
Achieving life-cycle compliance of
Service-Oriented Architectures: Open issues and

challenges

Theodoor Scholte1, Engin Kirda2

1 SAP Research
805 Avenue du Docteur Maurice Donat

06254 Mougins Cedex France
theodoor.scholte@sap.com

2 Institut Eurécom
2229, Route des Crêtes
06560 Valbonne, France

kirda@eurecom.fr

Abstract. The introduction of regulations such as the Sarbanes-Oxley
act requires companies to ensure that appropriate controls are imple-
mented in their business applications. Implementing and validating com-
pliance measures in ‘agile’ companies is time consuming, costly, error-
prone and a maintenance-intensive task. This paper presents an approach
towards dynamically adapting a Service Oriented Architecture (SOA)
such that business applications remain compliant. In order to ensure
compliance, a compliance checking mechanism for the SOA is needed.
Upon detection of a threat/violation, the components of a business ap-
plication are adapted using aspect-oriented programming (AOP). In this
paper, we discuss the fundamental problems and we give an architectural
description of our approach.

Keywords: Business Process Management, Compliance Management,
Compliance Checking, Service-Oriented Architectures, Aspect-Oriented
Programming, Risk Assessment, Risk Mitigation

1 Introduction

In order to survive in today’s business world which is characterized by fact-paced
market development, emerging technologies, increased time-to-market pressure
and shortened product life cycles, enterprises need to be able to quickly adapt
in terms of business processes, partners and relations.

The introduction of regulations such as the Sarbanes-Oxley act [36], Basel
II Accord [34], Code Tabaksblad [21], HIPAA [8], IFRS [5], MiFID [7] and
LSF [17] requires organisations to implement an effective internal controls sys-
tem in the enterprise. Non-compliance to rules and regulations can be the cause



2

of juridical pursuits as financial scandals have shown. Examples include Enron
and WorldCom in the US and Parmalat in Europe [10, 12]. More recently, it be-
came clear that the absence of proper policies, regulations and controls are one
of the factors that caused the subprime mortgage crisis which resulted in gov-
ernment bailouts of financial firms, bankruptcies or selling of banks at fire sale
prices [38]. The term Compliance Management refers to identifying, modeling
and implementing rules and regulations such that illegal and illicit behaviour will
be avoided when performing business activities. Thus, proper Compliance Man-
agement helps in mitigating the risks to illegal, illicit and fraudulent behavior
and financial losses. Regulations and legislations constrain the business and are
organisation-centric, business-centric, information-centric, legal-aspects centric
and human-centric descriptions [26]. They are often imposed by external enti-
ties such as the government. Implementing these rules and regulations is difficult
as they are documented and communicated in natural language. Furthermore,
they are expressed at a high-level of abstraction which means that they have to
be translated into executable models and policies such that they can be enforced
by the underlying infrastructure. This mapping is always done manually as there
are no tools available to automate this process. For these reasons, designing a
business process that satisfies laws, rules and legislations and implementing it on
top of an IT-infrastructure is a time consuming, costly and error-prone process.

Business applications are used by companies to help them in achieving their
business goals. Business goals are reached by performing business activities which
can be described by business processes. A popular way to develop a business ap-
plication is by modeling and implementing a business process through the use
of the Service Oriented Architecture (SOA) paradigm. In this paradigm, the
functionality of an IT system is structured in small units called services. Then,
business processes are modeled to orchestrate these services in order to imple-
ment a business activity. The services providing the implementation may change
independently from the process specification; enabling and accelerating business
& IT alignment and agility. The implementation of a business process requires
different stakeholders to be involved due to the increased size and complexity of
today’s organizations. This issue has been addressed in existing work on Business
Process Management (BPM) [18, 23, 37] and Enterprise Architecture [44].

Compliance Management requires the modeling and the implementation of
constraints in the implemented business process. Regulations and business ob-
jectives change independently and irregularly from each other. Business appli-
cations that are compliant to rules and regulations, are designed and managed
through separate activities and by several different experts which have different
domain knowledge [22] (e.g. risk and juridical experts). As mentioned above, the
mapping of abstract and high-level compliance requirements to implementable
rules and policies is a manual process. Therefore, managing compliance is not
only time consuming, costly and error-prone but also maintenance-intensive [26].
A scalable, robust and powerful approach is desired to solve the above issues.

