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Abstract— Vehicle testing and diagnosis requires huge amounts
of data to be gathered and analyzed. Not all possibly interesting
data can be stored because of the limited memory available in
a tested vehicle. On-board preprocessing of data and decisions
about which information has to be kept or omitted is thus vital
for vehicle testing routines. This paper introduces a method for
flexible on-board processing of sensor data of a vehicle. The
approach is motivated by sensor network ideas and makes use
of stream processing techniques. A processing graph model for
automotive applications is proposed, which consists of operator
nodes and connecting data streams. This model supplies both
recording and processing functionality together. To account for
dynamic changes of conditions within a vehicle—most of the
time only a small portion of the vehicle states are interesting
for diagnosis—both the model and actual software are built
in such a way that the whole system can automatically be
adapted at runtime whenever certain conditions are detected.
The proposed stream processing model has been implemented in
a proof-of-concept industrial application, that was deployed to
an automotive on-board unit. Results show that this approach
effectively trades a little more on-board processing power for a
large data volume, that does not need to be saved and transmitted
for off-board usage anymore.

Index Terms— On-Board diagnosis, vehicle sensor data, stream
processing, data aggregation, embedded systems

I. INTRODUCTION

The complexity of vehicles has increased in recent decades
and will continue to increase significantly in the future [1]. Un-
til the late 1960s, cars were basically mechanical systems with
a few electrical appliances, e.g., for engine spark and lighting.
Modern vehicles are complex electro-mechanical systems with
dozens of networked electronic control units (ECUs). ECUs
enable or implement vehicle core functions such as power-train
control, suspension control, safety, convenience functions, and
infotainment. They are connected to a large number of sensors
and actuators which they control. ECUs exchange information
about their current sensor values over internal networks (for
example, a CAN bus), so that multiple redundant sensors are
avoided. The types of sensors used in the car are of a great
diversity, ranging from pressure sensors over temperature to
acceleration and contact sensors.

Data resident and stored on ECUs and data exchanged be-
tween ECUs describe, from the technical standpoint, the state
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of the vehicle at any time. To capture, analyze, and interpret
this data are important activities of engineering testing and
quality control processes. In recent years, the availability of
cost-effective in-vehicle and off-board computing and com-
munications systems enabled the systematic acquisition and
processing of data from many vehicles over long periods of
time. This is particularly important for the late engineering
and early production phases of a vehicle’s life cycle. The
data volume generated from hundreds of sensors, operating
at a high frequency (see Fig. 1), is immense. Despite the
improvement in computing infrastructure, it is still necessary
to utilize filter and data aggregation mechanisms and only
record detailed data for specific situations.

Another important application is the area of vehicle diagno-
sis. Current vehicle diagnosis relies on error codes (DTC, for
Diagnostic Trouble Code), that the corresponding ECU sets.
These error codes may be retrieved via the on-board diagnostic
socket (OBD-II), which became a mandatory standard for the
United States in 1996. This diagnostic interface also allows to
acquire the various sensor data from the ECUs of a vehicle in
real-time.

Fig. 1. Bus Systems of W211 vehicle. From DC-Media.

Many approaches for data recording in the vehicle are rather
inflexible as far as how, when and which data are gathered,
transformed and processed, as they only focus on one of
these questions. This work aims at a flexible data aggregation
system, that can dynamically adapt its behavior at runtime,
depending on the specific state of certain subsystems of the
vehicle (e.g. the engine). As a reaction to critical events, our
system is able to read and process sensor values at a higher rate
and adapt recording. The adaptiveness can also be employed
in order to store data selectively.
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Our work aims at solving the industrial problem of vehicle
diagnosis—keeping costs low while maintaining flexibility,
maintainability and quality of recorded data—by employing
and adapting research results from different fields. The main
field that caught our interest was stream processing of sensor
data. Sensor networks are fundamentally different in their
organization, i.e., the network consists of individual, rather
autonomous nodes. On the other hand, their functionality, i.e.,
diagnosing a system state and aggregating raw data wherever
possible, is closely related to automotive problems. In our
approach we use a single point of access, the vehicle’s OBD-
II interface, so that we do not interfere with the vehicle’s bus
infrastructure. Other areas of research that were important for
our work are data stream processing and lossy storage of data,
which we combined towards a modular and lightweight in-
vehicle system.

