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Abstract—Wireless LANs suffer from performance problems
caused by insufficient medium access opportunity given to the
access point. Consequently, the downlink buffer fills up, which
often leads to packet losses. We propose to address this problem
by using a size-based scheduling approach, which is known
to favor short flows and the start up of new ones—a very
appealing property from the user’s perspective as interactive
applications and new flows are serviced quickly. Still, size-
based scheduling policies have a well-known Achilles heel:
large flows can block each other for long periods of time
and low rate multimedia transfers may end up with a low
priority when their accumulated transferred volume becomes
large. To solve the above deficiencies, we propose a new
packet scheduling scheme called Least Attained Recent Service
(LARS) that applies a temporal decay to the volume of data
associated with each flow. In this way, its priority depends more
on what has happened recently. With this strategy, LARS can
bound the impact of a new arriving flow on ongoing flows, thus
limiting lock out durations. It can also efficiently protect low rate
multimedia transfers irrespectively of the load conditions.

I. INTRODUCTION

In 802.11 networks in the infrastructure mode, all entities
contending in the cell including the access point have equal
access opportunities to the medium. However, in a typical
usage, the access point requires a greater access share corre-
sponding to its central role in the cell. Tackling this imbalance
by implementing a suitable queueing policy at the network
layer of the access point is appealing, because it is independent
of the link layer so it can be easier to deploy in access points.
Nevertheless, designing a adequate policy is challenging given
the set of objectives in this type of access networks.

Performance problems in 802.11 wireless networks arise
when traffic consists of TCP downloads during which the
access point typically transmits two TCP segments per station
while each of them sends back only one TCP acknowledgment.
It also persists in more intricate cases in which traffic is a mix
of uploads and downloads. At moderate loads, one can already
observe jitter and high set-up times for new connections as
the queue can temporarily build up at the access point. At
high loads, the TCP unfairness problem [1] arises and TCP
uploads hinder the progress of downloads. This is due to TCP
data packets from downloads and TCP acknowledgments from
uploads that are lost with the same probability at the access
point buffer1 and losing data packets is detrimental to TCP

1Buffers in network devices are generally managed in packets and not in
bytes.

transfers whereas losing acknowledgments has little impact
on TCP progress, because they are cumulative.

Many studies have tackled the above problem by proposing
modification of the 802.11 MAC layer [2], [3], [4], [5],
[6], [7]. In the present work, we take a stance of applying
modifications to the IP layer only leaving the 802.11 protocol
unchanged. In addition, the modifications we propose only
affect the access point. We view the above problem as the
management issue of IP packets over paths consisting of a
single bottleneck (the access point). We investigate the use of
size-based scheduling techniques at the bottleneck of the path
[8], [9], [10], [11], [12], [13]. The core idea behind size-based
scheduling policies is to give priority to the jobs2 that have
sent the least amount of data so far when the job size is not
known in advance, e.g. at an access point, or the jobs closest to
completion when the job size is known, e.g. at a Web server.
In all cases, smaller jobs receive higher priority than larger
ones, which is a desirable property in the networking context
in which short jobs correspond to short flows generated by
interactive applications (e.g. Web browsing, mail checking)
whereas large jobs often correspond to bulk data transfers
whose actual response time is of lesser importance to users
(e.g. P2P transfers, system updates). In our WLAN context,
the job size is not known in advance. In this situation, the
most popular scheduling policy is the Least Attained Service
(LAS) [8] that assigns to jobs a priority inversely proportional
to the amount of service received so far.

Our starting point is LASTOTAL [12], an extension of LAS
that offers equal opportunity to uploads and downloads in
a WLAN configuration, i.e. uploads and downloads of the
same size achieve similar response times under LASTOTAL.
In addition, LASTOTAL offers similarly to LAS low response
times to short flows and more generally to each flow in its
early infancy, which results in small set-up times. However,
LASTOTAL as LAS, bears a number of deficiencies that we
aim at solving:

• LASTOTAL bases its decision on the total amount of
bytes sent so far by a flow, which can lead to highly
detrimental lock outs when a long flow interrupts other
ongoing long flows. The extent of this lock out depends

2Jobs are scheduled entities in the queueing theory. Depending on the
situation, they can be flows in a networking context or objects in a content
delivery context.



on the ability of the newly arriving flow to monopolize
the bandwidth of the bottleneck, but leads in general to
a high variance of the response time for large flows;

• LASTOTAL does not take time into account in its deci-
sion. As such, it similarly considers two flows f1 and f2
that have sent the same amount of bytes even though f1
might have sent data at a very high rate, e.g. a high speed
download using RapidShare, and f2 might be a relatively
low rate voice over IP conversation that started a long
time ago.