In this paper, we make the following contributions:



3

– We identify the problems related to the semi-automatic adaptation of busi-
ness applications given a set of constraints that mitigate the risk that ille-
gal/illicit behavior will occur.

– We propose an architecture of an application that can potentially solve the
identified problems.

This paper is structured as follows. In section 2 we discuss the problems related
to compliance management, section 3 presents a solution architecture that allows
adapting business applications automatically based on compliance rules and run-
time information. In section 4 we discuss related work. Finally, a summary and
an outlook on future research is given in section 5.

2 Problem Discussion

2.1 Case study

D
o
c
to

r 
o

r 
N

u
rs

e

Retrieve 

Doctor’s Data

Retrieve 

Operation 

Unit’s Data

Identify 

Patient

Drug 

Selection

Retrieve 

Dispensation 

Info

Register 

Dispensation 

Request

Take Drugs 

from Stock

Print 

Dispensation 

Sheet

Deliver Drugs

Archive 

Copies

P
a

ti
e
n
t

Give 

Prescription 

Sheet

Sign 

Dispensation 

Sheet

Receive 

Drugs

Start 

Event

Prescription 

Sheet 

received

End 

Event

Dispensation 

Sheet Signed

H
o

s
p
it
a
l 
IT

 S
e
rv

ic
e
s

End 

Event

Human 

Resource 

System

Operation 

Department 

System

Patient 

Record 

System
Drugs 

Dispensation 

System

Fig. 1. Drugs dispensation Business Process in use by one of the largest hospitals in
Milan.

The following use case is used in the EU FP7 project MASTER [9] and it
contains the standard business processes that are in use by one of the largest
hospitals in Milan. Here, the use case will be used to explain the basic concepts



4

of business processes and internal controls. We use this example to motivate our
research problem.

In this real hospital in Milan, drugs are dispensed to patients according
to the business process depicted in Figure 1. Modeling a business process for
dispensing drugs is normally a complex activity. Therefore, we use a simplified
example. The business process starts with a patient who hands a prescription
sheet to a doctor or nurse. The doctor/nurse logs into the dispensation software
application, the operational unit of the doctor is identifier. Then, the doctor is
able to select the patient who should receive the drugs. The system receives all
the necessary information to select the drugs to be dispensed. The doctor chooses
the drugs, registers this, takes the drugs from stock and registers this. Then, the
doctor hands the drugs to the patient. The business process contains manual
activities as well as activities that are implemented as IT Services. The presence
of automated activities are illustrated by the arrows between the ‘Doctor or
Nurse’-lane and the ‘IT Services’-lane. For the rest of this paper we assume
that the dispensation software application adopts the SOA paradigm. Thus, the
specification of the business process model as shown in Figure 1 is deployed on
a business process engine which orchestrates Web Services.

The managers of the hospital wish to make sure that all the medical and
non-medical operations that are performed in the hospital conform to a set of
relevant internal controls. Examples of relevant compliance rules for the business
process depicted in Figure 1 include:

1. Only doctors or nurses are allowed to access the dispensation software ap-
plication.

2. A doctor/nurse cannot dispense drugs to him or herself (i.e. being a patient
and doctor at the same time is not allowed).

The business process depicted in Figure 1 describes how a business activity
should take place in order to meet a business objective. This is in contrast with
compliance rules such as the ones listed above as they are declarative meaning
that they indicate what the hospital can do in order to satisfy a control. The
compliance rules that are listed above typically imply certain behaviour and they
constrain certain behaviour. The business applications in use by the hospital
might or might not be compliant with the compliance rules stated above. Our
aim is to adapt the business application automatically when a violation of a
compliance rule occurs resulting in compliant business applications and thus,
mitigating the risk of additional illegal and illicit behavior occurring.

2.2 Solving non-compliance

In the previous sections, we have explained what compliance management means
and why it is difficult to manage compliance of business applications. We now
explain the problems of the existing approaches towards compliance management
in more detail.

Companies perform audits to ascertain the validity and reliability of informa-
tion and to assess to which extent the systems implement compliance measures.



