
source could be substantially higher, i.e, N0 + P∗h∗1 → 0 and σ2

21
C2

À 0 for

transmitter 1 and N0 + P∗h∗2 → 0 and σ2
12

C1
À 0 for transmitter 2. There does

not exist an optimum allocation strategy for both P1, P2 > 0. If (19) is satisfied,
transmitter i transmits at power and rate

Pi =
1
gi

(
gi

Ci
−N0 − P∗h∗i

)
≈ 1

Ci
and Ri = log

(
gi

Ci(N0 + P∗h∗i)
,

)

respectively, while transmitter j stays silent.

Note that both under the conditions of Proposition 6 and 7, a decision on
the optimum resource allocation would require knowledge of both h∗1 and h∗2 at
both secondary transmitters. A distributed resource allocation approach requires
an exchange of information between transmitter 1 and transmitter 2, which has
been introduced in the system model.

Closed form resource allocation strategies for the general case are not avail-
able and numerical constrained optimization is necessary.

6 Numerical Result

In this section, we assess the performance of the proposed algorithms and com-
pare them. The resource allocation has a complex dependency on several system
parameters, e.g. noise, interference from the primary user, channel gains, costs.
We first investigate the performance of the game resource allocation on the sys-
tem parameters. We consider a system with parameters σ2

12 = σ2
21 = 0.1 and

g1 = g2 = 1. Figure 2 shows the throughput attained by the game based al-
gorithm for increasing costs Qi = Ci + Kiσ

2
i∗ and Qi = Qj . As expected, in

the general case, an increase of the costs implies a decrease of the achievable
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throughput. The solid line in Figure 2 shows the throughput in the secondary
interference limited regime. In this case the system performance is completely
independent of the channel cost. At first glance, this bahaviour could appear
surprising. However, it is a straightforward consequence of Proposition 1 when
we observe that the best responses depend on the costs only via the ratio Q1/Q2.
The dependency of the throughput on the costs becomes more and more relevant
when N + Ip, the noise and the interference from the primary user, increases.
Finally, the dashed dotted line in Figure 2 shows the degradation in terms of
throughput, when the presence of N + Ip is neglected in the resource allocation
but N + Ip = −10dB. Figure 3 illustrates the dependency of the throughput
on the channel attenuation g2 of user 2 for the following set of parameters:
σ2

12 = σ2
21 = 0.1, N + Ip = −10dB, Q1 = Q2 = 1. For increasing values of g2, the

total throughput decreases because of the increased interference of user 2 on user
1. Note that for game based resource allocation the users access simultaneously
to the channel while the optimum resource allocation privileges a time sharing
policy.

Figure 4 and 5 compared the game based resource allocation to the optimum
one. They show the throughput and the power, respectively, as function of the
costs. For very low values of N+Ib and low costs, the optimum resource allocation
outperforms significantly the game based approach at the expenses of fairness.
In fact, the former assigns the spectrum to a single user. The performance loss
at the Nash equilibrium decreases as the costs increases.
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