To address the above problems, we propose the Least
Attained Recent Service (LARS) policy. LARS applies a
temporal decay to the volume of data associated with each
flow so that its priority depends more on what has happened
recently by forgetting about the attained service in the distant
past. LARS has two configuration parameters. By choosing
different values we can transform LARS into LAS [14], FIFO,
or Fair Queueing [15].

In this paper, we evaluate the performance of LARS by
means of a theoretical analysis and extensive simulations in
WLAN configurations, and compare it with other scheduling
disciplines. Our objectives are to:
• assess the ability of LARS to retain the most desirable

property of LAS, i.e. a low response time of short flows.
• demonstrate that LARS indeed reduces lock outs among

long flows. We use the variance of the response time to
capture this effect.

• check that LARS efficiently protects low-rate multimedia
flows, results in small jitter and in the absence of losses.

The paper is organized as follows. Section II presents the
proposed scheduling scheme. The limit behavior of LARS and
its impact on parameter setting is analyzed in Section III. Then,
we use simulation to evaluate its performance in an 802.11
WLAN setting and compare with other scheduling schemes in
Section IV. Section V overviews the related work. Section VI
concludes the paper.

II. LARS, LEAST ATTAINED RECENT SERVICE
SCHEDULING

In this section, we first introduce the general principle of
LARS and then describe the mechanism it borrows from
LASTOTAL to handle flows in both directions in a typical
WLAN setting.

A. Decayed Volume in LARS

LARS serves packets in the order that depends on the data
volume transferred by ongoing flows. More specifically, it adds
up the amount of data transferred by a flow (attained service)
and uses it to set the priority of a packet in a queue. The
scheduler serves packets in the order of the smallest volume
of transferred data first. LARS periodically applies temporal
decay to the data volume: every τ units of time, it multiplies
it by factor 0 < µ 6 1. In this way, the volume of data
transferred by a given flow at some instant has less and less
weight as time goes by. We denote the decayed volume by ṽ.

The decayed volume of flow j in decay period n is defined
as follows:

ṽj(t) = Sj(t)− Sj(nτ) + µ ṽj(nτ), ∀t ∈ [nτ, (n+ 1)τ [

where Sj(t) is the volume of data transferred up to time t by
flow j. In other words, ṽ is equal to the total traffic that arrived
since the end of the last decay period plus the decayed value
of ṽ at the end of the last decay period. The priority of flow
j at time t decreases with increasing ṽj(t): the next packet to
send belongs to the flow with the lowest decayed volume.
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Fig. 1. Behavior of FIFO, LAS, and LARS when a new flow starts. FIFO
and Fair Queueing behave similarly if the flow arrival rates are the same.

Figure 1(c) presents the behavior of LARS when a new flow
starts sending data. A new flow under LARS will start with
a decayed volume of zero and thus with the highest priority.
If its rate is greater or equal to the link capacity, it initially
benefits from the whole capacity of the link. As the volume
of data sent increases and ṽ of other flows decays (by a factor
of µ every τ units of time), eventually its ṽ will catch up with
the decayed volume of other flows and the scheduler will split
the capacity of the link among the flows.

LARS has two parameters: period τ of applying temporal
decay and decay factor µ. Their values determine the behavior
of the scheduling scheme ranging from LAS to FIFO. Indeed,
as µ → 1, the decayed volume of a flow becomes equal to
its absolute volume, which means that LARS becomes LAS
[14]. When µ goes to zero, then LARS behaves like the Deficit
Round Robin discipline [16] in which the deficit of each flow
is reset to zero at the end of each decay period. When both
µ and τ go to zero, decayed volume ṽ of all flows becomes
0, which means that all packets will have the same priority
so LARS degenerates into FIFO. We discuss the details of
parameter tuning in the following sections.

Note that the units of ṽ are the same as the units of
variable S(t). These units can be chosen at our convenience
or according to the need for accuracy. In this paper, we count
S(t) in bytes of the IP packet.



