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Abstract— Blind audio source separation (BASS) arises in a
number of applications in speech and music processing such
as speech enhancement, speaker diarization, automated music
transcription etc. Generally, BASS methods consider multichan-
nel signal capture. The single microphone case is the most
difficult underdetermined case, but it often arises in practice.
In the approach considered here, the main source identifiability
comes from exploiting the presumed quasi-periodic nature of
sources via long-term autoregressive (AR) modeling. Indeed,
musical note signals are quasi-periodic and so is voiced speech,
which constitutes the most energetic part of speech signals. We
furthermore exploit (e.g. speaker or instrument related) prior
information in the spectral envelope of the source signals via
short-term AR modeling, to also help unravel spectral portions
where source harmonics overlap, and to provide a continuous
treatment when sources (e.g. speech) temporarily lose their
periodic nature. The novel processing considered here uses
windowed signal frames and alternates between frequency and
time domain processing for optimized computational complexity
and approximation error. We consider Variational Bayesian
techniques for joint source extraction and estimation of their
AR parameters, the simplified versions of which correspond to
EM or SAGE algorithms.

Index Terms— Variational Bayes, Expectation Maximization,
Blind Source Separation, Speech Processing, Autoregressive
process, Linear Prediction

I. I NTRODUCTION

The need for Blind Audio Source Separation (BASS)
arises with various real-world signals, including speech en-
hancement, speaker diarization, automated music transcrip-
tion etc.. Generally, BASS methods consider multichannel
signal capture and has been dealt with extensively in the
literature. In the over determined case of BSS the source
separation can be performed satisfactorily, especially inclean
environment, for example by using Independent Component
Analysis (ICA) [1], [2] or Computational Auditory Scene
Analysis (CASA) [3]. ICA assumes that there are at least as
many observation mixtures as there are independent sources.
For underdetermined BSS (UBSS), the problem is ill-defined
and its solution requires some additional assumptions.

This paper is organized as follow. In section II we present
the model of joint speech production. In section III we
discuss the introduction of windows. Then, in sections IV,
V and VI we explain the methodology and the algorithm for
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the source separation problem using a variational bayesian
framework. In section VII we present some results and finally
we conclude.

II. SIGNAL MODEL

We consider the problem of estimatingK Gaussian
sources from a single mixture. We use the short+long term
autoregressive (AR) voice production model [4]:

yt =

K
∑

k=1

xk,t + vt, (1)

xk,t =

pk
∑

n=1

ak,nxk,t−n + fk,t, fk,t = bkfk,t−τk
+ ek,t .

Here,yt is the measured mixture of signals,K is the number
of sourcesxk. vt is an additive white Gaussian noise of
varianceσ2

v and is assumed to be uncorrelated with the
sources.ek,t is the excitation signal of sourcek, also assumed
to be Gaussian and white with varianceσ2

k. For each source
xk, τk is the period (its fractional part can be implemented by
linear interpolation if the samplinf frequency is high enough),
bk its long-term prediction coefficient and the short-term
prediction coefficientscoefficient, of orderpk, are ak,n; fk
is the short-term prediction error. If we introduce the short-
term and long-term prediction error transfer functions

Ak(z) =

pk
∑

n=0

ak,nz
−n, Bk(z) = 1 − bkz

−τk (2)

with ak,0 = 1, then we can rewrite the various signals as

fk,t = Ak(q)xk,t, ek,t = Bk(q) fk,t = Bk(q)Ak(q)xk,t

where q−1 is the unit sample delay operator:q−1xk,t =
xk,t−1. We shall also need the signals

gk,t = Bk(q)xk,t , k = 1, . . . ,K . (3)

In the approach considered here, identifiability comes es-
sentially from exploiting the presumed quasi-periodic nature
of sources via long-term AR modeling introduced above.
Indeed, musical note signals are quasi-periodic and so is
voiced speech, which constitutes the most energetic part of
speech signals. We furthermore exploit (e.g. speaker or in-
strument related) prior information in the spectral envelope of
the source signals via short-term AR modeling, to also help
unravel spectral portions where source harmonics overlap,
and to provide a continuous treatment when sources (e.g.
speech) temporarily lose their periodic nature.