5

Audits are performed in order to be certified as being compliant to certain regu-
lations. The outcome of an audit is a set of risks that are relevant to the organi-
sations assets and an evaluation of the effectiveness of the controls that mitigate
risks. The auditing-approach to compliance management generates high-costs as
it requires auditors with the necessary expertise and knowledge and audits have
to be performed on a regular basis. Audits require experts on regulations as well
as experts of the organisation’s business and IT-infrastructure to be involved.
Due to the complexity, audits check only a part of the business and IT landscape
by adopting statistical sampling. The outcome of an audit can be that risks
have increased and/or existing compliance measures are not effective enough
due to, for example, new versions of regulations being introduced, changes being
made in business processes and/or IT-infrastructure. Then, the business pro-
cesses and the underlying IT-infrastructure need to be adapted such that risks
are mitigated. As mentioned in the previous sections, managing compliance is
time consuming, costly, error-prone and maintenance-intensive. A software so-
lution that detects violations and potential violations, also called threats, of
compliance rules can support the management of compliance. In addition, the
software should ‘solve’ threats and violations by adapting the business process,
the business logic and its underlying IT-infrastructure such that non-compliant
behaviour will be prevented or compensated, and risks for the organisation are
thus mitigated.

In the following sections, we explain the problems that are specific to this
software solution.

Modeling behavior and constraints. Business processes and its underlying
IT-infrastructure can be described by behavioural models including orchestration
models and choreography models. While a choreography model like WS-CDL [40]
specifies a collaborative behavior of two or more participants, a business pro-
cess orchestration model like WS-BPEL [33] specifies a composition of activities
designed to achieve a certain business goal. The orchestrations are defined by
specifying which services and operations should be invoked. Compliance rules
imply and constrain certain behaviour. We can identify four types of constraints:

– Security constraints
This type of constraints include all the constraints that have to be put on
the system in order to meet security requirements such as confidentiality,
integrity, authentication, authorization, availability and non-repudiation. A
well-known example of a security constraint is the Segregation of Duties or
four-eye principle constraint. This constraint requires multiple persons to
complete a task. The second compliance rule in the case study is an example
of a Separation of Duty constraint.

– Domain-specific constraints
These constraints refer to the business rules of the enterprise and are specific
to the context/domain of the enterprise. An example in the context of drugs
dispensation could be: when a patient gets Paracetamol and a Blood Thinner
dispensed, a warning should be raised.



6

– Orchestration constraints
Orchestration constraints include dependencies between the activities in a
business process and are specified in a business process model. An example
based on the scenario in section 2.1 is that a ‘Take Drugs from Stock’ activity
must be followed by a ‘Print Dispensation Sheet’ activity.

– Choreography constraints
This type of constraints are the ones that are enforced over the interac-
tion between business partners and are specified in a choreography model.
Consider a business process where doctors prescribe drugs and a pharmacy
dispense drugs. A doctor can only send a prescription to the pharmacy if
he received an acknowledgement of the previous prescription from the phar-
macy.

Please note that this classification does not enforce that a particular constraint
falls within one specific class of constraints. For example, a constraint such as ‘a
patient should not get Paracetamol and Blood Thinner dispensed at the same
time’ is a domain-specific constraint. But it is also an orchestration constraint
when the orchestration model specifies an activity ‘check dangerous drugs com-
binations’ followed by a ‘warn doctor’ activity. The verification of the imple-
mentation of a business process requires a language to describe the model of the
target system and a language to describe the constraints that have been put on
the system. This language should be expressive enough to model the semantics
of the rules and regulations that exist in the real-world, and yet abstract enough
for the purpose of validation and analysis.

Detecting threats and violations. Threats and violations have to be de-
tected during the whole lifecycle of business processes. This can be achieved
by compliance checking which refers to the verification of the status of compli-
ance measures in the enterprise [15]. We can identify two complementary ap-
proaches for compliance checking: design-time and run-time. Compliance check-
ing at design-time means the verification of a behavioural model (formal model)
of the implemented business process against a set of formally specified con-
straints (compliance rules). The behavioural model is compliant if its definition
complies with the predefined set of compliance rules. Runtime compliance check-
ing is based on the evidence collected at runtime and is required here to detect
whether threats or violations of constraints occurred in practice. With respect to
orchestration and choreography constraints, verifying the behavioral models (at
design-time) is possible but it is not sufficient enough as unexpected behavior
might occur at runtime. In addition, the validation of security and (data) in-
tegrity constraints requires information that is not available at design-time. The
challenge for compliance checking, is to come up with an approach that does not
only detect non-compliant behaviour but is also able to trace back to the causes
of non-compliant behaviour.