B. LARS for bi-directional traffic control
An interesting feature of LAS, which led to the definition of

LASTOTAL, is that we can easily extend it to take into account
both directions of flows over half-duplex links such as 802.11
WLANs. LARS borrows this feature from LASTOTAL that
we detail below.

Let us first note that to offer similar performance to uploads
and downloads, LARS, which is deployed at the downlink
queue of the access point, can control both directions of flows
only by adequately scheduling the packets going from the
access point to the wireless stations. This is possible with
TCP transfers that use a feedback loop consisting of a TCP
acknowledgment stream. So, even a pure TCP upload (from
a wireless station) can be indirectly controlled through an
appropriate scheduling of its TCP level acknowledgments.
This is not the case for UDP transfers that do not use
any feedback loop. So LARS will be able to control all
TCP transfers and all UDP downloads. Performance of UDP
uploads is only a function of the 802.11 MAC layer. Still, in
general TCP traffic represents the majority of transferred data
and also the majority of flows. In Section IV-C, we further
discuss the performance of low rate UDP real time traffic in
the down direction.

The main idea behind LASTOTAL, which LARS capitalizes
on, is to look up the ACK number in the TCP header and add
its progress since the previous segment to the virtual volume ṽ
of the corresponding connections. So the volume ṽ of a TCP
connection takes into account its utilization of the link in both
directions.

C. LARS Algorithm
To control flows, LARS keeps the following information for

each flow:
• the source and destination IP addresses, IP header proto-

col field and ports if applicable,
• the last ACK number seen, ACK flag of previous packet,
• the instant at which the last packet was seen for garbage

collection,
• current ṽ.
In both LASTOTAL and LARS, to effectively favor low-

volume connections during overload conditions, i.e. when
the buffer is full, one must first insert the new packet in
the priority queue and discard the one at the end, i.e. the
one with the largest ṽ value. This buffer management policy
differs from the legacy drop tail policy in which incoming
packets are discarded when the queue is full. So we mark
each packet in the queue with the volume of its flow when
the packet leaves the buffer. In this way, packets are kept
in the ascending order of the volume and there is no need
for multiple queues nor for separating responsive and non
responsive traffic: if a flow sends more packets than its share,
its packets are simply dropped before they are inserted in
the queue or they are pushed back out by packets of other
flows. When the scheduler discards the packet, it updates the
corresponding flow descriptor, so that the next packet bears
the proper volume. Dequeuing is trivial.

The storage requirement for LARS is linear with the number
of concurrent flows, like all per-flow queueing schemes. The
scheduler can identify the flow descriptor for an incoming
packet by using a hash function or maintaining an ordered set.
Finally, the complexity of inserting the packet in the queue is
also of the order of the log of the maximum number of packets
in the queue.

III. LIMIT BEHAVIOR OF LARS AND PARAMETERS
SETTING

In this section, we first analyze the limit behavior of LARS
for a long-lived (infinite) flow. We next derive the maximum
theoretical lock-out3 duration of a long-lived flow caused by
another long-lived flow. The case in which a newly arriving
flow is able to monopolize the link bandwidth provides a key
insight for choosing the parameters of LARS. We also discuss
the case when an ongoing flow is a low rate multimedia flow.

A. Steady-State Behavior of the Decayed Volume
Let us assume a flow sending at a constant rate of x bytes

per second. We analyze its ṽ value at the end of decay periods.
During each decay period it will send xτ bytes and its ṽ(n)

at the end of decay period n is the following:

ṽ(nτ) = ṽ(n) = xτ + µṽ(n−1)

=
n−1∑
i=0

xτµi = xτ
1− µn

1− µ
(1)

ṽ(n) is an increasing function of n. The limit as n goes to
infinity is:

ṽ∞ =
xτ

1− µ
. (2)

B. Catch-up Interval
When a new flow starts sending data, it can capture link

capacity during a catch-up interval before other existing flows
resume transmitting. The maximum catch-up time tc, is a
measure of the disruption time caused by the new flow. In
LAS, this interval may be as long as the time of residence
of an older flow, whereas in LARS it is limited: when a new
flow, f2, blocks an older one, f1, the decayed volume ṽ of f1
will gradually decrease while that of f2 grows, so that their
decayed volumes become equal and the flows start sharing link
capacity (cf. Figure 1(d)). LARS can theoretically behave as
close to fair queueing as desired simply by reducing time tc
during which full priority is given to the entering flow.

