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Abstract— Traditionally, the performance of blind SIMO
channel estimates has been characterized in a deterministic
fashion, by identifying those channel realizations that are not
blindly identifiable. In this paper, we focus instead on the
performance of Zero-Forcing (ZF) Linear Equalizers (LEs) or
Decision-Feedback Equalizers (DFEs) for fading channels when
they are based on (semi-)blind channel estimates. Althoughit
has been known that various (semi-)blind channel estimation
techniques have a receiver counterpart that is matched in terms
of symbol knowledge hypotheses, we show here that these (semi-
)blind techniques and corresponding receivers also match in
terms of diversity order: the channel becomes (semi-)blindly
unidentifiable whenever its corresponding receiver structure
goes in outage. In the case of mismatched receiver and (semi-
blind) channel estimation technique, the lower diversity order
dominates. Various cases of (semi-)blind channel estimation and
corresponding receivers are considered in detail. To be complete
however, the actual combination of receiver and (semi-)blind
channel estimation lowers somewhat the diversity order w.r.t.
the ideal picture.

Index Terms— channel estimation, blind, semi-blind, receiver
diversity, imperfect channel state information

I. I NTRODUCTION

Consider a linear modulation scheme and single-carrier
transmission over a Single Input Multiple Output (SIMO)
linear channel with additive white noise. The multiple (sub-
channel) outputs will be mainly thought of as corresponding
to multiple antennas. After a receive (Rx1) filter (possibly
noise whitening), we sample the Rx signal to obtain a
discrete-time system at symbol rate2. When stacking the
samples corresponding to multiple Rx antennas in column
vectors, the discrete-time communication system is described
by

yk︸︷︷︸
nr×1

= h[q]︸︷︷︸
nr×1

ak︸︷︷︸
1×1

+ vk︸︷︷︸
nr×1

(1)
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1In this paper, ”Rx” stands for ”receive” or ”receiver” or ”reception” etc.,
and similarly for ”Tx” and ”transmit”, ...

2In the case of additional oversampling with integer factor w.r.t. the
symbol rate, the Rx dimension would get multiplied by the oversampling
factor.

where k is the symbol (sample) period index,nr is the
number of Rx antennas. The noise power spectral density
matrix is Svv(z) = σ2

v Inr
, q−1 is the unit sample delay

operator: q−1 ak = ak−1, and h[z] =
∑L

i=0 hi z−i is the
SIMO channel transfer function in thez domain. The channel
delay spread isL symbol periods. In the Fourier domain we
get the vector transfer functionh(f) = h[ej2πf ].

We introduce the vector containing the SIMO impulse
response coefficients3 h = [hT

0 · · · hT
L]T . Assume the energy

normalization tr{Rhh} = nr with Rhh = E {hhH}. By
default we shall assume the i.i.d. complex Gaussian channel
model: h ∼ CN (0, 1

L+1Inr(L+1)) so that spatio-temporal
diversity of ordernr (L + 1) is available (which is the case
from the momentRhh is nonsingular). The average per Rx
antenna SNR isρ = σ2

a/σ2
v.

Whereas in non-fading channels, the probability of error
Pe decreases exponentially with SNR, for a given symbol
constellation, in fading channels the probability of error
taking channel statistics into account behaves asPe ∼ ρ−d

for large SNRρ, whered is the diversity order. Also, at
high SNR, thePe is dominated by the outage probability
Po and has the same diversity order for a well-designed
system. If the data rateR is adapted with SNR such that

we get a normalized rater = lim
ρ→∞

R

ρ
∈ [0, 1], then the

diversity becomesd(r) [1]. For all ZF Rx’s considered in this
paper, we get the following Diversity-Multiplexing Tradeoff
(DMT): d(r) = d(0)(1−r). Hence it suffices to limit the
diversity analysis to the fixed rateR case with diversity
d(0) = d.

