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Abstract

Enterprise networks have a complexity that sometimes rival the one of the
larger Internet. Still, enterprise traffic has received little attention so far from the
research community. Most studies rely on port numbers to identify applications.
In this work, we introduce a method to build statistical classifiers to detect specific
intranet applications.

We exemplify the approach with traces collected within the Eurecom network.
We demonstrate that our statistical classifiers are able to classify the majority of
the flows in our traces. For the cases when the traffic on a specific port cannot be
fully identified with our application/protocol decoder, e.g., encrypted traffic, we
demonstrate that our approach can be used to test the homogeneity of the traffic,
i.e., that the corresponding flows share a common statistical signature that differs
from the one of the rest of the traffic.

1 Introduction

Accurate identification of network traffic according to application type is a
key concern for most companies, including ISPs. To overcome the limitations
of the early solutions based on port numbers, deep packets inspection tools and
several statistical classification techniques were proposed [7, 1, 6, 8, 11, 2]. These
techniques were heavily tested on Internet traffic.

However, to the best of our knowledge, no work has tackled the problem of
enterprise traffic1 classification. Indeed, nearly all enterprise traffic studies in the
literature rely on port numbers to identify applications inside enterprise networks
[15].

In this work, we propose an approach to build statistical classifiers (one per
application of interest – see Section 3.3) for intranet traffic that do not require port
numbers to accurately identify specific intranet technique. We rely on a supervised
machine learning approach (logistic regression) to build those classifiers. As such,
we need to train the classifiers on proper training sets, which are packet traces for
which the ground truth, i.e., the application generating the flows in the data set, is
known. However, to the best of our knowledge no publicly available deep packet
inspection tool embeds signatures for intranet traffic. Commercial tools rather fo-
cus on traffic at the boundary of enterprise network, i.e, mostly Internet traffic.
Though there is a number of applications that might be used in both types of en-
vironment, there are applications and protocols specific to intranets, e.g., NFS or
NetBios. In this work, we turn tshark into a DPI tool by leveraging its ability to de-
code over 1000 protocols/applications (http://www.wireshark.org/docs/dfref/). We
use tshark, whenever it was possible (when an appropriate decoder was available),

1By enterprise traffic, we specifically mean the traffic exchanged between hosts and servers within
the boundary of the enterprise network, which can extend over the Internet with the use of virtual
private networks to connect branches together or to a data center. Note that we use the terms intranet
traffic and enterprise traffic interchangeably in this work.
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to select flows on popular ports that indeed correspond to the applications that
should flow on these ports, e.g., LDAP flows on port 389. This allows us to build
training sets for our statistical classifier.

We exemplify our approach on two one-hour long traces collected inside the
Eurecom’s network, that aggregate the traffic between all the servers, grouped in a
specific VLAN, and end user’s machines.

We obtain the following results:

• The use of the protocol/application decoding capacity of tshark allows us to
validate that traffic behind the vast majority of the most popular ports in our
traces corresponds to the legacy applications behind those ports.

• Our statistical classifiers feature high accuracy and precision for most of the
ports for which tshark could provide the ground truth.

• For the cases where tshark was not able to decode the protocol, e.g., Eure-
com’s antivirus application or when it could only provide partial information,
e.g., that traffic behind port 636 (LDAPS) was flowing over SSL, we show
that our classifier can still be used to test the homogeneity of the correspond-
ing traffic. Homogeneity means that all the flows on the port under study
share similar statistical behavior, which significantly differs from the other
flows in the data set and suggests that they have been generated by the same
application. Knowledge of the actual server behind an IP address further
validates the effectiveness of our classifiers.

• We used as classification features an extension of the technique proposed in
[1] that considers the size and direction of the first few packets of a connec-
tion as a signature of traffic. This technique is considered as a state of the
art technique for classifying Internet traffic and, given our results, it seems
that approach, originally proposed for Internet application also works for
enterprise applications.

