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ABSTRACT
A re ned estimation and tracking of the instantaneous frequency
variations is desirable for a variety of audio applications (audio
coding, singer segregation, music transcription and transformations,
etc). In the present paper, we extend the periodic modeling with
global amplitude and frequency modulation approach [16]. We
introduce a rst order approximation producing an additive term
involving the derivative of the ‘normalized waveform’ multiplied by
the instantaneous FM signal. The variations of the global FM get
expressed through a subsampled representation and estimated using
a simple least-squares scheme.

Index Terms— AM-FM decomposition, global modulation,
frequency-selective, rst-order approximation, audio transformation

1. INTRODUCTION
The problem of decomposing a signal into amplitude and frequency
modulated sinusoids (AM-FM) is encountered in many different ap-
plications, such as audio coding, transformation, and segregation.
Indeed, AM-FM sinusoidal models have been demonstrated to pro-
vide high-quality audio coding, and offers perceptually signi cant
improvement in critical transient signals [1]. Moreover, the AM-FM
representation leads to a exible signal parameterization, often desir-
able for effect transformations such as time-scaling, pitch-shifting,
and timbre-modi cation [2, 3]. More recently, it has been shown
that a singing voice might be identi ed using the vibrato and tremolo
characteristics: segments containing the singing voice could be lo-
calized through the analysis of the AM and FM signals [4]. In all
these applications, the accuracy of both the instantaneous AM and
FM signals estimation and tracking is crucial.

A variety of approaches has been proposed in the literature to
perform AM-FM signal decomposition. Perhaps the most success-
ful and ubiquitous is the family for time-frequency representations
derived from the sinusoidal modeling paradigm [5]. These generally
employ frame-based non-parametric spectral analysis techniques to
detect peaks corresponding to sinusoidal-like components. Various
techniques have been proposed for accurate peak localization based
on non-linear interpolation (e.g. [6]), dichotomy (e.g. [7]) and/or
high-resolution analysis (e.g. [8, 9]). Subsequently, these peaks are
linked across consecutive time frames [12, 13] and/or coherent fre-
quency bands [10, 11]. A second class of approaches address the
AM-FM decomposition using multiband ltering and demodulation
[14, 15, 1]. The basic idea is to rst locate local spectral formants.

�� Eurecom research is partially supported by its industrial members:
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Next, the instantaneous AM and FM signals are individually tracked
for the different formants. In [16], we have introduced an alternative
approach for AM-FM audio signal decomposition. Instead of ad-
dressing individually frames and/or formants, the harmonic structure
and temporal consistency are both exploited to identify modulations
that are common to all partials of a given sound. We have consid-
ered a periodic model with non-integer period and global AM and
FM modulation (i.e., global amplitude variation and time-warping).
The proposed scheme does not treat the harmonics of an audio sig-
nal separately as a simple lter bank approach would do. Rather,
the energy in all harmonics is exploited jointly through the treatment
of the complete periodic signal, in order to robustify the estimation
of its modulation characteristics. The Global Modulation (GM) as-
sumptions help the separation of audio signals that have harmonics
in common. Furthermore, valuable information could be obtained by
individually analyzing the model parameters. Indeed, global ampli-
tude variation re ects mostly attack, sustain, and decay of the whole
note signal, whereas global time-warping allows for the detection
of musical effects (e.g. vibrato, glissando, etc). In [17] the GM
representation was further developed by introduction a frequency-
selective global amplitude modulation. The amplitude variations of
the various harmonics are modeled using a short FIR lter that in-
troduces a frequency-selective attenuation (allowing for different at-
tack/decay modes), and this in a time-varying fashion to re ect the
time-varying amplitude. Simulations show that the proposed scheme
is suitable for the analysis of several string and wind instruments
[17], and shows good potential for music transcription applications
[18].