III. W INDOWING FOR FRAME-BASED PROCESSING

The signals considered are by nature non-stationary. If
we can consider the parameters constant during a short
time, we can process the signal in frames (time segments),
over which the signal can be considered stationary, which
corresponds to time-invariant filtering. Many of the signal
processing operations (e.g. linear time-invariant filtering and
filter computation) could be largely simplified by passing
to the frequency domain. However, transforming a frame of
signal to the frequency domain directly via the DFT (FFT)
leads to approximations due to the periodic extension of the
frame assumption inherent in the DFT.

A. Windowing Methodology

The introduction of a window allows to reduce the ap-
proximation error. Consider e.g. the stackedN samples in
a frame of the prediction error signal (vectors and matrices
are denoted by bold letters)

fk = TAk
xk (4)

whereTAk
is theN × (N+pk−1) banded Toeplitz matrix

corresponding to the prediction error filterAk(q) (to ease
the notation we shall suppress the time index of the frame).
To transform a filtering matrix easily, it should be circulant,
in which case the DFT diagonalizes the matrix. The direct
approximation of a Toeplitz matrix by a circulant matrix is
only acceptable when the matrix dimension is much larger
than the filter length. To aid in the approximation, we shall
introduce an analysis windoww = [w0 w1 . . . wN−1]

T ,
with associated diagonal weighting matrixW = diag{w}.
The windowed prediction errorWfk requiresWTAk

. Now,
assume the window decays to zero at its edges and varies suf-
ficiently slowly, then the following approximations become
valid:

W TAk
≈ WAk ≈ Ak W (5)

whereAk is aN×N square circulant matrix, corresponding
to circulant convolution withAk(q). We shall similarly intro-
duce the circulantBk, though the approximations considered
above will be rougher for the filterBk(q) (or B−1

k (q)) since
long-term prediction has larger delay spread than short-term
prediction. Note that just likeAk(q)Bk(q) = Bk(q)Ak(q),
also AkBk = BkAk. Then we get the following signal
relations

Wek = AkBk Wxk = Ak Wgk = BkWfk
Wgk = Bk Wxk , Wfk = Ak Wxk .

(6)

Just like the original data signalyk will be cut into a series of
windowed frames, a processed signal (e.g. extracted source)
will be reconstructed by superposing its reconstructed win-
dowed frame segments. Since the window needs to decay
towards its edges, consecutive frames need to overlap. Let
M be the hop size (time jump) from one frame to the next,
then a perfect reconstruction (PR) windowwt requires

∞
∑

i=−∞

wt−iM = 1 , ∀n (7)
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Fig. 1. Perfect reconstruction windowing.

see the top figures in Fig. 1 for the cases of relative overlap of
(N−M)/N = 50%, 75% (both the individual windows and
their sum are shown for a finite set of windows). Note that
one could consider extensions to non-PR windows, in which
the superposition of windowed signal frames could be fol-
lowed by a zero-forcing rescaling with1/(

∑∞
i=−∞ wt−iM )

or (multi-window) MMSE versions thereof. The PR window
that will be used in the simulations in this paper is a Hann
(or raised cosine) window [5]

wt =
1

2

[

1 − cos

(

2π
t

N

)]

, t = 0, 1, . . . , N − 1 . (8)

B. Frequency Domain Window Design

When applying theN×N DFT matrixF to the windowed
signals in (6), we get

FWek = (FAkF
−1)(FBkF

−1) (FWF−1)Fxk

where we get diagonal frequency domain filtering matrices
Ăk = FAkF

−1 etc. The main non-diagonal matrix will be
the covariance matrix ofFWek, which is proportional to
W̆2 = FW2F−1 (ek being white). For the case of the
Hann window, both the window and a zoom on the main
antidiagonal of the circulant̆W2 appear in the bottom half of
Fig. 1. The time domain window design criteria of decaying
edges and smooth behavior translate in the frequency domain
to decaying spectral smear and high sidelobe attenuation.
Indeed, in order to keep a low computational complexity
approach, the window spectrum will be approximated by
only its main lobe. This leads to an approximation error
that derives from the sidelobe attenuation level. The resulting
processing will no longer involve pure diagonal matrices,
but banded matrices. As the FFT points in the bottom right
figure indicate, for the case of a Hann window,W̆2 can be
approximated by a symmetric banded circulant matrix with 5



diagonals, with (elementwise) approximation error attenuated
by at least 30dB.