To find the maximum catch-up interval tc, let us consider a
long-lived flow f1, one of several other flows existing in the
system for a long time. If its rate is a steady x, Eq. 2 gives the
limit of the decayed volume ṽ∞. Assume that at time t = 0
a new flow, f2, able to saturate the link starts sending data,
joins the system. In this case, its initial flow rate will be equal
to link capacity C and its decayed volume ṽ will increase
according to Eq. 1:

ṽ
(n)
2 = Cτ

1− µ(n)

1− µ
.

3We call also catch-up time from the newly arriving flow perspective.



The old flow f1 will stop sending, so its decayed volume
becomes after n consecutive periods of duration τ :

ṽ
(n)
1 = ṽ∞ µn =

xτµn

1− µ
.

Decayed volumes ṽ of both flows become equal after time:

tc(x) = τ
ln(x/C + 1)
− ln(µ)

6
τx/C

1− µ
(3)

This expression is maximized when x = C and we define the
maximal catch-up interval as t∞c = tc(C). Interestingly, t∞c
depends only on τ and µ, and is independent of link capacity
C. This is of particular interest for wireless networks or any
random access network in which the estimation of the available
throughput is difficult. We can summarize the above results as
follows:

For two large flows that enter the network at different
times, t∞c bounds the impact of the priority given to the
new flow on f1.

In a fair scheduling scheme two flows would immediately
obtain equal capacity shares (cf. Fig. 1(a)). For µ = 1, we can
see that tc =∞, because LARS degenerates to LAS and LAS
would indefinitely delay f1 until the new flow catches up (cf.
Fig. 1(b)).

We adopt the values of µ = 0.99 and decay period τ =
10ms in simulations presented in the next section. This leads
to maximal catch-up interval t∞c = 690ms. Note again that the
maximal catch-up interval is smaller if either the new flow is
not able to saturate the link or if multiple flows are active.
If we consider the case of TCP traffic, this value of t∞c has
the advantage of being less than one second, which is the
smallest recommended timeout value for TCP [17]. Clearly,
the choice of τ influences the frequency at which the LARS
scheduler computes decayed volumes. Even though current
networking devices such as 802.11 access points are not as
powerful as hosts in terms of processing power, we believe
that re-evaluating the volume of active flows every 10ms is a
reasonable choice.

C. Impact on delay sensitive traffic

In the previous section, we have considered the maximal
interval during which LARS can block a flow. In this section,
we analyze the effect of the arrival of a new flow on an ongoing
delay sensitive transfer. For the sake of simplicity, we assume
a CBR delay sensitive flow.

As LARS gives a high priority to new flows, this may
introduce delay between consecutive packets of the CBR
source. This delay is unbounded with LAS, while in LARS
it is less than t∞c . However, the smaller throughput x0 of the
CBR flow, the shorter the time it will take for a new flow to
catch up with its ṽ (cf. Eq. 3) so that LARS approximates the
behavior of a fair queueing scheduler.

For instance, over an 802.11b network, a high-quality H.264
encoded video at 384kb/s uses less than 7% of the resources
and it will not be interrupted for more than 50ms.

IV. EVALUATION

In this section, we evaluate the performance of LARS for an
802.11 WLAN operating at the nominal bit rate of 54Mb/s. We
have used the Qualnet tool [18] to simulate an 802.11 wireless
network in the infrastructure mode with several stations under
good radio transmission conditions (stations are within 10 m
of the access point).

A. Long-Lived Flows

At first, we ran a simulation that involves TCP uploads and
downloads as well as intense UDP traffic. Each wireless station
is a target or a source of a single flow and there is no traffic
between wireless stations.

Figure 2 presents a comparison of various scheduling disci-
plines: FIFO, SCFQ, LASTOTAL, and LARS. SCFQ (Self-
Clocked Fair Queueing) is a low overhead fair queueing
scheme [19].

The workload varies over time with flows progressively
beginning to send data: five TCP downloads start one every
other second from 10s to 18s, five TCP uploads start from 30s
to 38s, and two high rate UDP downloads generate one MTU
packet every 0.5ms during the periods from 22s to 26s and
from 42s to 46s.