The frequency-selective global modulation leads to a parsi-
monious representation that ef ciently models the different modes
of instantaneous amplitude variation with a limited parameter rate
(the average number of parameters that appear in the description of
one second of the signal). This fact leads to a good estimation vs.
modeling noise tradeoff and an effective signal decomposition. The
proposed representation, however, allows only for piece-wise con-
stant variation of the instantaneous FM. Indeed, the scheme assumes
that the instantaneous fundamental frequency is constant within
a frame of length �� . In practice, the value of the instantaneous
FM (in a given frame) is estimated via a local search optimization,
and the computational complexity of the whole decomposition de-
pends mainly on FM signal estimation, constraining �� to be large.
Hence, the piece-wise constant FM (expressed through a global
time-warping) tracks mainly the very slow variations and the devia-
tion of the fundamental frequency from its a priori value.
On the other hand, as discussed above, a re ned estimation and
tracking of the FM variations is desirable for a variety of audio
applications. In this paper, we introduce a rst-order approximation
producing an additive term involving the derivative of the ‘normal-
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ized waveform’ multiplied by the instantaneous FM signal. The
variations of the global FM get expressed through a subsampled
representation and estimated using a simple least-squares scheme.

Notations: upper- and lower-case boldface letters denote matri-
ces and vectors, respectively. As the quantities considered herein are
real, ���� represents the transpose as well as the complex-conjugate
(Hermitian) transpose operators. The symbol � is reserved to denote
the assumed period of the audio signal.

2. GLOBAL AM-FM SIGNAL REPRESENTATION
The sinusoidal transform, originally developed by Quatieri and
McAulay [5], represents a signal as a sum of � discrete time-varying
sinusoids or partials:

���� �
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���

����� ��� ������� � (1)

where ����� represents the instantaneous phase of the ��� partial.
Since the energy of the audio signal is concentrated around the mul-
tiples of the fundamental frequency 	�, ����� can be decomposed
into

����� � �
��	� � �
����� (2)

where����� characterizes the evolution of the instantaneous phases
around the ��� harmonic, and can be assumed to slowly vary over
time. In [17], we have assumed that the time variations of the instan-
taneous amplitudes and frequencies of the different harmonics are
correlated, and we have expressed the audio signal as a superposition
of harmonic components with global frequency selective amplitude
modulation and global time-warping, i.e.,
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where:
- ����� � �����

� � � � � � ���� � � � � � �����
�� is a symmetric

zero-phase FIR lter, and ��� 	 denotes the amplitude modulating
lter length. The introduction of �, where ��� is the one sample time
delay operator: ���
��� � 
���	�, allows to introduce a compact
notation of transfer functions in the time domain.
- 
��� �

�
� �� ��� ��
�	���
�� is a � � �

	�
periodic signal

(normalized waveshape), having a constant spectrum over the whole
signal duration. 
��� characterizes the spectral envelope of the audio
source, and may be considered as a signature for the source (e.g.,
musical instrument) identi cation and recognition applications.
- ���� denotes the global phase modulating signal. In [17], we have
assumed that ���� is piecewise linear, i.e. ��	

�
���� � � �	� � 	�� � 
� �� � ���	 ��� 	��	 �

where 	
���� � 	� � 	� � 	� is the instantaneous FM signal as-
sumed to be piece-wise constant. In such a case, the global phase
modulation can be interpreted in term of global time-warping, and
parameterized via a time-varying interpolation matrix (see [16] for a
detailed description).

In this paper, we relax further our assumptions on the global
phase/frequency modulating signal:

���� � �	� � �
���� � ������ (4)

����� allows a re ned modeling of the global FM variations around
the fundamental frequency, and it is assumed having a small relative

magnitude ������	� � 	. The audio signal can be approximated
by:
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The rst-order Taylor approximation of the phase dependence pro-
duces an additive term involving the derivative of the periodic signal



�

��� multiplied by the uctuating term �����
	�

.