2 Problem statement

A flow is defined as a sequence of packets with the same source IP address,
destination IP address, source port, and destination port. Our approach, is to build
a specific classifier per application. Let A be such an application and let Y be a
random variable that takes value one if the flow is generated by application A and 0
otherwise. Let X be the n-dimensional random variable corresponding to the flow
features. To each flow a vector x consisting of the n measured features is associ-
ated. Consider a flow with the following features vector x = (x1, x2, · · · , xn). We
want to estimate the probability that this flow is generated by application A or not.
Formally, we can state this as:

p(Y = 1|X = x) = P (x, β), (1)
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where p(Y = 1|X = x) is the conditional probability that the flow with fea-
tures x = (x1, x2, · · · , xn) is generated by application A and P is a function of x
parametrized by the weights vector β = (β0, β1, · · · , βn).

We cast this problem as a logistic regression problem. Logistic regression is
designed for dichotomous variables, i.e., to model the relation between a binary
variable (true vs. false) and a set of covariates. The use of logistic regression mod-
eling has proliferated during the past decade. From its original use in epidemiolog-
ical research, the method is now commonly used in many fields including but not
nearly limited to biomedical research [16], business and finance [14], criminology
[17] and linguistics [10].

3 Learning classifier using Logistic regression

3.1 Logistic regression model

Within the Logistic regression framework, one assumes a specific function P:

P (x, β) =
eβ0+

Pn
j=1 βixi

1 + eβ0+
Pn

j=1 βixi
, (2)

From the above equation, we can derive a linear function between the odds of
having application A and the features vector x, called the logit model:

log
(

P (x, β)
1− P (x, β)

)
= β0 + β1x1 + · · ·+ βnxn, (3)

Unlike the usual linear regression model, there is no random disturbance term
in the equation for the logit model. That does not mean that the model is deter-
ministic because there is still room for randomness in the probabilistic relationship
between P (x, β) and application A.

To implement any logistic regression model, one needs to choose the β0, . . . , βn

values based on a given training set, i.e., a set of flows for which we know whether
they have been generated by A or not. We discuss this issue in the next section.

3.2 Parameter estimation

Assigning the parameters to the logit model boils down to estimating the weights
vector β, which is usually done using maximum likelihood estimation.

Consider a training data set of N flows characterized by the features vectors
X = (X1, X2, · · · , Xn), where Xi = (xi

1, x
i
2, · · · , xi

n) is the features of flow i,
and let the vector Y = (y1, y2, · · · , yn) be such that yi = 1 if flow i is generated by
application A and yi = 0 otherwise. The likelihood function is given by a standard
formula (see [4]):
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P (X, β) =
N∏

j=1

p(Y = yj |Xj) (4)

=
N∏

j=1

(p(Y = 1|Xj)yj (1− p(Y = 1|Xj))1−yj

As the values of p are small, it is common to maximize the log-likelihood
L(X, β) = log P (X, β) instead (see [4]), to avoid rounding errors,

L(X, β) =
N∑

j=1

[yjlog(p(Y = 1|Xj)) + (1− yj)log(1− p(Y = 1|Xj))] (5)

By substituting the value of p(Y = 1|Xj) by its value defined in Equation (2)
we get the log-likelihood for the logistic regression:

L(X, β) =
N∑

i=1

[
yiβ

T Xi − log(1 + eβT Xi)
]

(6)

In the logistic regression model, we wish to find β that maximizes Equation
(6). Unfortunately, this can not be achieved analytically. In this work, we compute
it numerically using the Newton-raphson algorithm [4]. The Newton-Raphson al-
gorithm has been shown to converge remarkably quickly [5]. In this work, it takes
less than one second to output an estimate of β.

3.3 Classification process

Logistic regression falls into the class of supervised machine learning techniques[13];
thus it consists of two main steps. A training step and a classification step.

Training step consist of building a classifier for each application of interst.
Consider, for example, the application IMAP. Using Newton-raphson algorithm we
estimate a vector βA that maximize the probability of being IMAP for all IMAP
flows and minimize this probability for all non-IMAP flows.

The classification step is done as follows: a given feature vector x = (x1, · · · , xp)
is classified as generated by application A if P (x, βA) is larger than a threshold
th. A usual choice of the threshold is th = 0.5 [5, 4]. By using Equation (3),
this boils down to deciding that the new flow x is generated by application A if
β0 +

∑n
i=1 x1βi > 0.