In practice also the Linear Equalizer (LE) is often used
because of low detection complextity. Also in practice, for
both LE and DFE, only a limited degree of non-causality
(delay) can be used and the filters are usually of finite
length (FIR). Analytical investigations into the diversity
for SISO with LEs are much more recent, see [3],[5] for
linearly precoded OFDM and [6] for Single-Carrier with
Cyclic Prefix (SC-CP). The DMT for various forms of
LE and DFE with frequency-selective SIMO channels is
investigated in [7]. In [3], it was shown that the introduction
of redundant linear precoding in OFDM allows a MMSE-

3In this paper, .∗, .T , and .H denote complex conjugate, trans-
pose and Hermitian (complex conjugate) transpose respectively, and
h†[z] = hH [1/z∗] denotes the paraconjugate (matched filter). Note that
h†[ej2πf ] = hH(f).



ZF linear block receiver to regain full diversity in the SISO
(or SIMO) case. For instance Zero Padding (ZP) introduces
redundancy in the time (delay) dimension which allows a LE
of inter-symbol interference (ISI) to maintain full diversity:
every input symbol can be recovered linearly unless the
whole channel impulse response becomes zero. In all the
references mentioned above the channel was assumed to be
perfectly known at the Rx and in some cases at the Tx
too. However, practical receivers must estimate the channel,
thereby incurring estimation error that needs to be accounted
for in the performance analysis. In [10] we treated the
effect of blind channel estimation on the diversity of ZF-
LE within the context of SIMO Tx system. However, we
focused there more on the the effect of the constraint usually
used to handle the ambiguity that results from blind channel
estimation. In [12] the effect of channel estimation error on
the performance of the Viterbi equalizer is studied in a SIMO
framework. In [13] the bit-error rate (BER) performance
of multilevel quadrature amplitude modulation with pilot-
symbol-assisted modulation channel estimation in static and
Rayleigh fading channels is derived, both for single branch
reception and maximal ratio combining diversity receiver
systems. However, in [14] it is shown that the(practical)
ML channel estimator preserves the diversity order of MRC
(Maximum Ratio Combining), see also [15] for a more
thorough analysis.

In this paper we assume the channel to be estimated at
the Rx using blind and semi-blind deterministic algorithms
and we investigate the effect of the resulting channel esti-
mation error on the diversity achieved by the corresponding
equalizers (matched to the channel estimation hypotheses).

II. OUTAGE ANALYSIS OF SUBOPTIMAL RECEIVER

SINRS

A perfect outage occurs when SINR= 0. For the Matched
Filter Bound (MFB) this can only occur ifh = 0. For a
suboptimal Rx however, the SINR= SINR(h) can vanish for
any h on theOutage Manifold M = {h : SINR(h) = 0}.
At fixed rate R, the diversity order is the codimension of
(the tangent subspace of) the outage manifold, assuming this
codimension is constant almost everywhere and assuming a
channel distribution with finite positive density everywhere
(e.g. Gaussian with non-singular convariance matrix). For
example, for the MFB (which only depends onh) the
outage manifold is the origin, the codimension of which
is the total size ofh. The codimension is the (minimum)
number of complex constraints imposed on the complex
elements ofh by putting SINR(h) = 0. Some care has to be
excercised with complex numbers. Valid complex constraints
(which imply two real constraints) are such that their number
becomes an equal number of real constraints if the channel
coefficients were to be real. A constraint on a coefficient
magnitude however, which is in principle only one real
constraint, counts as a valid complex constraint (at least if
the channel coefficient distributions are insensitive to phase
changes). For ZF equalizers, consideration of the outage
manifold is suffucient. For MMSE equalizers however, a

more complete analysis is required. An actual outage occurs
whenever the rate exceeds the capacity,log(1+SINR) < R,
which occurs whenh lies in the Outage Shell, a (thin)
shell containing the outage manifold. The thickness of this
shell shrinks as the rate increases and depends also on the
regularization appearing in MMSE equalizers.