We can observe that under FIFO scheduling uploads suffer
less from the presence of UDP traffic than TCP downloads
(consider for instance Figure 2(a) between times 42 and 46
where all five downloads are blocked). These results for FIFO
corroborate the observations of Pilosof et al. [1]. We can also
notice that the progress of connections is extremely variable
(cf. Figure 2(a)). Moreover, UDP downloads have strong
impact on the throughput of TCP downloads. SCFQ improves
the overall behavior, however it fails at solving the unfairness
problem. Interestingly, the second UDP download is also shut
down with SCFQ, as the limited downlink bandwidth is evenly
split between UDP, TCP downloads, and upload (TCP) ACKs.

Figure 2(c) illustrates the infinite memory effect of LAS-
TOTAL: new incoming connections block older ones, in some
cases for nearly 30 seconds of the 60 second simulation.
Once newer flows have transferred as much data as earlier
connections the latter ones do not restart right away, because
the TCP senders now use very large retransmission values. We
can observe in Figure 2(d) the beneficial effect of temporal
decay—LARS gives higher short term priority to new flows,
while sharing the available capacity on a long term scale in
a fair manner. We observe that all ten TCP flows advance at
approximately the same rate.

B. Realistic Synthetic Workload

To evaluate the benefits of LARS compared to LASTOTAL,
FIFO, and SCFQ we have considered a realistic synthetic
workload consisting of bulk TCP transfers of varying size. In
this simulation experiment, ten wireless stations communicate
with ten servers in the wired part of the network across an
access point.

TCP connections use 1460 bytes MSS and arrive according
to a Poisson process with a rate chosen so that the total
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Fig. 2. Long-lived flows incoming into the network: five TCP downloads start from 10s to 18s, one every other second, five TCP uploads start from 30s to
38s, and two high rate UDP downloads last from 22s to 26s and from 42s to 46s.

generated throughput is either 10Mb/s (moderate load) or
20Mb/s (high load)—recall that a single TCP connection can
achieve 24.3Mb/s goodput over 54Mb/s 802.11a.

We draw the number of MSS packets, i.e. the volume of
data to transfer on a single TCP connection from a bounded
Zipf distribution, which is a discrete equivalent of a contin-
uous (bounded) Pareto distribution. This distribution has the
following parameters: the minimum transfer size is 6 MSS,
the maximum transfer volume corresponds to 10MB with a
coefficient of variation (CoV4) of about 6. The latter controls
how the mass of the distribution (the total amount of bytes)
is split between short and long transfers. We have chosen
the value of 6, which is in line with actual measurements
performed on large WLANs [20]. Such parameters result in
an average connection volume of about 60KB. Two third of
connections are downloads and we consider 5000s of channel
activity.

The objective of this experiment is to test the extent to
which LARS has the same beneficial effect as LASTOTAL by
granting short flows low response times while limiting lock-
outs of large flows.

We present results for short and large flows each time, where
short flows are defined as flows smaller than the 95-th quantile
of the flow size distribution. This rather high cutoff point
conforms with the heavy-tailed distribution of flow size, as
with our definition and choice of distribution, approximately
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Fig. 3. Average response time, realistic synthetic workload of 10Mb/s

60% of the mass is carried by large flows.
Figures 3 and 4 present the average TCP connection re-

sponse times (the time to finish a connection) for all scheduling
disciplines. We first observe that LARS and LASTOTAL
obtain similar fairly short response times for short and also
large flows in both directions. For the 10Mb/s workload, the
response time of short flows under LASTOTAL and LARS is
smaller than under FIFO and SCFQ, while for large flows
they are comparable. At 20 Mb/s, LASTOTAL and LARS
keep obtaining significantly smaller response times for short

4The CoV is formally defined as the ratio of the standard deviation to the
mean of a distribution.
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Fig. 4. Average response time, realistic synthetic workload of 20Mb/s

flows. Note the response time of short downloads under FIFO
and SCFQ jumped to values close to 1 second, which can be
detrimental for user perception. The price paid when using
LARS and LASTOTAL, which throttle uploads while FIFO
and SCFQ do not behave like this, is a marginal increase for
the response time of large uploads. The gain is of at least one
order of magnitude for downloads and is a less marked one
for small uploads.