The problem of adaptation. When threats and/or violations of compliance
rules have been detected, business applications should be repaired automatically



7

such that violations can be prevented or violations can be compensated and
risks are mitigated. Software adaptation can either be done at design-time or
at runtime [6]. Design-time adaptation refers to all types of changes made to
software before the software system is running. This can include modifications
of requirements/specifications, modifications of source code or changes of config-
uration files. An important property of this type of software adaptation is that
all the steps in the adaptation process are known and have been planned in ad-
vance. This is in contrast to dynamic or runtime software adaptation that refers
to techniques that allow to change running pieces of software. In the context of
business process driven applications, adaptations can be made by modifying the
business process model. A business process can be modified by inserting, deleting
or shifting activities in the service orchestration [11]. Just as with generic soft-
ware adaptation, modifications of the orchestration and/or choreography model
can be applied at design-time or at runtime. Design-time adaptation is needed
when the business application has to meet new (compliance) requirements and
there is an intention to reuse the modifications. Dynamic or runtime adaptation
allows us to bring a running business application to a compliant state without
the need to restart the application which might result in loss of data. Since we
would like to prevent and compensate violations before the execution of a busi-
ness application is finished, dynamic software adaptation techniques should be
applied. An important issue here is maintaining the consistency of the control
flow and of runtime data. This requires the development of adaptive middleware.
A second issue with respect to dynamic adaption is that the compliance rules do
not specify how to repair non-compliant behaviour. Depending on the business
process, its implementation and a compliance rule, there might be more than
one way or strategy to repair a business application. Thus, a compliance rule is
always associated with one or more repair strategies. The challenge here is the
modeling and coding of these repair strategies.

3 System Overview

Figure 2 depicts the global overview of our system. Business process models
define the way how Web Services are orchestrated and these models are de-
ployed on a BPEL engine [33]. In addition, the system includes an XACML
policy engine [32] which is responsible for evaluating access control requests
originating from Web Services against a set of access control policies. The adap-
tors that are responsible for collecting evidence of software behavior and the
adaptors for repairing the software are implemented using aspect-oriented pro-
gramming (AOP). The main reason for choosing an AOP approach is that it
supports compile-time, load-time and runtime weaving [35, 39].

Aspect-Oriented Programming and Annotations The following para-
graphs gives a very short introduction on AOP and annotating source code. For
a more comprehensive introduction, consider reading [24, 25] and [4] for source
code annotations.



8

BPEL Engine

XACML Policy 

Engine

Security Policy

X

Security Policy

Y

Compliance Rules

+

Repair StrategiesBPEL Process

B

C

A

WS A

WS B

WS C

Analysis 

and 

Adaptation 

Layer

Fig. 2. High-level overview of an adaptive Service-Oriented Architecture.

Aspect-oriented programming is a programming paradigm which aims to pro-
vide modularizing techniques supporting the separation of cross-cutting concerns
in complex software systems. Examples of cross-cutting concerns include security
constraints, logging functionality and communication protocols. The main idea
is to separate the cross-cutting concerns in stand-alone modules called aspects.
An aspect is related to one or more places in the code which are called join
points. In order to identify join points, the notion of a pointcut is introduced.
The additional behavior at a join point is specified in an advice and this code
can run before, around or after a join point. The AOP framework is responsible
for combining the base functionality with the additional code, this step is called
weaving. Weaving can be done at compile-time (by the compiler), load-time (by
the classloader) or at runtime. With runtime weaving, targets can be declared
at runtime. The class bytecode can be redefined at runtime without reloading
the class.