Moreover, if one assumes that the rst-order FM signal ����� varies
slowly over time (compared to the order of FIR AM lter), the audio
signal gets expressed as:
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3. QUASI-PERIODIC SIGNAL EXTRACTION SCHEME
The audio signal is observed in presence of additive white Gaussian
background noise, i.e.,

���� � ���� � ���� (6)

In the following section, we will investigate the AM-FM tracking
scheme and the extraction of the desired signal. First, we comment
on the normalized waveshape derivative 


�

���, and the estimation of
the rst-order FM signal �����. Then, the extraction scheme of the
quasi-periodic signal (following (5)) will be described.

3.1. FIR Derivative Approximation
The derivative 


�

��� denotes a sampled version of the derivative of
the continuous-time signal of which 
��� is the sampled version.
If the sampling satis es Nyquist’s criterion, 


�

��� can be obtained
from 
��� by ltering with the transfer function ��
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�
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�
�

which we shall approximate with a non-causal FIR lter ���� ����
�����
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�� optimized as:
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where �� is the order of the FIR derivative lter approximation, and
�

�	� denotes the power spectrum of the observed signal ����.
The cost function (7) leads to a simple quadratic criterion. The op-
timal derivative lter coef cients � � ��

��� � � � ��� �
� are given

by:
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The elements of the matrix� and the vector � are expressed as �� �
�
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��� �� (the covariance of ���� at the time-lag �� �); and get
estimated by approaching the continuous by a discrete integration.

3.2. Global FM Parameterization and Estimation
If we assume that the normalized waveshape 
���, the time-warping
signal �
����, and the FIR AM lter ����� are given, the signal
���� � ����� �����
��� ������

	�
� is linear with respect to �����.

Moreover, the coef cients of ����� are assumed to be slowly varying
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over time. Therefore, ����� can be parameterized by a down-sampled
version. The remaining samples could be interpolated, i.e.,
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where ��� characterizes the rst-order FM signal �����, downsam-
pled by the factor ��. �� represents the interpolation matrix used
to reconstruct �� from its downsampled version ��� (see [17] for more
details on the design of the interpolation matrices).
Thus, using matrix notations, we have
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where�� � diag
�
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Assuming additive white gaussian noise, the ML approach lead
to the least-squares solution:
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Remark that�� assumes the knowledge of ����� (or an accurate es-
timate). Alternatively, we consider�� � diag
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and the statistics
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Assuming that ����� has a smooth frequency response and that
����� and ����� vary slowly over time, one can show that:
1) �� is a suf cient statistics for ��� [19].
2) �� �

�
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���; where �	�	� denotes temporal averag-
ing over the ��-wide interval centered on n.
Compared to 
���, �� incorporates ‘all the relevant’ information
on the time varying amplitude modulating lter ����� and does
not need prior information on the lter coef cients (only ���� and
�
���� are assumed known). Figure 1 plots the time evolution of
input signal (musical note played by an acoustic guitar and sampled
at 20.050 kHz) and the extracted signal � � ����. One may
indeed observe that the 
��� captures both the vibrato effect (FM
information) and the decay of the note signal (AM information).
Similarly, the coef cient of the amplitude modulating lter �����
could be parameterized via a downsampled representation ���������


(possibly with a different downsampling factor ��) [17]. The re-
ceived signal � could be expressed as a linear combination of the
AM and FM downsampled parameter
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The matrices �� share the same structure, a diagonal matrix right
multiplying an interpolation matrix. The estimation of these param-
eters could be jointly performed using a least-squares scheme. Re-
mark that from a computational complexity, the tracking of the rst-
order FM signal is equivalent to raising the order of the AM lter by
�.
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Fig. 1. Time evolution of of input signal (top) and the extracted rst-
order FM signal (bottom).

3.3. Quasi-Periodic Signal Extraction
Following [16, 17], the model parameters are estimated in an itera-
tive (cyclic) fashion:

1. Assuming that 
�����, 
�
���� , 
����� are given and using the
derivative lter approximation, the received signal could be
expressed as a linear function of the normalized waveshape
����. Hence, the periodic signature is recovered via least-
squares estimation.