The choice of th = 0.5 is very conservative, as the logistic regression has a
strong discrimination power. For example, when considering the IMAP application
in the result section, more than 90% of non-IMAP flows have a probability to be
IMAP flow less than 0.01, and more than 90% of IMAP flows have a probability
of being a IMAP larger than 0.95.
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Figure 1: Architecture of the network

We find the logistic regression technique very convenient as it allows to add
a new classifier for each new application we want to analyze. In addition, the
computation complexity of logistic regression in the classification phase is very
low, as it is linear with the input features.

4 Experiment setting

4.1 Data sets

We tested the validity of our classification technique on traffic from our own
network. Fig. 1 presents a high level view of our network. This networking in-
frastructure, which consists of around 800 workstations equipped with a variety of
operating systems. The network is organized into several VLANs (servers, staff,
DMZ, . . . ) connected via a Cisco multi-layer switch. We collected two traces (on
October, 28. 2009) of one hour long (one in the morning, between 10 and 11 am
and one in the afternoon, between 3 and 4pm) of all traffic flowing between the
servers and the end users machines within the Eurecom network. We restrict our
attention to TCP flows as they represent more than 97% of flows in each trace, and
they carry over 99% of the bytes.

4.2 Flow Features

Most studies on traffic classification rely on statistics computed once all the
packets of a flow have been observed, e.g., duration, number of packets, mean
packet size, or inter-arrival time [13]. This clearly prevents any online classifica-
tion. In contrast, we evaluate the feasibility of application identification in the early
stage of a connection. A few works have tackled this challenge. In particular, [1]
showed that the size and direction of the k first data packets of each connection,
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where k is typically in the range of 4 to 5 packets, lead to a good overall classifica-
tion performance. In this paper we use k = 4. We enrich this set with a push flag
indicator that indicates whether a data packet has its PUSH flag set or not. Thus,
for each data packet we have 3 parameters; direction of the packets (1 for up and 0
for down), PUSH flag indicator (1 if the flag is present and 0 if not) an the size of
the packet. We end up having a mix of quantitative (size of data packet) and qual-
itative (direction, push flag) features. The ability of logistic regression to handle
both types of parameters was the main reason that lead us to use it in this paper.

As we are using as features information derived from the first 4 data packets,
we de facto exclude all flows with less than 4 data packets as well as the ones for
which we did not observe the initial three way handshake. This leave us 59% of
the flows that are carrying 99.77% of the bytes in our traces.

4.3 Performance Metrics

We use the accuracy and precision metrics to assess the quality of our statistical
classifier. They are built upon the notion of True Positives (TPs), True Negatives
(TNs), False Positives (FPs) and False Negatives (FNs). These notions are defined
with respect to a specific class. Let us consider such a specific class, say the IMAP
class. TPs (resp. FNs) are the fraction of IMAP flows that are labeled (resp. not
labeled) as IMAP by the statistical classifier. FPs (resp. TNs) are the fraction of
flows not labeled as IMAP by the ground truth tool that are labeled (resp. not
labeled) as IMAP by the statistical classifier.

We use the following metrics to assess the performance of the classification
method:

• Accuracy , a.k.a Recall: Accuracy corresponds to the fraction of flows of
a specific class correctly classified. It is the ratio of True Positivesto the
sum of True Positives and False Negatives for this class. For example, an
accuracy of 50% for the IMAP class means that only half of the IMAP flows
are labeled similarly by the statistical classifier.

• Precision : For a given class, it is the ratio of True Positives to the sum
of True Positives and False Positives. Precision relates to the purity of a
class. For example, a precision of 100% for the IMAP given class means
that the statistical classifier has put in this class only IMAP flows. This
result is satisfactory only if all IMAP flows are actually in this class, which
is measured by the accuracy. From a general point of view, a classifier works
well if it offers both high accuracy and precision for all classes.