IV. VARIATIONAL BAYESIAN TECHNIQUES

A recent tutorial on Variational Bayesian (VB) estimation
techniques can be found in [6], see also [7]. It provides an
approximate technique to determine the posterior probability
density function (pdf) of the quantities to be estimated. Let θ
denote the vector of all quantities to be estimated, including
parameters and possibly signals (e.g. the ”hidden variables”
in EM terminology) andY denotes the measurements. In
many problems, the joint posterior pdfp(θ|Y ) can be com-
plicated to determine. Consider now a partition ofθ into K
subgroups of quantities that will get estimated per subgroup
θ = {θk, k = 1, . . . ,K}. The idea of VB is to approximate
p(θ|Y ) by a product formq(θ|Y ) =

∏K

k=1 q(θk|Y ) where
the q(θk|Y ) in general will differ from the true marginal
pdfs p(θk|Y ). The q(θk|Y ) are determined by minimizing
the Kullback-Leibler distance between

∏K

k=1 q(θk|Y ) and
p(θ|Y ). This leads to the following implicit relations

ln q(θk|Y ) = Eq(θ
k̄
|Y ) ln p(Y, θk, θk̄) , k = 1, . . . ,K (9)

where θk̄ is θ minus θk, henceθ = {θk, θk̄}. In practice,
(9) needs to be solved iteratively by consecutively sweeping
throughk = 1, . . . ,K, at all times using forq(θk̄|Y ) the
latest version available. This iterative process can be shown
to converge monotonically. Typically, whenp(Y |θ) and the
prior p(θ) are exponential pdfs (typically Gaussian), then one
can see from (9) thatq(θk|Y ) will also be an exponential
pdf. Note that Variational Bayesian techniques can also be
applied in the presence of deterministic unknownsθD. There
are two ways to think about deterministic unknowns:

(i) as truly deterministic, with priorp(θD) = δ(θD − θoD)
where θoD is the unknown true value ofθD; in other
words,θD ∼ N (θoD, RθD

) whereRθD
= 0 I.

(ii) as random with no prior information, henceθD ∼
N (θoD, RθD

) whereRθD
= ∞ I.

In case (i), VB becomes EM [6], in which case during the
iterations the deterministic parameters are simply substituted
by their current estimate.
Case (ii) is closer to the VB spirit. Ifθ = {θD, θS} where
θS are the stochastic parameters, then it suffices to replace
p(Y, θ) in (9) by p(Y, θS |θD) = p(Y |θ) p(θS). In this case
also for the deterministic parameters not only their current
estimates (posterior means) are accounted for but also their
estimation error.

To summarize, EM is a special case of VB, with 2 subsets
of parameters (stochastic and deterministic). Note that inthe
VB context the difference between EM and SAGE algorithm
is the splitting of the subsets.

V. VARIATIONAL BAYESIAN BSS

The overall set of parameters contains the following sub-
sets (source, short term and long term parameters):

θ = [θT1 · · · θTk λv]
T (10)

θk = [ ak ϕk xk ]T (11)

ak = [ak,1 · · ·ak,pk
]T (12)

ϕk = [ bk τk λk ]T (13)

whereλk = 1/σ2
k andλv = 1/σ2

v are the inverse variances or
precisions. The prior probability distributions for the various
parameters are chosen as follows. Letψ be any of the groups
{xk, k = 1, . . . ,K}, ak, ϕk \ λk. Then for any such subset
of parametersψ and for theλk, λv, the priors are chosen as

p(ψ) = N (mψ, Cψ) (14)

p(λv) = Exponential(mλv
) (15)

p(λk) = Exponential(mλk
) . (16)

With this choice of prior distributions, the posterior distribu-
tions obtained by VB will be of the same nature (Gaussian
or Exponential). However, in this paper we shall consider a
further simplification.

VI. A LGORITHM

We shall simplify the VB approach by splitting the over-
all parametersθ into two groups: the sources{xk, k =
1, . . . ,K} on the one hand, and all AR and noise parameters
on the other hand. Whereas the first group shall be treated as
random, the second group shall be treated as deterministic
(negligible variability, delta function posterior distribution).
The resulting iterative algorithm leads to an EM-style algo-
rithm consisting of two steps, the estimation of the sources
(E-Step) and the parameters (M-Step). First an estimate of
the sourcesxk is obtained from the noisy observations,y,
with a fixed interval Wiener filter (instead of a Kalman filter
as in [8]). Second, the noises variance, the short and long-
term AR parameters are estimated based on the estimated
source correlations.

