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Abstract—In this paper1, we propose a new Spectrum Sensing
technique for spectrum distribution discontinuities detection
using algebraic detection (AD). The presented mathematical
background leading to such technique is based on operational
calculus and differential algebra which offers a new stand point
in sensing theory. Even if this background is quiet heavy, the
sensing algorithm related to this technique is nevertheless very
simple and remains with extremely low complexity, comparable
even to the Energy Detection technique (ED). Simulations results
show good performance of the proposed technique in terms of
reliability and accuracy with low complexity and good robustness
in noisy context.

Index Terms—Cognitive radio, sensing algorithm, energy de-
tector, distribution discontinuities, algebraic detector, change
point detection.

I. INTRODUCTION

Recently, wireless technologies have known a new era of
expanse and development. Different services are available with
high quality of service (QoS). Formally, in wireless networks,
implementing new services and deploying new users means
assigning and occupying new frequency band. Today and due
to this rise of technologies, the main resource on which are
based the wireless communications -i.e spectrum- is becoming
scarce and misused. For instance measurement lead by the
FCC (Federal Communication Commission) in the USA have
shown that in some regions and/or at some day intervals up
to 70 percent of the statically allocated spectrum is left idle
[1]. Facing this misuse, the FCC recommended deploying
unlicensed users in the wireless networks. These unlicensed
users also called secondary users (SUs) are allowed to use
those idle wireless resources only when the licensed users,
also called primary user (PU), is not using them so they do
not interfere with its transmissions.

In order to make such a concept of spectrum sharing fea-
sible, SU are cognitive radios (CRs) deployed in the primary

1For the first author, the research leading to these results has received
funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement SACRA n◦249060.

networks. CR as introduced by Joseph Mitola [2] is a self
aware and intelligent device that can adapt itself to the wireless
environment changes by firstly detecting them, then adapting
its radio parameters to the new opportunities.

Spectrum Sensing in CR aims at finding the holes in the
PU transmission which are the best opportunities, in terms of
interference, to be used by the SU. Many statistical approaches
already exist. The easiest to implement and the reference one
in terms of complexity is still the energy detector (ED) [4].
Nevertheless, the ED is highly sensitive to noise and does
not perform well in low signal to noise ratio (SNR). Other
advanced techniques based on signals modulations and ex-
ploiting some of the transmitted signals inner features were
also developed [3]. For instance, the cyclostationary features
detector (CFD) exploits the built-in cyclic properties of the PU
received signal. The CFD do have a great robustness to noise
compared to ED but its high complexity is still a consequent
drawback. Other techniques that were developed by Eurécom
Institute based on the model selection and entropy [7] [5] [6].
The main idea consists in finding a candidate that best fits the
statistics of the observed.

In this paper, we propose a different standpoint for spectrum
sensing. The algebraic approaches were originally developed
for locating spikes, which are neuronal activities, in electro-
encephalograms (EEGs). We suggested in this work to apply
these spike detection spectrum distribution discontinuities in
the context of spectrum sensing for CR.

The first step was to model the spectrum as a piecewise
polynomial, then by using some mathematical framework
inspired from [9], the sensing problem is then casted as a
change point detection in the spectrum of the PU transmission
as detailed in [8]. Despite the heaviness of the mathematical
framework, the derived sensing algorithm is still easy to
implement as it is a simple filtering of the noisy spectrum.

The paper is arranged as follows: Section II introduces
the model used to describe the proposed sensing algorithm.
Then, the AD implementation is presented in Section III. In
Section IV, the performance evaluation and advantages are
described, and a comparison with some statistical approaches



is given. Finally, Section V concludes about the presented
work in this paper.

II. SYSTEM MODEL

In this section we investigate the system model considered
through this paper. In this system, the received signal at time
n, denoted by yn, can be modeled as:

yn = Ansn + en (1)

where An being the transmission channel gain, sn is the
transmit signal sent from primary user and en is an additive
corrupting noise.

In order to avoid interferences with the primary (licensed)
system, the cognitive radio needs to sense its radio environ-
ment whenever it wants to access available spectrum resources.
The goal of spectrum sensing is to decide between two
conventional hypotheses modeling the spectrum occupancy:

yn =
{

en H0

Ansn + en H1
(2)

The sensed sub-band is assumed to be a white area if it
contains only a noise component, as defined in H0; while, once
there exist primary user signals drowned in noise in a specific
band, as defined in H1, we infer that the band is occupied.
The key parameters of all spectrum sensing algorithms are the
false alarm probability PF and the detection probability PD.
PF is the probability that the sensed sub-band is classified as
a PU data while actually it contains noise, thus PF should be
kept as small as possible.
PD is the probability of classifying the sensed sub-band as a
PU data when it is truly present, thus sensing algorithm tend
to maximize PD. To design the optimal detector on Neyman-
Pearson criterion, we aim on maximizing the overall PD under
a given overall PF .
According to those definitions, the probability of false alarm
is given by:

PF = P (H1 | H0) = P (yn is present | H0) (3)

that is the probability of the spectrum detector having detected
a signal given the hypothesis H0, and PD the probability of
detection is expressed as:

PD = 1− PM = 1− P (H0 | H1)
= 1− P (yn is absent | H1) (4)

which represents the probability of the detector having de-
tected a signal under hypothesis H1, where PM indicates the
probability of missed detection.