III. B LIND (B) AND SEMI-BLIND (SB) CHANNEL

ESTIMATION AND MATCHED ZF EQUALIZATION

Consider a block Tx system with Rx signal in the time
domain [2]

Y = H A + V = HK AK + HU AU + V = Ah + V (2)

whereA is the vector of Tx symbols, containing possibly
known symbolsAK (training/pilots, semi-blind case) and
unknown symbolsAU (actual data, i.i.d. with varianceσ2

a).
H = H(h) is the channel convolution matrix of which the
part HK is affected byAK and the partHU is affected by
AU . Due to the commutativity of convolution,H A = A h
in which A = A(AK , AU ) and h contains the vectorized
channel impulse response coefficients.V is the AWGN with
varianceσ2

v. Eben though we shall investigate the diversity
of receivers due to fading channels, for (semi-)blind channel
estimation purposes, the channelh is considered a deter-
ministic unknown. In the (semi-)blind techniques considered
here, alsoAU is considered a deterministic unknown.HU

andA are assumed to have full column rank w.p. 1 whenh
andA would be considered random.

Maximum likelihood (ML) estimation ofh (with AU as
nuisance parameters) leads to the least-squares cost function
[8]

min
h,AU

‖Y − HA‖2 . (3)

As this cost function is separable [8], we can first optimize
w.r.t. AU , which leads to

ÂU = (HH
U HU )−1HH

U (Y − HK AK) . (4)

In the semi-blind case (AK 6= 0), this is a particular form
of a MMSE-ZF block DFE, with feedback only from the
known symbolsAK . Here, the diversity of a DFE will only
get analyzed with a matched semi-blind channel estimate,
in which the feedback symbols play the role of pilots. In
the blind case,AK = 0 , HU = H and (4) corresponds to a
MMSE-ZF block LE. The ML (semi-)blind channel estimate
is obtained by minimizing (3) after having plugged in (4),
leading to

ĥ = argmin
h

‖P⊥
HU

(Y − HKAK‖2 (5)

where we introduced the projection matricesP⊥
H = I − PH

andPH = H(HHH)−1HH . Note that the Rx diversity with
(semi-)blind channel estimate to be considered here is not
restricted to only ML channel estimates however; any other
(semi-)blind method that exploits the same information will
lead to similar diversity results.



The Fischer Information Matrix (FIM) for the joint esti-
mation ofθ = [AH

U hH ]H is

FIMSB
joint =

1

σ2
v

[HU A]
H

[HU A] . (6)

The marginal Cramer-Rao Bound (CRB) forAU (treatingh
as nuisance parameters) is

CRBSB

AU

= σ2
v

(
HH

U P⊥
AHU

)−1
(7)

while for h (treatingAU as nuisance parameters), it is

CRBSB

h = σ2
v

(
A

HP⊥
HU

A

)−1

(8)

in which the inverses become pseudo-inverses in the blind
case or in the semi-blind case with insufficient pilots [9]. On
the other hand, if the channel is known (full Channel State
Information at the Rx (CSIR)), the CRB forAU becomes

CRBCSIR

AU

= σ2
v

(
HH

U HU

)−1
. (9)

The CRB for symbolk in AU provides a lower bound on the
symbol estimation (reception) error variance, which leadsto
an SINR upper bound

SINRk =
σ2

a

(CRBAU
)k,k

(10)

In the case of full CSIR, this is not an upper bound but the
correct SINR. In the (semi-)blind case, the bound becomes
tight at high SNR, which is the regime of interest for diversity
analysis. Now, we get SINRCSIR

k = 0 wheneverHU loses
full column rank, in which caseHH

U HU becomes singular.
The number of constraints that this loss of column rank
imposes onh will be the diversity order. This diversity order
will be considered in detail for various cases in the further
sections.

Now, considering SINRSB
k (see (8), (9) also), we get

SINRSB
k = 0 whenever SINRCSIR

k = 0. Hence the diversity
order of the Rx with (semi-)blind channel estimate will be at
most that of the Rx with full CSIR. The Rx signal dimension
reduction due to the projectionP⊥

A on the noise subspace
leads to some reduction in diversity order. Note that due
to the randomness ofA, the orientation of the subspaces
considered is random. Due to this randomness, the effect
of this reduction should become negligible whenever the
relative effect of this dimension reduction becomes negli-
gible, namely whenever the ratio of channel delay spread
over block length becomes small.