2. Using the current estimates of 
�����, 
���� and 
�����, The
piece-wise FM signal �
���� gets estimated on a frame-by-
frame basis using a local search scheme (as described in [17]).

3. Using the current estimate of 
���� and 
�
����, the amplitude
modulating lter ����� and the rst-order FM signal ����� get
estimated through the joint estimation of ��� � ���.

4. EXPERIMENTAL RESULTS
We validate the proposed extraction approach using real musical sig-
nals. The audio signals were played by an acoustic guitar, recorded
at 44.100 kHz, then downsampled to 22.050 kHz.
We have compared the extraction Signal-to-Noise Ratio ��
��� ��

� ����
��

�������������� using the proposed global modulation representa-
tions, with and without rst order approximation (denoted ����
and �������, respectively). The smoothing AM and FM modu-
lation factors were set to �� � �� � 
� (� � ���������� is the
period of the harmonic component, assumed known). The order of
the derivative lter was selected �� � �. For a fair comparison, the
order of the amplitude modulation lters of������� and ����
were set to � and � � � respectively (such as the two models have
the same total degree of freedom).
Fig. 2 and 3 plot the extraction results for two different notes (B3
and D3). As a reference, we have compare the GM-based schemes
to time-frequency representation. The desired signals were retrieved
using an ABSOLA analysis/synthesis algorithm (with peaks interpo-
lation and tracking) [3, Ch10]. In the time-frequency processing, the
block size, zero-padding factor, and maximum number of sinusoids
were set to ���, �, and 
� respectively (the signals were segmented
using a Hamming window with 50% overlap). The extracted rst-
order FM signal 
��� is also shown in the bottom of the gures.
Curves show that rst-order FM representation allows better extrac-
tion accuracy. This enhancement cannot be achieved by further in-
creasing the order of the AM modulating lter: the rst-order mod-
ulating signal 
��� models and tracks the instantaneous frequency
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Fig. 2. Extraction accuracy��� ���
��
�SNRout� function of the am-

plitude modulating order � (top) and the extracted rst-order FM
signal ����(bottom).
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Fig. 3. Extraction accuracy��� ���
��
�SNRout� function of the am-

plitude modulating order � (top) and the extracted rst-order FM
signal ����(bottom).

uctuations, while the amplitude modulating lter ����� focuses on
amplitude variations. The enhancement, however, depends on the
frequency effects present in the signal. Indeed, larger improvement
is achieved when a vibrato effect is played (Fig. 3).

Accurate FM variation tracking is a key building block in sev-
eral sound analysis and transformation systems. With this respect,
the representation presented herein offers an intuitive interpretation
of the model parameters and gives direct access to the perceptual at-
tributes that are used to control a large variety of audio effects (loud-
ness, pitch and timbre). The analysis/synthesis scheme also offers
the possibility to apply several effects with at least similar exibility
as the classic techniques. To validate the effectiveness of the pro-
posed representation, we have implemented a vibrato effect. The
vibrato is a common effect for various acoustical instruments. It is
used for emphasis and timbral variety, and is considered as a low
frequency modulation applied to the frequency of the partials (with
a constant spectral shape), i.e.,

����� � ������� (13)

where ���� � � 	 
�� ��
 ��	
��� is the vibrato modulating
signal, 
� and 
� represent the vibrato frequency and depth, re-
spectively. We have compared the proposed scheme with the time-
frequency representation based implementation [3, Ch10]. Vibrato
effects were synthetically added to monophonic acoustic guitar notes
(recorded in real environment and sampled at 22.050 kHz). 
� and


� were set to �Hz and ��� respectively. Subjective tests with 10
persons (musical and/or audio processing experts) show a preference
for the GM based approach (GM was prefered by ���, compared to
��� for time-frequency processing). The preference was even more
pronounced in case of polyphonic sounds (e.g. chords transforma-
tion).
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