A. Estimating the Sources

We shall estimate the sourcesxk jointly, hence consider
x = [xT1 · · ·xTk ]T . Iterative estimation of the separate
sources will only lead to a polynomial expansion style
iterative solving of the Wiener estimation equation forx.
This would slow down convergence, but also reduce compu-
tational complexity. It would only potentially improve perfor-
mance if some non-Gaussianity is introduced and exploited.

Consider now also the following notation:
W = ⊕Kk=1W = IK⊗W, I = [IN . . . IN ] = 1Tk ⊗IN ,
A = ⊕Kk=1 Ak= blockdiag{A1, . . . ,AK},
B = ⊕Kk=1 Bk= blockdiag{B1, . . . ,BK},
Λ = ⊕Kk=1 λkIN = Λ ⊗ IN , Λ = diag{λ1, . . . , λk},
x′ = Wx, Λ′ = W−1ΛW−1 = Λ ⊗ W−2 and
e = [eT1 · · · eTK ]T .
With this notation, the signal model can be written as

Wy = I x′ + W v, A B x′ = W e. (17)



with circulantAk, Bk. We get the Gaussian

−2 ln p(y,x|θ \ x) =

λv(Wy−I x′)TW−2(Wy−I x′) + x′T
[

BTATΛ′AB
]

x′

= c+ (x′ −mx′)TC−1
x′x′(x′ −mx′) .

(18)
Averaging this over the parametersθ \ x now simply means
evaluating at the latest estimates of these parameters, since
they are considered deterministic in the simplification. We
get from (18), after introducing the auxiliary quantities

C = BTATΛ′AB

= blockdiag{λkBT
kAT

kW−2AkBk}Kk=1

D = 1
λv

W2 + IC−1IT

= 1
λv

W2 +
∑

k
1
λk

B−1
k A−1

k W2A−T
k B−T

k

(19)

we get

Cx′ = (λvI
TW−2I + C)−1

= C−1 − C−1ITD−1IC−1

mx′ = C−1ITD−1Wy .

(20)

To implement this in the frequency domain, consider the
diagonalĂk = FAkF

−1 etc. The only non-diagonal matrix
is W̆2 = FW2F−1 which, due to careful window design,
can be approximated by a banded matrix as discussed earlier.
As a result,C̆−1 and D̆ are equally banded matrices Now
consider the LDU factorization

FDF−1 = F

[

1

λv
W2 +

∑

k

1

λk
B−1
k A−1

k W2A−T
k B−T

k

]

F−1

=
1

λv
W̆2 +

∑

k

1

λk
B̆−1
k Ă−1

k W̆2Ă
−H
k B̆−H

k = LDLH (21)

where the unit diagonal lower triangularL is banded. The
steps for computingmx′ in the frequency domain are now:

• y̆ = F W y

• solve ŭ from Lŭ = y̆ by backsubstitution
• solve z̆ from LH z̆ = D−1ŭ by backsubstitution
• mx′

k
= 1

λk

F−1 B̆−1
k Ă−1

k W̆2Ă
−H
k B̆−H

k z̆, each
time multiplying a vector with a matrix and ending with
IDFT and scaling.

In practice all operations with the Discrete Fourier Transform
(DFT) matrixF are done by using the Fast Fourier Transform
algorithm (FFT). AsB̆k = diag{b̆k} andĂk = diag{ăk},
we can write

B̆−1
k Ă−1

k W̆2Ă
−H
k B̆−H

k =
1

ăk

1

ăHk
⊙

1

b̆k

1

b̆Hk

⊙W̆2 . (22)

B. Updating the AR parameters

Given the Gaussian posterior of the sourcesx, the esti-
mation of the AR parameters of the different sources is in
principle coupled (Cx′ is not block diagonal) but we shall
decouple their estimation. The estimation of short-term and
long-term AR parameters for a given source is coupled also.
Many updating schedules are possible, e.g. iterating between

short-term and long-term parameters before returning to the
updating of the source statistics. We get for sourcek

−2 Eq(x′
k) ln p(xk|ak, ϕk)

= c−N lnλk + λk Eq(x′
k)x

′T
kBT

kAT
kW−2Ak Bkx

′
k

= c−N lnλk + λk tr {W−2Ak BkRkB
T
kAT

k }
(23)

where

Rk = Eq(x′
k)x

′
kx

′T
k = mx′

k
mT

x′
k

+ Cx′
k

(24)

which are obtained from (20). After optimizing theak, bk,
τk , one can find by minimizing (23)