In order to infer on the nature of the received signal, we
calculate a threshold for each of the detectors via a Monte
Carlo simulation. The decision threshold is determined using
the required probability of false alarm PF given by (3). The
threshold Th for a given false alarm probability is determined
by solving the equation:

PF = P (yn is present | H0) = 1− FH0(Th) (5)

where FH0 denote the cumulative distribution function (CDF)
under H0.

III. ALGEBRAIC DETECTION TECHNIQUE

A. Mathematical Background

In this Section we give an overview of the mathematical
background leading to the algebraic detection technique.
The input signal is the amplitude spectrum of the received
noisy signal. We assume that its mathematical representation
is a piecewise regular signal:

Y (f) =
K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (6)

where: χi[fi−1, fi]: the characteristic function of the inter-
val [fi−1, fi], (pi)i∈[1,K]: an N th order polynomials series,
(fi)i∈[1,K] : the discontinuity points resulting from multiply-
ing each piby a χi and n(f) :the additive corrupting noise.
Now, let X(f) the clean version of the received signal given
by:

X(f) = ΣK
i=1χi[fi−1, fi](f)pi(f − fi−1) (7)

And let b, the frequency band, given such as in each interval
Ib = [fi−1, fi] = [ν, ν + b] , ν ≥ 0 one and only one change
point occurs in the interval Ib.
Now denoting Xν(f) = X(f +ν),f ∈ [0, b] for the restriction
of the signal in the interval Ib and redefine the change point
relatively to Ib say fν given by:{

fν = 0 if Xν is continuous
0 < fν ≤ b otherwise

Now the N th derivative of Xν(f) in the sense of Distributions
Theory is:

dN

dfN
Xν(f) = [Xν(f)](N) +

N∑

k=1

µN−kδ(f − fν)(k−1) (8)

where: µk is the jump of the kth order derivative at the unique
assumed change point:fν

µk = X
(k)
ν (f+

ν )−X
(k)
ν (f−ν )

with :
{

µk = 0ck=1..N if there is no change point.
µk 6= 0ck=1..N if the change point is in Ib.

[Xν(f)](N) is the regular derivative part of the N th derivative
of the signal.
The spectrum sensing problem is now casted as a change
point fν detection problem. Several estimators can be derived
from the equation 8. For example any derivative order N can
be taken and depending on this order the equation is solved
in the operational domain and back to frequency domain the
estimator is deduced.
In a matter of reducing the complexity of the frequency direct
resolution, the equation 8 is transposed to the operational
domain, using the Laplace transform:

L(Xν(f)(N)) = sN X̂ν(s)−
N−1∑
m=0

sN−m−1 dm

dfm
Xν(f)cf=0

= e−sfν (µN−1 + sµN−2 + .. + sN−1µ0)

(10)



Given the fact the initial conditions and the jump of the
derivatives of Xν(f) are unknown parameters to the problem,
in a first time we are going to annihilate the jump values
µ0,µ1,...,µN−1 then the initial conditions. After some calcula-
tions steps detailed, we finally obtain:

N−1∑

k=0

(N
k ).fN−k

ν .(sN X̂ν(s))(N+k) = 0 (11)

In the actual context, the noisy observation of the amplitude
spectrum Y (f) is taken instead of Xν(f). As taking derivative
in the operational domain is equivalent to high-pass filtering in
frequency domain, which may help amplifying the noise effect.
It is suggested to divide the whole equation 11 by sl which
in the frequency domain will be equivalent to an integration
if l > 2N , we thus obtain:

N−1∑

k=0

(N
k ).fN−k

ν .
(sN X̂ν(s))(N+k)

sl
= 0 (12)

Since there is no unknown variables anymore, the equation 12
is now transformed back to the frequency domain, we obtain
the polynomial to be solved on each sensed sub-band:

N−1∑

k=0

(N
k ).fN−k

ν .L−1[
(sN X̂ν(s))(N+k)

sl
] = 0 (13)

And denoting:

ϕk+1 = L−1[
(sN X̂ν(s))(N+k)

sl
] =

∫ +∞

0

hk+1(f).X(ν−f).df

(14)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! , 0 < f < b

0, otherwise
To summarize, we have shown that on each interval [0, b],
for the noise-free observation the change points are located at
frequencies solving:

N∑

k=0

(N
k ).fN−k

ν .ϕk+1 = 0 (15)

B. Implementation Issues

The proposed algorithm is implemented as a filter bank
which is composed of N filters mounted in a parallel
way. The impulse response of each filter is: hk+1(f) ={

(f l(b−f)N+k)(k)

(l−1)! , 0 < f < b

0, otherwise
where k ∈ [0..N − 1] and

l is chosen such as l > 2 × N . The proposed expression of
hk+1ck∈[0..N−1] was determined by modeling the spectrum by
a piecewise regular signal in frequency domain and casting the
problem of spectrum sensing as a change point detection in
the primary user transmission [8]. Finally, in each stage of the
filter bank, we compute the following equation:

ϕk+1(f) =
∫ +∞

0

hk+1(ν).X(f − ν).dν (16)

Equation (15) is then used to detect spectrum discontinuities
and to find the intervals of interest.