In the paradigm of matched (semi-)blind channel estimate
and Rx considered so far, the channel estimation and the
data reception are based on the same data block. However,
simulations show that the diversity to be analyzed does not
change when the channel estimation and data reception are
performed on disjoint data blocks, where the Rx for one
data block is constructed with the channel estimate from a
different data block (see the next section also). This would
indicate that the diversity effect of the (semi-)blind channel
estimate dominates.

IV. GENERAL TREATMENT OF THECASE OF

NON-MATCHED RECEIVERS

The channel impulse responseh can be decomposed into
its estimateĥ and its estimation error̃h: h = ĥ + h̃. In
the (semi-)blind case,̂h represents the channel estimate in
which possible ambiguities have been resolved. This channel
decomposition leads to the following signal model

Y = Ĥ A + H̃ A + V = ĤK AK + ĤU AU + Z (11)

with Ĥ = H(ĥ), H̃ = H(h̃), and whereZ = H̃ A + V =
A h̃+V has covariance matrixRZZ = EAU

AR
h̃h̃

A
H +

σ2
vI (if we assume that the channel estimate is obtained

from data independent of theY considered here, to make
h̃ andV independent). If we treatZ as Gaussian noise that
is independent of̂h and AU , then we get a capacity (or
mutual information (MI)) lower bound (that is fairly tight).
The correlations inRZZ depend on the correlationsR

h̃h̃
in the channel estimation error, but may get suppressed by
the averaging overAU , depending on the structure ofA.
As far as the independence ofZ and AU is concerned,
this independence is correct if we estimate the channel from
one Rx block and use that channel to detect the symbols in
a different Rx block (with independent data). In any case,
considering outage probability, the MI lower bound leads to
a diversity order upper bound.

Whereas the considerations so far pave the way to consider
arbitrary Rx structures, in what follows we shall again focus
on matched Rx structures (but applied to different data
blocks). Thus, a MMSE-ZF (δ = 0) or MMSE (δ = 1)
LE/DFE output is obtained as

ÂU = (Ĥ
H

U R−1

ZZ
ĤU + δ σ−2

a I)−1Ĥ
H

U R−1

ZZ
(Y − ĤK AK)

(12)
with resulting error covariance matrix

R
ÃUÃU

= (Ĥ
H

U R−1

ZZ
ĤU + δ σ−2

a I)−1 . (13)

At least, this expression becomes correct at high SNR, where
we can limit the expression to first order terms inσ2

v and
whereH̃A andAU become decorrelated ash̃ becomes linear
in the noise. The resulting SINR for symbolk in AU then
is

SINRMMRx
k =

σ2
a(

R
ÃU ÃU

)
k,k

− δ . (14)

Practically, RZZ is not known because it depends on
the true channel throughR

h̃h̃
= R

h̃h̃
(h). However, at

high SNR, one can equivalently useR
h̃h̃

(ĥ). A different
complication arises when the channel gets estimated and the
Rx symbols get detected from the same Rx signal block.
In that case the expression forRZZ needs to be modified
in order to account for the correlation betweenh̃ and V .
Finally, one has to admit that accounting forRZZ in the
Rx as in (12) complicates the Rx quite a bit. To avoid all
these complications, one could consider the simplified Rx

Â
s

U = (Ĥ
H

U ĤU + δ
σ2

v

σ2
a

I)−1Ĥ
H

U (Y − ĤK AK) (15)



which corresponds to ignoring̃H A and hence using
RZZ = RV V = σ2

vI. Now further neglecting̃H A leads
to a symbol estimation error covariance matrix lower bound
Rs

ÃU ÃU

= σ2

v
(Ĥ

H

U
ĤU + δ

σ
2
v

σ2
a

I)−1 and to a corresponding SINR
upper bound

SINRMMRxs
k =

σ2
a(

Rs

ÃU ÃU

)
k,k

− δ . (16)

A perhaps more accurate approximation would beRs

ÃU ÃU

=

(Ĥ
H

U ĤU+δ
σ2

v

σ2
a

I)−1(Ĥ
H

U RZZ ĤU+δ
σ4

v

σ2
a

I)(Ĥ
H

U ĤU+δ
σ2

v

σ2
a

I)−1.
Our simulations show that these approximate equalizers
(15) achieve the same diversity order as those of (12), be
it in terms of outage using the SINR in (16) (with either
of the two approximate expressions forRs

ÃU ÃU

) or (14),
or in terms of probability of error of these Rxs with QAM
transmission. Indeed, according to the various expressions
for SINRMMRx

k , an outage should occur whenever̂HU

loses full column rank and/orRZZ explodes (becauseR
h̃h̃

explodes). In the simulations shown in [10], we worked
with (12) except for the case of FIR.