λk = N/ tr {W−2Ak BkRkB
T
kAT

k } (25)

while theak are obtained by minimizing

tr {W−2Ak (BkRkB
T
k )AT

k } (26)

for fixed bk, τk, and thebk, τk themselves are obtained by
minimizing

tr {W−2Bk (AkRkA
T
k )BT

k } (27)

for fixed ak (in a full VB approach, this quadratic form, e.g.
in ak, would have to be identified with the exponent of a
Gaussian pdf in order to find both mean and covariance).
At this point, one might remark that the limited degree of
nonstationarity of the signals leads to slow variation of the
source statistics in time. Hence, in all this the instantaneous
Rk for a given frame may be advantageously replaced by an
exponentially weighted average of theRk of the past frames.
The time constant of the exponential weighting factor may
be adjusted according to the degree of nonstationarity, which
may be inferred by focusing mainly on the time variation of
the long-term AR model parameters.

Alternatively, at this point one may consider pushing back
the window into the source statistics by considering the cost
function

tr {Ak Bk(W
−1RkW

−1)BT
kAT

k } (28)

where for the mean, the unwindowedW−1mx′
k

may be
advantageously replaced by the reconstructed multiframe
source signal, still with the resulting sample correlations
exponentially weighted into the past. For the source esti-
mation error covariance partW−1Cx′

k
W−1, if not ignored

completely, may be approximated by the expression without
window:

Cxk
= C−1

k − C−1
k ( 1

λv
IN +

∑K

i=1 C
−1
i )−1C−1

k

with Ck = λkB
T
kAT

kAkBk

(29)

in which all matrices are circulant, hence the computation
is straightforward in the frequency domain. The values for
the AR parameters to be used in the computation ofCxk

are
those that were used for the computation ofmx′

k
.

Finally, the estimation of the overall noise variance can be
obtained similarly as

1

λv
=

1

N
||y − W−1Imx′ ||2 +

1

N
tr {W−2ICx′IT } (30)

where the same multi-frame averaging and approximations
are applicable.
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Fig. 2. Waveform of the mixture, sources and estimated sources.

C. Initalization and Tracking

When moving from one frame to the next, the AR and
noise parameters from the previous frame can be used as
initialization for the current frame. For the cold start, or
when a new source appears or reappears after a silence, the
algorithm needs initialization, mainly for the long-term AR
parameters. For this any multipitch estimation algorithm can
be used.
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VII. R ESULTS

For testing the algorithm we have worked with real speech
data (the sources), the mixing and noise adding are done
artificially. The sources consist of two speech recordings of
10 s, a male and a female English speaker. The analysis
window length is 64 ms with an overlap of50%. The
(cold) initialization of the parametersak, bk andλk is done
on the original sources (yielding the ”correct” values). The



algorithm is stopped when the variation between two con-
secutive iterations is lower than10−3 or when the algorithm
reaches20 iterations. Fig 2 and 3 show the results of the
decomposition for the separation, with anSNR of 20dB.
The estimated parameters are close to the correct ones,
measured on the original sources with a chosen order for
the short term coefficients. Note that the signals contains
silence segments, where we cannot build on the estimated
parameters of the previous frame, we need to re-initialize
them.

Fig 4 shows a zoom on a frame. One can see the automatic
appearance of a windowed version of the extracted sources.
In this particular frame the two pitch periods are very
different, which faciliates the separation.
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A second simulation consists in estimating the (output)
Signal to Noise Ratio (SNR). We apply the algorithm on a
mixture of two sources (two segments of length64 ms), and

we vary the (input)SNR. The (output) noise is determined
by subtracting the estimated sources from the noisy mixture
(and contains at least the input noise). The outputSNR is
defined bySNRest = 10 log10

(
∑

t
‖

∑

k
x̂k(t)‖2

∑

t
‖y(t)−

∑

k
x̂k(t)‖2

)

. If
the algorithm works well, the output SNR increases up to
the input SNR. This is observed in the results obtained as
shown in Fig 5.
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Fig. 5. SNR estimation for a mixture of 2 sources

VIII. C ONCLUSIONS

In this paper we have proposed a VB-EM type algorithm
for blind source separation. The long term correlation allows
identifiability of the sources which, in the case of unvoiced
speech segments, is maintained by the short term AR model.
We have in particular introduced a more rigorous use of fre-
quency domain processing via the introduction of carefully
designed windows. The results for BASS are encouraging.
Further extensions could include the determination of the
number of sources. Also, multipitch estimation is required
at initialization and at any reappearance of non-stationary
sources.
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