The behavior of SCFQ appears more extreme than FIFO
when the load increases, because SCFQ tries to equally
share the capacity of the access point between competing
flows, which consist here of data segments in downloads
and of ACKs in uploads. The latter being smaller in size,
SCFQ serves them quicker, which results in smaller response
times for uploads. When load becomes high at 20 Mb/s,
the performance of SCFQ deteriorates as it tries to share
capacity between an ever increasing number of flows. As a
consequence, the response time skyrockets for large flows: the
actual response time of large downloads under SCFQ is 21s
(we deliberately cut the SCFQ bar off to better observe the
difference between the analyzed policies in Figure 4).
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Fig. 5. CoV of response time, realistic synthetic workload of 10Mb/s

In addition to obtaining similar response times to LASTO-
TAL, LARS also tries to limit lockout times of large flows.
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Fig. 6. CoV of response time, realistic synthetic workload of 20Mb/s

We can observe this effect in our simulations by measuring
the variability of the response time for large flows under
LARS as compared to LASTOTAL. We use the coefficient
of variation as a metric to assess variability in Figures 5 and
6 for respective loads of 10 and 20 Mb/s. We can observe
that for large flows, LARS obtains smaller CoVs than LAS-
TOTAL under all load conditions. For short flows, the effect is
reversed—LASTOTAL gives full priority to short flows, which
lowers both their response times and their variation. As LARS
dedicates more resources to larger flows than LASTOTAL
(depending on the values of the decayed volume), short flows
experience higher, but still small, variability in the response
times.

SCFQ and FIFO obtain CoVs in line with the applied
strategy: SCFQ tends to similarly serve all downlink flows,
both short and large flows obtain similar CoVs especially when
the load increases. Under FIFO, on the other hand, only large
flows tend to obtain small CoVs since FIFO tends to favor
large flows at the expense of short ones.

The main conclusion of this section is that under realis-
tic traffic conditions, LARS exhibits similar performance as
LASTOTAL—it favors short flows at the expense of large
flows, while limiting lockouts of large flows.

C. Multimedia Traffic

fifo scfq lastotal lars
0

5

10

15

20

25

30

35

40

L
os

s 
ra

te
 in

 %

 

 

10 Mbits/s
20 Mbits/s
25 Mbits/s
30 Mbits/s

Fig. 7. Loss rate experienced by a CBR flow for various background loads

As shown in Section III-C LARS gives high priority to
packets of long lasting low intensity flows. To evaluate this
scenario, we have added a single CBR flow representing



a typical VoIP stream to the random traffic defined in the
previous section (TCP transfers distributed according to the
Zipf law). We have also considered another workload case:
overload conditions with 25Mb/s and 30Mb/s throughput in
addition to 10Mb/s and 20Mb/s. The CBR flow generates
92 bytes every 10ms (64kb/s compressed voice with RTP
overhead). The infinite memory of LASTOTAL quickly leads
to discarding packets from this long flow as soon as the
network becomes congested (cf. Figure 7). Conversely, LARS
efficiently protects this flow, because there are no losses.
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Fig. 8. CDF of inter-departure times for a CBR flow with 20Mb/s background
traffic
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Fig. 9. CDF of inter-departure times for a CBR flow with 30Mb/s background
traffic

To analyze further this behavior, we can look at the inter-
departure time distribution presented in Figure 8 (cumulative
distribution function CDF). We can observe that LASTOTAL
releases (and drops) packets in batches (many packets have
short delay between them), while LARS forwards them in
a much more regular way with respect to the presence of
background traffic. The jitter grows slightly under LARS
only when the load significantly exceeds link capacity (cf.
Figure 9). Moreover, the comparison with FIFO and SCFQ
should take into account the fact that there are no packets lost
under LARS. Thus, LARS can successfully protect long lived
delay sensitive flows under any load condition.

V. RELATED WORK

FIFO scheduling combined with the droptail buffer man-
agement policy has proven to be ineffective at high load
in a number of cases. Suter et al. investigated the use of
a per flow scheduling scheme (Fair Queuing) and various
buffer management policies (Longest Queue Drop, Random,
or Random Early Discard (RED)) to actually provide per
flow isolation in high speed routers [15]. They concluded that
scheduling alone is not sufficient to provide isolation from
misbehaving flows. This is in line with our observations using
SCFQ in Section IV.