Annotations, and in particular Java annotations, are a special form of meta-
data that can be added to Java source code. All types of declarations can be
annotated: packages, classes, variables and methods. Unlike javadoc, Java an-
notations may be available at runtime. The Java VM may retain annotations
and make them retrievable at runtime. Annotations do not directly affect the
application semantics, but they can be processed by tools at design-time or at
runtime. Then, these tools can affect the application behavior. A similar concept
exists for .NET.



9

3.1 Architecture

BPEL 

Engine

XACML 

Policy 

Engine

WS A WS B WS C

probes

MonitoringAnalyzer

Probe data

Monitoring data

Coordinator / 

translators

Repair 

Handler

Monitoring

data

Monitoring data

adaptors

Queries

Queries

Repair strategies

Monitoring 

data

Compliance 

rules / repair 

strategies
1 2

5

3 4

6

7

8

Queries

Fig. 3. Detailed run-time architecture of an adaptation system for a Service-Oriented
Architecture.

Figure 3 depicts the runtime architecture of the approach taken. Due to space
constraints, we left out the architecture of the design-time infrastructure. The
compliance monitoring and adaptation process starts with modeling compliance
rules and repair strategies using a modeling tool. These models are stored in a
repository (1). Whenever a new compliance rule or repair strategy is added to
the repository, the coordinator (2) is notified and translates the compliance rule
to queries for the probing infrastructure (7), the monitoring infrastructure (4)
and the compliance analyzer (3). The probing infrastructure (7) is responsible
for collecting evidence of the system’s behavior. Each probe is a ‘hook’ into a
component of the Service-Oriented Architecture (BPEL engine, policy engine,
Web Service) and emits events that represent the behavior of a component. In
order to reduce the number of events that are emitted by the probes and to
‘enrich’ the evidence, there is a monitoring component (4) which is implemented
by a complex event processor. This component filters, aggregates and correlates



10

events. The monitoring component fills a repository (5) which contains historical
data of the actions that were performed by the Service-Oriented Architecture.
The compliance analyzer (3) analyzes continuously the historical evidence from
the repository (5) and the accurate evidence originating from the monitoring
infrastructure (4). If the compliance analyzer detects a violation of a compliance
rule while analyzing the evidence, the coordinator (2) is notified. The coordi-
nator retrieves the corresponding repair strategies (advice) from the repository
(1) and sends them to the repair handler (6) together with the location of the
source of the evidence. Based on this location, the repair handler chooses the
locations of the adaptation. This location is composed of a component identi-
fier and a pointcut which identifies the join point to insert the additional code.
The component identifier identifies the adaptor (8) to which the repair handler
should send the advice.

Probes and Adaptors. The probes and adaptors are both implemented using
the aspect-oriented programming (AOP) paradigm. These components are added
to the base functionality of the Service-Oriented Architecture as advices. The
main reason is that this approach allows us to enable or disable a probe or
adaptor (and the adaptor’s associated repair strategy) at compile-time, load-
time or runtime. The coordinator determines where in the target system to put
probes and the repair handler determines this for the adaptors. The coordinator
and repair handler specifies this in a pointcut. Pointcuts can be specified using a
language which syntax is based on the base language, like Java signatures when
Java is used. In order to determine and define the crucial parts of a target’s
system component where evidence collection and adaptation should take place,
a more fine-grained way of specifying point cuts is needed. In our approach, we
annotate the source code of each component in the target system and we expose
the annotations to the coordinator and the repair handler. By referring to the
annotations in the pointcuts, the coordinator and the repair handler are able to
determine and define the locations for evidence collection and adaptation.

3.2 Case study revisited

In this section, we describe the behavior of our Compliance Management Solution
when a violation of the compliance rule ‘Only doctors or nurses are allowed
to access the dispensation software application’ (section 2.1) occurs. This rule
implies that every Web Service implements an access control mechanism. As
mentioned above, we assume that there is a centralized access control policy
engine (Policy Decision Point in XACML terminology) and every Web Service
(Policy Enforcement Point) implementing an activity of the business process
depicted in figure 1 sends requests to this policy engine. Now, the compliance
rule can be refined to the following compliance rule ‘always when a Web Service
needs access control the PDP has to receive an access control request message’.
This rule can be expressed in LTL as follows:

[]((Q & !R & <>R) -> (P U R))