V. FIXING THE SCALAR AMBIGUITY IN THE BLIND CASE

The blind channel estimatêh can only be determined up
to a scalarα and to make it comparable to the true channel
(or to use it in a Rx), this ambiguity needs to be fixed to

obtain the final estimatê̂h = ĥ α. As we shall see (see [10]
also), the way by which we resolve the scalar ambiguity has a
major effect on the diversity achieved by the receiver. In this
paper we deal with three different constraints namely, Linear
(Lin) constraint, Least-Squares (LSq) constraint and Fixing
one-tap (FOT) constraint. Admittedly, these fixings are rather
theoretical. In practice, one needs to consider differential
modulation (see [10]) or a semi-blind approach.

A. Linear (Lin) Constraint

Generally, the cost function of any blind deterministic

channel estimation can be represented byĥ
H

Q ĥ where
possibly Q = Q(ĥ). To resolve the scalar ambiguity we
can minimize this cost function subject to a linear constraint

as follows: min
hH ̂̂

h=hHh
||
̂̂h

H

Q ̂̂h||2. Applying the Lagrange

multiplier we get:

̂̂h =
hHh

hHQ−1h
Q−1h . (17)

This constraint yields̃̃h ⊥ h and leads to the minimal CRB.
Normally, the CRB is defined as the inverse of the FIM while
for a singular FIM with the linear constraint considered here,
the corresponding CRB is the pseudo-inverse of the FIM
[11].

B. Least-Squares (LSq) Constraint

In this case the minimization process is done in two steps.

First: min
||ĥ||=1

ĥ
H

Q ĥ to get ĥ = Vmin(Q), where Vmin

represents the eigenvector that corresponds to the minimum
eigenvalue. Then the scalar ambiguity is resolved by least
squares as follows:min

α
||h−αĥ||2. After some manipulation

we get the following solution:

̂̂h =
ĥ

H
h

||ĥ||2
ĥ = Pĥh (18)

so that̃̃h ⊥
̂̂h which is a well known feature of LS estimation.

Also with this constraint, the corresponding CRB is the
pseudo-inverse of the FIM. As a result, both the Linear and
Least-Squares constraints lead to the same diversity order.
Either of these constraints will be assumed in the further
discussion of diversity in the blind case.

C. Fixing One Tap (FOT) Constraint

Now we minimize the cost function by considering wlog.
that the first tap of the channel on the first Rx antenna is

known: eH
1 h = 1 with eH

1 = [1 0 · · ·0], min
eH

1

̂̂h=1

̂̂h
H

Q ̂̂h.

Applying the Lagrange multiplier we get:
̂̂h = Q−1e1

eH
1 h

eH
1 Q−1e1

. (19)

It is obvious from (19) that for̂̂h to vanish it is sufficient
that eH

1 h gets very small. Hence the diversity achieved is
one regardless of the Rx used:dFOT = 1. This may in
part explain the bad performance of blind channel estimation
algorithms using this constraint.