Several authors put forward the idea of favoring short flows
in TCP/IP networks using a two queue approach or using a
marking scheme to differentiate packets from small and large
flows. Guo et al. proposed an alternative use of the DiffServ
architecture in which packets are marked at the edge of the
network depending on the amount of bytes sent so far by
the corresponding connection [21]. Active Queue Management
(RIO - Red with In and Out) is used in the core router to give
preferential treatment to short flows when the load increases.
Nourredine et al. proposed a similar approach [22] based
on different packet marking schemes combined with packet
scheduling (Weighted Round Robin) and dropping policies
(RIO) to enforce low response time to short connections.

Avrachenkov et al. have proposed Run2C [23], which
aims at keeping the good features of LAS while avoiding
its shortcomings. Run2C uses two Processor Sharing (PS)
schedulers with different priorities. When a new flow appears,
a high priority scheduler takes care of its packets. Once the
flow has transmitted a given amount of data, it moves to a
low priority queue. A fixed threshold is chosen to declare a
job as short or large. Run2C is simpler to analyze than LARS
and the authors derive its mean response time as a function
of the traffic distribution. However, similarly to LAS, Run2C
only takes into account the global volume of a connection.
Consequently, long lived low throughput flows end up being
handled by the low priority queue under Run2C. Compared
to LARS, we can observe that, as more and more flows enter
the network, their impact on other flows under LARS will
decrease linearly. Under Run2C, all flows benefit from the
same amount of data to send with a higher priority regardless
of the link state at this time.

Sun et al. proposed a two class mechanism to differentiate
packets belonging to short and large flows similarly to the
Run2C approach [24]. They use a fixed threshold to classify
flows. The Weighted Deficit Round Robin (WDRR) policy
handles packets with a weight that should be set in proportion
to the relative share of small and large flows. Similarly
to Run2C, the proposed mechanisms accounts for the total
volume of a connection without taking into account its history.

More complex (than a two queue approach) size-based
scheduling approaches have also been proposed to favor short
flows at the expense of long ones. LAS, which does not require
to know the job size in advance, has been investigated in the
context of 3G networks [11]. LAS has been also proposed to



schedule flows at the bottleneck of wired links consisting of
symmetric and full duplex links [10]. Another popular size-
based scheduling policy, which can be used when the job size
is known in advance, is Shortest Remaining Processing Time
(SRPT). SRPT schedules the job that is closest to completion.
Using this strategy, SRPT is known to be optimal (in terms
of minimizing the average job response time) among all
scheduling policies. SRPT has been proposed in the context
of Web servers [9], [13].

To the best of our knowledge, only a single study has
proposed to modify the way volumes are computed in LAS
[25]. Many variants of LAS were proposed in which the
priority index (equivalent of the decayed volume in LARS) is
a linear or a logarithmic function of the amount of bytes sent
by a flow. This technique can be used to offer different quality
of service (through different functions) to various classes of
flows. However, unlike LARS, it does not take the actual
transfer rates into account.

VI. CONCLUSION

In this paper, we have proposed a new packet scheduling
scheme called Least Attained Recent Service (LARS) that
schedules packets by giving higher priority to packets of flows
with less transferred traffic so far. In contrast to LAS, LARS
regularly decays the volume associated with each flow.

With this strategy, LARS can bound the impact of a new
flow on ongoing ones and accounts not only for the volumes,
but also the rates of flows. These are key properties to
avoid lock outs, which is a classical weakness of size-based
scheduling approaches, and also to protect low rate multimedia
flows, e.g. VoIP calls. Moreover, LARS still inherits from LAS
its ability to offer low response times to short flows and more
generally to all flows in their infancy. The proposed discipline
only depends on two parameters that are independent of link
characteristics, which makes LARS particularly well suited for
fluctuating capacity or shared links like WLANs. LARS is not
more complex than any other fair scheduling discipline that
requires per flow bookkeeping. We believe that the progress
of edge devices processing capabilities make it relevant to
consider such advanced scheduling techniques.

Future directions of research on LARS could be to assign
various weights to flows and possibly use various parameter
settings among flows. We also believe that it is possible to
bound the complexity of LARS with a low impact on the
resulting performance.
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