11

where Q refers to the event representing the need for access control, P refers to
the event representing the access control request message at the PDP and R is a
time-bound equal to Q + 30 seconds

This LTL property is stored in the ‘compliance rules / repair strategies’ repos-
itory together with a repair strategy (advice) that includes all the source code
for making an XACML request, sending it to the policy decision point and pro-
cessing the response. An XACML request requires parameters such as subject’s
and resource’ identity and the action. We assume that the variable-names of
these parameters can be found in the annotations. Then, the repair handler can
retrieve them and generate the correct repair strategy. Due to space constraints,
we do not give an example here of the source code of a XACML request. When
the combination of a compliance rule / repair strategy is added to the repository,
the coordinator gets notified and translates the compliance rule to queries for the
probing infrastructure, the monitoring components and the compliance analyzer.
Consider now that a user performs the activity ‘Register Dispensation Request’
of the business process depicted in figure 1. The Web Service implementing this
activity starts executing the method RegisterDispensation. The coordinator iden-
tified this as a critical point (based on the annotation and compliance rule) and
put in advice in place that emits an event when this method is called. The event
represents the need for access control. The XACML policy engine does not emit
an event representing an access control request. The compliance analyzer detects
this as there is a violation of the compliance rule. The coordinator passes the
source of the violation of the compliance rule to the repair handler together with
the repair handler. The repair handler concludes that the web service does not
implement a valid access control request mechanism and decides to apply the
repair strategy that performs a XACML request to the centralized policy engine.

4 Related Work

Related work in the context of compliance focuses mainly on modeling controls
and compliance validation but not on software adaptation techniques.

Compliance modeling. The ability to model compliance rules are essential
for our solution. Models of compliance rules are stored in the repository and
the coordinator translates them to queries that can be deployed on the evidence
collection and processing infrastructure. The control pattern introduced in [30,
31] acts as a pattern-based abstraction layer that separates business process
and compliance management by annotating the process model with compliance
rules. The approach is promising because the patterns have been used for run-
time compliance validation. However, it lacks support for modeling constraints
between process instances and modeling context. Moreover, the applicability of
control patterns for dynamic adaptation of SOAs has not been shown. In [41,
42], Wolter et al. propose to use annotated business process models to model
security requirements. The approach allows to extract security policies such as



12

AXIS2, XACML and WS-Policy security configurations from an annotated busi-
ness process model. However, compliance rules include more than only security
requirements such as authorization, access control and encryption.

Design-time compliance checking. Approaches towards a priori or design-
time compliance checking are based on the concept of validating a specification
of a process model against a certain set of compliance properties including the
ordering of activities, liveness and correctness properties. Although our approach
does not include design-time compliance checking, we describe here some work
in that area. The approaches proposed in [3, 13, 16, 22, 27, 43] are all based on a
priori compliance checking. The differences between the approaches are: 1) the
languages used to specify the process models and the compliance properties 2)
the model checker or reasoning techniques used. In [13], Concurrent Transac-
tion Logic (CTR) is used as the language to specify, analyze and to schedule
workflows. The compliance properties or the constraints are specified as CTR
formulas and also workflow graphs are transformed to CTR formulas. Liu et al.
proposed in [27] a compliance-checking framework that allows to model process
models in BPEL and compliance properties in the graphical Business Property
Specification Language (BPSL). Model transformation techniques are used to
map the BPEL process models to FSMs and the compliance properties to LTL
properties. [3] does not use BPEL but BPMN diagrams which are translated in
REO models. The approach presented in [16] focuses on verifying the compliance
of service interactions against obligation policies. These policies describe what
actions a subject must or must not do to a set of target objects. The service
interactions are specified in BPEL, the obligations in Message Sequence Charts
(MSC). A similar approach is [43] in which a BPEL process is validated against
properties expressed using property patterns [14].