VI. ZF EQUALIZATION IN SINGLE CARRIER CYCLIC

PREFIX (SC-CP) SYSTEMS

The diversity of LE for SC-CP systems has been studied in
[6] for the SISO case with i.i.d. Gaussian channel elements,
fixed rateR and block sizeN = L+1. The LE DMT for
SIMO SC-CP systems appears in [7]. Consider a block ofN
symbol periods preceded by a cyclic prefix (CP) of lengthL
(as a result of the CP insertion, actual rates are reduced by
a factor N

N+L
, which is ignored here in what follows). The

channel input-output relation over one block can be written
as

Y = H A + V = Ah + V ; (20)

where Y = Y k = [yT
k yT

k+1 · · ·y
T
k+N−1]

T etc. H is a
banded block-circulant matrix (see (13) in [7]) andA =
A′ ⊗ Inr

where A′ is a toeplitz matrix filled with the
elements ofA. Now apply anN -point DFT (with matrix
FN ) to each subchannel received signal, then we get

FN,nr
Y︸ ︷︷ ︸

U

= FN,nr
H F−1

N︸ ︷︷ ︸
H

FN A︸ ︷︷ ︸
X

+ FN,nr
V︸ ︷︷ ︸

W

(21)

where FN,n = FN ⊗ Inr
(Kronecker product:A ⊗ B =

[aijB]), H = blockdiag{h0, . . . , hN−1)} with hn =
h(fn), the nr × 1 channel transfer function at tonen:
fn = n

N
, at which we have

un = hn xn + wn . (22)

The xn components are i.i.d. and independent of the i.i.d.
wn components withσ2

x = N σ2
a, σ2

w = N σ2
v .



A. Blind Channel Estimation

The Rx matched to blind channel estimation is the ZF
LE. In the case of full CSIR, the SINR is given by (9), (10).
In this caseHU = H is block circulant and loses column
rank whenhn = 0, i.e. when there is a complete fade on
one of the tones, which representsnr constraints onh. So
in this case simultaneously the ZF LE fades and the channel
becomes unidentifiable. Hence, the full CSIR diversity isnr.
In the case of the LE with blind channel estimate, we need
to consider (7), (10). As mentioned earlier, the combination
of the blind channel estimate in the LE Rx leads to some Rx
dimension and hence some diversity loss due toP⊥

A . As a
result we can state that

dB−ZF
SC−CP ≤ dCSIR−ZF

SC−CP = nr (23)

where the inequality becomes an equality as
L + 1

N
→ 0. In

the case of full CSIR, the SINR is identical for all symbols in
the block. The SINR becomes position dependent in the blind
case. We have investigated via simulations the dependence
of the diversity order on the symbol position but did not find
any. Also replacing the per symbol MSE by an average over
the block led to the same diversity.

B. Semi-Blind Channel Estimation

We consider hereM consecutive pilot symbols in the time
domain. For the symbol following theM pilots, the block
DFE Rx configuration is exactly that a classical DFE with
feedback lengthM . It has been shown in [7] that the diversity
for such a full CSIR DFE isd = nr(1+min{M, L}). Hence
we conclude

dB−ZF
SC−CP ≤ dSB−ZF

SC−CP ≤ dCSIR−ZF
SC−CP = nr(1 + min{M, L}) .

(24)
In this case the inequality is not only due to channel estimate-
Rx coupling for a finite block length as in the blind case,
but possibly also depends on the distribution of theM pilots
over the block, as simulations reveal (see further).

VII. ZF EQUALIZATION IN OFDM SYSTEMS

Whereas for SC-CP the Tx symbols areA in time domain,
in OFDM the symbols are inX in frequency domain. The
same block processing formulas remain valid, if considered
in frequency domain. In OFDM, the channel is flat at every
tone and transmission at different tones is decoupled. As a
result, we get for the blind case

dB−ZF
OFDM ≤ dCSIR−ZF

OFDM = nr . (25)

In the semi-blind case, pilots are now placed in the frequency
domain. If we introduceHX = Xh then we get

CRBSB

XU

= σ2
w

(
HH

U P⊥
X HU

)−1
(26)

whereHU is obtained fromH by eliminating the columns
corresponding to the pilot positions. The pilots have no
incidence on reception, only on channel estimation. As a
result we get

dB−ZF
OFDM ≤ dSB−ZF

OFDM ≤ dCSIR−ZF
OFDM = nr . (27)