5 Evaluation

We use a supervised classification technique to classify traffic. To avoid a clas-
sification error coming from a bad estimation of the statistical model, we limit
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Table 1: Traffic behind the 10 most popular ports
trace % flows % bytes % bytes with 2049 # flows on 2049

Morning 82% 18% 85.6% 138
Afternoon 80% 56.7% 96% 170

ourselves to build classifiers for ports hit by more than 250 flows. Using this
rule, we end up with 10 ports, whose complete list, along with the legacy appli-
cation using this port is: 25 (SMTP), 389 (IMAP), 445 (NetBios), 443 (HTTPS),
636 (LDAPS), 993 (IMAPS), 1025 (DCE/RPC), 2799 (unknown application2) and
9920 (Antivirus) It might sound puzzling at first that the Antivirus port falls into
our definition of intranet traffic, but in practice, the internal hosts connect to an
internal server to obtain viral database updates that this server regularly downloads
from the servers of the Antivirus company using the Internet connection.

As can be seen from Table 1, those 10 ports account for more than 80% of the
flows in our traces but they represent only a moderate fraction of bytes, respectively
18 and 56.6%. Most of the bytes are indeed carried on port 2049, the legacy NFS
port, as we use NFS v3 at Eurecom that can flow over TCP. The third column of
Table 1 indicates that if we add traffic on port 2049 to the traffic over the 10 most
popular port, we end up observing over 85% of the bytes in each trace. However,
the number of flows on port 2049 is too low (fourth column of Table 1) to permit
a reasonable statistical analysis and we leave for future work an in depth study of
this port.

We proceeded as follows to analyze the two traces. We first use the proto-
col/application decoding capabilities of tshark to decode the traffic flowing on the
ports we focus on. For each port number, we next build a stistical model on one
trace and test it on the second trace. Note that we use the whole traffic (not only
the traffic targeting the 10 selected port numbers) in our training data set and test
data set. We present results only for the case when training on the morning trace
and testing on the afternoon trace, as the reverse case offers highly similar results.

5.1 Ground Truth Establishment

While collecting the traces, we set the snapshot length to 96 bytes, which means
that we capture up to 42 bytes of payload (as Ethernet+IP+TCP headers without
option sum to 54 bytes). For a given port, we first demultiplexed all the connections
targeting this port. We next applied the corresponding tshark decoder and parse the
summary file of tshark to check if at least one data segment has been correctly
decoded3. If this is the case, we consider that this connection corresponds to this

2Port 2799 is used between two internal servers connected to the multilayer switch and running
database applications

3Note that tshark is not a fully automatic deep packet inspection tool, as its default behavior is to
try to decode the legacy application(s) behind a specific port. However, forcing tshark to test all its
1000 decoders to each packet in a trace is highly expensive from a computational viewpoint.
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Table 2: Overall Traffic Classification Scores
Port number accuracy (%) precision (%)
25 (SMTP) 95 97.2
143(IMAP) 99.6 99.5

445(NetBios) 91.5 98.7
443(https) 97.5 100

389(LDAP) 91.4 92
636(LDAPS) 95 92.4
993(IMAPS) 99.2 100

1025(DCE/RPC) 75.5.8 93.4
2799 100 100

9920 (Antivirus) 94.3 97.1

application. For the case of IMAPS and LDAPS, we instructed tshark to look
for SSL traffic. Also, for port 445, we looked for NetBios and for port 1025 for
DCE/RPC. For ports 2799 and 9920, we have no decoder that we can use. We
will see in the next section that we can still use our statistical classifier to test the
homogeneity of the traffic behind this port.

Applying the above strategy, we find that close to 100% of the connections
targeting the ports we consider indeed correspond to the legacy application flowing
behind the corresponding port.

5.2 Classification results

In this section, we first discuss overall results for all internal traffic from and
to users machines and also from and to the DMZ4 (DMZ servers only to internal
servers). We next focus on DMZ traffic only.

5.2.1 Overall Results

Table 2 presents the classification scores – accuracy and precision – obtained
for each port. We observe very high accuracy and precision for all ports for which
tshark could help in building proper training sets. The only exception is port num-
ber 1025 corresponding to Microsoft applications using DCE/RPC. While it shows
a high precision, its accuracy is low (74.5%). A high precision means that all flow
labeled as 1025 are indeed of DCE/RPC type, while a low accuracy means that the
classifier is not able to dig up all the flows targeting this particular port number.
It is likely that several Microsoft applications communication are using this same
port, hence, generating a mixed profile.