Runtime compliance checking. In our solution architecture, run-time com-
pliance checking is used to detect the cause of non-compliant behaviour in a
SOA. In [19, 20] a method and meta-model is introduced that captures compli-
ance requirements in a language. Using this framework, abstract policies can
be translated to implementation artifacts such as business process definitions,
data retention policies, access control lists and monitoring policies. This model-
transformation process can, at least partially, be carried out automatically.
Agrawal et al. addressed in [1] the importance of using database technology
for run-time and a-posteriori compliance checking. The work in [2] focuses on an
event-based language that can be used for run-time monitoring of Web Service
interactions. The work presented in [15, 29, 28] propose different frameworks for
compliance management. All of them adopt both design-time and run-time com-
pliance checking techniques. The work looks only at the level of business process
execution while we are planning to look at a lower-level. In [30, 31], a semantic
mirror is used to collect run-time information of process instances. Violations to
pre-defined control patterns are detected by the semantic mirror.



13

5 Conclusion and Outlook

The introduction of laws and regulations leads to the need to identify, model
and implement proper controls in the IT-landscapes of organisations such that
illegal and illicit behaviour can be avoided when performing business activities.
Managing compliance in ‘agile’ companies requires the use of a software solution
that is able to detect non-compliant behaviour and adapts the components of
business applications accordingly. In this paper, we identified the problems this
software solution should cope with and we presented an architecture which uses
the aspect-oriented programming paradigm for evidence collection and software
adaptation. Future work will focus on developing a proof-of-concept of the pro-
posed architecture. Moreover, one of the open issues is determining the relevant
join points for evidence collection and adaptation. We gave some hints and direc-
tions, but additional research is necessary. Another open issue is the translation
from compliance rules to queries that can be evaluated on probes, the monitor-
ing infrastructure and the compliance analyzer.

Acknowledgements
This work was supported by funds from the European Commission (contract N
216917 for the FP7-ICT-2007-1 project MASTER).

References

1. Rakesh Agrawal, Christopher Johnson, Jerry Kiernan, and Frank Leymann. Tam-
ing compliance with sarbanes-oxley internal controls using database technology. In
ICDE ’06: Proceedings of the 22nd International Conference on Data Engineering,
page 92, Washington, DC, USA, 2006. IEEE Computer Society.

2. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
Marco Montali, Sergio Storari, and Paolo Torroni. Computational logic for run-
time verification of web services choreographies: Exploiting the ocs-si tool. In
WS-FM, pages 58–72, 2006.

3. Farhad Arbab, Natallia Kokash, and Sun Meng. Towards using reo for compliance-
aware business process modeling. In Tiziana Margaria and Bernhard Steffen, edi-
tors, ISoLA, volume 17 of Communications in Computer and Information Science,
pages 108–123. Springer, 2008.

4. Calvin Austin. J2se 5.0 in a nutshell.
5. International Accounting Standards Board. International accounting standard 1:

Presentation of financial statements.
6. C. Canal, J.M. Murillo, and P. Poizat. Software adaptation. 14(13):2107–2109,

2008.
7. European Commission. Markets in financial instruments directive.
8. United States Congress. Health insurance portability and accountability act of

1996.
9. EU FP7 MASTER Consortium. Managing assurance, security and trust for ser-

vices. http://www.master-fp7.eu.
10. Julie Creswell. Citigroup agrees to pay 2 billion in enron scandal. The New York

Times, June 2005.



14

11. Peter Dadam and Manfred Reichert. The adept project: A decade of research and
development for robust and flexible process support - challenges and achievements.
Computer Science - Research and Development, (23):81–97, 2009.

12. Eric Dash. Parmalat sues citigroup over transactions. The New York Times, July
2004.

13. Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Logic based modeling and analysis of workflows. In PODS ’98: Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 25–33, New York, NY, USA, 1998. ACM.

14. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. Technical report, Amherst, MA, USA, 1998.

15. Marwane El Kharbili, Sebastian Stein, Ivan Markovic, and Elke Pulvermller. To-
wards a framework for semantic business process compliance management. In Pro-
ceedings of the First International Workshop on Governance, Risk and Compliance
(GRCIS), Montpellier, France, June 17, 2008.

16. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based
analysis of obligations in web service choreography. In AICT-ICIW ’06: Proceedings
of the Advanced Int’l Conference on Telecommunications and Int’l Conference on
Internet and Web Applications and Services, page 149, Washington, DC, USA,
2006. IEEE Computer Society.