VIII. ZF FIR/N ON-CP EQUALIZATION

For time domain FIR equalization of lengthN , the block
signal Tx model can be derived from the SC-CP case in (20)
by considering a SC-CP block length ofN+L and removing
theL first Rx samples in the block.H is now replaced by a
Nnr × (N+L) banded block Toeplitz matrixH which can
be obtained from the block circulantH by removing theL
top block rows, andA is replaced byA containing N+L
symbols. For a ZF FIR LE with full CSIR andN > L, it
was shown in [7] that the diversity isd = nr − 1. There
is a diversity order loss of 1 compared to the SC-CP case
because now the LE SINR fades or the channel becomes
blindly unidentifiable wheneverh[z] has a zero anywhere in
the z-plane, as opposed to a zero atN discrete points on
the unit circle as for the SC-CP case. So the constraint on
h is that thenr−1 other subchannels have a zero equal to a
(any) zero of the first subchannel, which isnr−1 constraints.
As a result, we get for the FIR ZF LE with matching blind
channel estimate

dB−ZF
FIR ≤ dCSIR−ZF

FIR = nr−1 . (28)

For the semi-blind case, we can expect similarlydSB−ZF
FIR ≤

dSB−ZF
SC−CP .

IX. SIMULATIONS

The probability of error for Tx symbols drawn from an
8PSK constellation is simulated, averaged over1e6 Monte-
Carlo runs of AWGN noise, symbols and i.i.d. Rayleigh
fading channel realizations. We consider Tx block lenthN =
20, nr = 3 Rx antennas, and channel memoryL = 1. For the
case of comparable outage probability Pr(O) considerations,
we assume a rateR = N

N+L
log(K), where K = 8 is

the constellation size. In Fig. 1 we have simulated Pr(O)
(via (7), (10)) for the SC-CP and FIR scenarios with blind
channel estimation. It is obvious that in both scenariosd ≈ 2.
This result confirms our interpretation that blind channel
estimation leads to a loss in the diversity order of a ZF-LE.
In Fig. 2 we simulate all the Tx scenarios considered in this
paper but this time with semi-blind channel estimation. We
assume thatM = 4 training symbols (pilots) are inserted at
the beginning of each block. We observe that SC-CP attains
a full diversity order ofd = 6 while OFDM achievesd = 3
(full spatial diversity) and the Non-CP case achieves just 2.5
(less than full spatial diversity). However, in Fig. 3 we reduce
M to 2 SC-CP and OFDM, butM = 3 for Non-CP (1 at the
beginning of each block and 2 at the end). For SC-CP we
get d = 4 while for OFDM d = 3 only. This result reveals
the effect of the length of the training sequence (pilots) used
on the diversity order achieved. On the other hand, for the
Non-CP case with the distributed 3 training symbols, we get
d = 4 which is higher than in the previous simulation even
though 4 training symbols were inserted at the beginning of
the block. This shows the necessity to distribute the training
sequence over both edges of the Tx block to achieve higher
diversity orders for the Non-CP case.
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Fig. 1. Probability of outage vs. SNR for SC-CP and FIR (Non-CP) Tx
scenarios with blind channel estimation and ZF-LE.
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Fig. 2. Probability of outage vs. SNR for SC-CP, OFDM and FIR (Non-
CP) Tx scenarios with semi-blind channel estimation and ZF block DFE
with 4 pilots at the start of the Tx block.
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Fig. 3. Probability of outage vs. SNR for SC-CP, OFDM and FIR (Non-
CP) Tx scenarios with semi-blind channel estimation and ZF-DFE where 3
pilots are used for the case of Non-CP and 2 pilots for SC-CP orOFDM.

X. CONCLUSIONS

In this paper we have analyzed the diversity order of
MMSE-ZF Linear and Decision-Feedback Equalization for
frequency-selective SIMO channels, with the receivers being
constructed from matching (semi-)blind channel estimates.
The matching is furthermore interpreted here in a strict sense
in which both the symbols and the channel get estimated
on the basis of the same block of data. We have seen that
matching leads essentially to the same diversity order for
the receivers considered, built from (semi-)blindly estimated
channels or from the true channel. For finite block lengths,
the combination of receivers and channel estimates leads to
some diversity reduction that requires further investigation.
The effect of the positioning of pilot symbols also requires
further investigation, as also the analysis of non-matching
scenarios,
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