4DMZ (demilitarized zone) is a sub-network that contains and exposes an or-
ganization’s external services to a larger untrusted network, usually the Internet
http://en.wikipedia.org/wiki/DMZ (computing).
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For the case of encrypted traffic where tshark was only able to confirm that
the traffic flows over SSL, i.e., HTTPS, IMAPS and LDAPS, our classifiers enable
to prove that the corresponding traffics are homogeneous, i.e., leave a statistical
fingerprint that highly differs from the one of the rest of traffic. As it was possible
to verify that the flows indeed targeted the correct servers (HTTPS server, etc.) in
the Eurecom network, this further validates the effectiveness of our classifiers for
encrypted traffic.

For the case of ports 2799 and 9920, we have no ground truth at our disposal.
We can however still apply the same strategy: using the whole traffic behind this
port in the first trace and test it on the second trace. The fact that all traffic in
the second trace that targeted those ports indeed passed the classification test (high
accuracy) and only this traffic (high precision) is a clear indication that the traffic
behind those ports is highly homogeneous. Indeed, according to our classifier these
flows share the same statistical characteristics in both traces.

5.2.2 DMZ

In our network, only four applications are supposed to send data from the DMZ
to the internal servers, namely SMTP, IMAP, IMAPS and LDAPS. We trained clas-
sifiers for the four corresponding port numbers to see how they behave in this low
diversity network. Table 3 presents the classification scores for each port. These
figures show that in this particular case, the logistic regression fully captures the
statistical behavior of each application and is able to detect all the traffic. This re-
sult suggest to use logistic regression for anomaly detection, i.e., to detect if a flow
that does not pass the test is either malicious or malformed (application error).

Table 3: Classification scores for DMZ traffic
Port number accuracy (%) precision (%)
25 (SMTP) 100 100
143(IMAP) 100 100

636(LDAPS) 100 100
993(IMAPS) 100 100

6 Related work

Several studies have recently been performed on corporate networks. For a
much more complete survey, see [15].

In [9], the authors presented a first work of its kind focusing on the traffic of
large enterprise network. They contrast pure intranet traffic to traffic to and from
the Internet in terms of volumes and applications and report on some specific phe-
nomena like the existence of failures to establish specific connections internally.
They leveraged their knowledge of protocol semantics (and thus go beyond port
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numbers) to check if failures are widespread among local hosts (it turns out to be
the case) or not. However, they did not try to identify the root causes behind those
observations.

In [3], the authors look at the health of a typical enterprise network using a
metric based on the fraction of useful flows generated by end hosts. Flows consid-
ered non-useful are those that explicitly fail or else do not elicit a response from
the intended destination. Examining traces collected from 350 mobile hosts at In-
tel Research, they find that about 34% of the flows are not useful. While high, this
figure is not alarming as it does not translate necessarily into users experiencing
performance issues.

In [12], the authors tackle the problem of role classification of hosts within en-
terprise networks. Role classification consists in grouping hosts into related roles
so as to obtain a logical view of the network in terms of who is using which re-
sources. Based on communication graphs, the authors proposed to algorithms to
uncover logical groups based on roles. For instance, sales hosts as well as and
managers of engineers were clustered differently from the other engineers as they
were using distinct types of applications hosted by different servers.

7 Conclusion and Future Work

In enterprise networks, there is an ever-increasing volume and variety of traffic.
In this paper, we propose an approach to build statistical classifiers for intranet traf-
fic. Our starting point is the common belief that applications do not hide themselves
in intranets and use legacy ports. We used a well-known protocol/application de-
coder to validate that this actually holds for our network. We thus obtain a ground
truth basis on top of which we can build statistical classifiers to detect key intranet
applications that can be used a priori in any enterprise network (note that it does not
port number nor payload information). Our approach works both for unencrypted
and encrypted traffic. For the cases where it was possible to verify with the proto-
col/application decoder the application behind a port, we show that a classifier can
be built to test the homogeneity of the traffic behind this port.

We consider a number of future extensions to this work. First, further experi-
ments in our network and also on traffic from different networks should be carried
out to test the robustness of the method and build classifiers for more applications
(e.g., NFS). Second, we considered so far TCP traffic only, however, there can be
a significant portion of traffic in intranets that flow over UDP and we intend to
extend the approach to handle such traffic.
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