17. Gouvernement Francais. La loi de scurit financire.
18. George M. Giaglis. A taxonomy of business process modeling and information

systems modeling techniques. International Journal of Flexible Manufacturing
Systems, 13(2):209–228, April 2001.

19. Christopher Giblin, Alice Y Liu, Samuel Müller, Birgit Pfitzmann, and Xin Zhou.
Regulations expressed as logical models (realm). Technical Report RZ 3616, IBM
Research, Zurich, 07 2005.

20. Christopher Giblin, Samuel Müller, and Birgit Pfitzmann. From regulatory policies
to event monitoring rules: Towards model-driven compliance automation. Technical
Report RZ 3662, IBM Research, 2006.

21. Commissie Corporate Governance. De nederlandse corporate governance code:
Beginselen van deugdelijk ondernemingsbestuur en best practice bepalingen.

22. Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking be-
tween business processes and business contracts. In EDOC ’06: Proceedings of
the 10th IEEE International Enterprise Distributed Object Computing Conference,
pages 221–232, Washington, DC, USA, 2006. IEEE Computer Society.

23. A. H. M. Ter Hofstede and M. Weske. Business process management: A survey. In
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, pages 1–12. Springer-Verlag, 2003.

24. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming, pages 327–353,
London, UK, 2001. Springer-Verlag.

25. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean M. Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

26. Ulrich Lang and Rudolf Schreiner. Managing business compliance using model-
driven security management. In Proceeedings of ISSE 2008 Securing Electronic
Business Processes, 2008.



15

27. Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for business
process models. IBM Syst. J., 46(2):335–361, 2007.

28. Linh Thao Ly, Kevin Gser, Stefanie Rinderle-Ma, and Peter Dadam. Compliance
of semantic constraints - a requirements analysis for process management systems.
In Proc. 1st Int’l Workshop on Governance, Risk and Compliance - Applications
in Information Systems (GRCIS’08), Montpellier, France, 2008.

29. Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Integration and verification of
semantic constraints in adaptive process management systems. Data Knowl. Eng.,
64(1):3–23, 2008.

30. Kioumars Namiri and Nenad Stojanovic. A formal approach for internal controls
compliance in business processes. In Proceedings of the 8th Workshop on Business
Process Modeling, Development, and Support, Trondheim, Norway, 2007.

31. Kioumars Namiri and Nenad Stojanovic. Pattern-based design and validation of
business process compliance. In On the Move to Meaningful Internet Systems
2007: CoopIS, DOA, ODBASE, GADA, and IS, pages 59–76. Springer Berlin /
Heidelberg, 2007.

32. OASIS. extensible access control markup language (xacml) version 2.0, February
2005.

33. OASIS. Web services business process execution language, 2007.
34. Basel Committee on Banking Supervision. International convergence of capital

measurement and capital standards: A revised framework.
35. Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-

oriented programming. In AOSD ’02: Proceedings of the 1st international con-
ference on Aspect-oriented software development, pages 141–147, New York, NY,
USA, 2002. ACM.

36. Paul Sarbanes and Michael Oxley. Sarbanes-oxley act of 2002 (pub.l. 107-204, 116
stat. 745).

37. Wasana Sedera, Guy G. Gable, Michael Rosemann, and Robert W. Smyth. A
success model for business process modeling: findings from a multiple case study.
2004.

38. David Streitfeld and Gretchen Morgenson. Building flawed american dreams. The
New York Times, October 2008.

39. A. Vasseur. Dynamic aop and runtimeweaving for java - how does aspectwerkz
address it? In In Workshop on Dynamic AOP, 2004.

40. W3C. Web services choreography description language version 1.0.
41. Christian Wolter, Michael Menzel, Andreas Schaad, Philip Miseldine, and

Christoph Meinel. Model-driven business process security requirement specifica-
tion. Journal of Systems Architecture, page 13, 2008.

42. Christian Wolter, Andreas Schaad, and Christoph Meinel. A transformation ap-
proach for security enhanced business processes. In Proc. SE2008 of 26th IASTED
International Multi-Conference, February 2008.

43. Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu Wang.
Pattern based property specification and verification for service composition. In
WISE, pages 156–168, 2006.

44. John A. Zachman. A framework for information systems architecture. IBM Syst.
J., 26(3):276–292, 1987.