C. Algorithm Disctrete Implementaton

The proposed algorithm in its discrete implementation is a
filter bank composed of N filters mounted in a parallel way.
The impulse response of each filter is:

hk+1,n =

{
(nl(b−n)N+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(17)

where k ∈ [0..N − 1] and l is chosen such as l > 2×N . The
proposed expression of hk+1,nck∈[0..N−1] was determined by
modeling the spectrum by a piecewise regular signal in fre-
quency domain and casting the problem of spectrum sensing as
a change point detection in the primary user transmission [8].
Finally, in each detected interval [nνi , nνi+1 ] , we compute the
following equation:

ϕk+1 =
nνi+1∑

m=nνi

Wmhk+1,mXm (18)

where Wm are the weights for numeric integration defined by:

W0 = WM = 0.5
Wm = 1 otherwise

In order to infer whether the primary user is present in
the detected intervals, a decision function is computed as
following:

Df = ‖
N∏

k=0

ϕk+1(nν)‖ (19)

After the detection of spectrum discontinuities by solving
equation (15), the decision is then made by computing the
threshold Th to the mean value over the detected intervals.

IV. PERFORMANCE EVALUATION

First of all, let’s give some key notes on the ED. ED is the
most common method for spectrum sensing because of its non-
coherency and low complexity. The energy detector measures
the received energy during a finite time interval and compares
it to a predetermined threshold. That is, the test statistic of the
energy detector is:

M∑
n=1

‖ yn ‖2 (20)

where M is the number of samples of the received signal xn.
Traditional ED can be simply implemented as a spectrum

analyzer. A threshold used for primary user detection is highly
susceptible to unknown or changing noise levels. Even if the
threshold would be set adaptively, presence of any in-band
interference would confuse the energy detector.

Since the complexity of sensing algorithms is a major con-
cern in implementation. As ED is well known for its simplicity,



the comparison is made with reference to it. Denoting M the
number of samples of the received signal yn and N is the
model order of the AD, we show that the AD complexity
is NM and the ED complexity is M . From these results,
we clearly see that the proposed sensing algorithm has a
comparable complexity level as the energy detector. Table I
summarizes the complexity of the two techniques.

Sensing technique Complexity
Energy detector M
Algebraic detector NM

TABLE I
COMPLEXITY COMPARISON OF THE DIFFERENT SENSING TECHNIQUES

For simulation results, the choice of the DVB-T primary
user system is justified by the fact that most of the primary user
systems utilize the OFDM modulation format. The considered
model is an Additive White Gaussian Noise (AWGN) channel.
The simulation scenarios are generated by using different
combinations of parameters given in Table II.

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Frequency-flat Single path
Sensing time 1.25ms
Location variability 10dB

TABLE II
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL PARAMETERS

Figure 1 shows the detected change points by the algebraic
technique where: the blue signal is the simulated OFDM signal
and the green stars are the detected change points.
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Fig. 1. Change point detection with SNR=-8dB.

Fig. ?? reports the comparison in terms of Probability of
Detection Vs. SNR between the Energy Detector (ED) and the
two first Algebraic Detectors: (AD2) and (AD3), for PF =0.05
and SNR ranging in -40 to 0 dBs.

The threshold level for each detector is computed with
function of the probability of false alarm PF with respect to
Equation 5.

This figure clearly shows that the proposed sensing algo-
rithm is quite robust to noise. These curves show also that
the detection rate goes higher as the polynomial order gets
higher.
This result is to be expected as the higher the polynomial
order is, the more accurate the approximation a polynomial is.
Nevertheless, it is to be noticed that this gain in precision is
implies a higher complexity in the algorithms implementation.
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Fig. 2. Probability of detection vs. SNR for the three detectors: energy
detector (ED), 1st order algebraic detector (AD1) and 2nd order algebraic
detector (AD3) with PF = 0.05.

In Figure 3, we plot the ROC curve at an SNR=-15dB. We
clearly see that for the proposed technique that the higher the
order is, the more performing the detector gets.

V. CONCLUSION

In this paper, we presented a new approach for spectrum
sensing based on the detection of spectrum distribution dis-
continuities using algebraic method. Despite the heaviness
of the mathematical background, the implementation of such
a technique is easy and for low orders is comparable to
the reference technique. The proposed algorithm takes in
consideration the noise effect in its inner structure which gives
good, accurate and reliable results even in very low SNRs.
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