The main contributions of our work are:
• An adaptable stream-based recording system.
• Situation-dependent processing and recording of data.
• An event-system that allows dynamic reconfiguration on-

the-fly.
• Space-efficient recording of multidimensional data.
• An embedded and re-usable platform, based on the

OBD-II/CAN interface and KWP/UDS protocols1.
• An on-board prototype system.

This paper is organized as follows. In the remainder of the
introduction, we discuss related work and the state of the art
of automotive logging systems. In Section II we introduce the
conceptual data-flow architecture and present a formal model
of the processing system. Adaptability and dynamic reconfigu-
ration of the system according to specific situations comprise
section III. Section IV describes the implementation of the
prototype in-vehicle system. An evaluation and selected real-
world examples are demonstrated in Section V. We conclude
our paper with an outlook on future work. The interested
reader is referred to [2] for additional details of our work.

ARCHITECTURE AND RELATED WORK

Existing systems for on-board data recording differ in the
quality and quantity of the data they crop. Some systems
aim at logging all available data for selected channels to
a huge in-car storage, which requires heavy and expensive
equipment. For example, an Australian transmission company
developed a recording system in 2001, using tape recorders
in combination with a Linux PC to record sensor-data at a
high resolution [3]. The vehicles were test-driven for up to
100,000 kilometers, during which the tapes with gigabytes of
data were regularly sent back to the company for evaluation. A
few years later (2004) the same company has, with a different
name, put effort into small-footprint logging systems for drive
shaft analysis, where data are compressed and approximated
prior to recording [4]. As opposed to data-intensive logging
systems, there are a number of systems with a small footprint.
They record only few data, for example DTCs. General Motors

1The diagnostic protocols KWP (Keyword Protocol) and UDS (Unified
Diagnostic Services) operate on top of the on-board diagnosis interface.
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Fig. 2. System Architecture: The On Board Unit (OBU) is connected to
the diagnostic CAN bus. It communicates with the ECUs through the Central
Gateway.

was the first company that introduced such a system: OnStar
[5]. They coupled the ability of remote-diagnosis with conve-
nience and security functions for market acceptance reasons.
Since 1999, Mercedes-Benz offers a similar emergency and
telematics system called TeleAid. The system integrates the
vehicle’s internal networks with a remote radio interface and
demonstrates the significance of software development for
safety and convenience systems [6]. Future remote vehicle
diagnostic systems will have to provide a more detailed insight
into the car’s state and might even “detect the need for
preventive maintenance” [1].

Bus Architecture
Diagnostic tools are not directly connected to the vehicle’s

engine or cabin CAN bus system. Instead, they are connected
to the OBD socket, which is connected to a separate diagnostic
CAN bus. Communication with the ECU is performed over a
gateway within the vehicle. Because there is no direct access to
the other vehicle buses from the diagnostic interface (i.e., only
certain messages are routed), this architecture is considered to
be more secure and safe, compared to directly hooking up to,
for example, the engine CAN bus. Also, the OBD plug and
the diagnostic protocols were standardized in 1996, so that
diagnostic devices can be used for different vehicle types and
even different manufacturers. While the primary target for the
OBD-II standardization were emission control systems, it also
covers various other sub-systems. Opposed to that, the CAN
communication scheme, called the K-matrix, changes rather
frequently. This matrix is needed for decoding data. Because
components are often substituted, even cars of the same model
have different K-matrices in different years. It would be harder
to directly access the CAN buses, because of the mentioned
communication decoding and the physical bus access, which
can only be made possible with additional costs for normal
vehicles. Additionally, one separate connection point per bus
would be needed. The generalized bus architecture can be seen
in Fig. 2. There are up to six separate CAN buses in today’s
vehicles.

Diagnostic Protocols
At the time of writing this article, the Keyword Protocol

(KWP) is the widely accepted standard for electronic diagnosis
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of vehicles [7]. When a diagnosis tool is attached to the
OBD socket, it connects to the diagnostic CAN bus and
uses the KWP as communication layer. The protocol usually
runs on top of the CAN bus, although implementations also
exist for other buses, such as LIN or MOST. Communication
is performed in a request/response manner. In every request
packet, there must be an ECU’s identifier, which for a CAN
bus is the address ID, and a Service Identifier (SID) (read,
write and others). An additional parameter tells the ECU about
the precise set of data that is requested. For example the read
and write SID require a field called LID (Local Identifier),
which maps to memory or registers, whose values are sent
back in a KWP response message. Various other services, such
as uploading a new firmware to the ECU, are supported by
KWP.

Figure 3 shows the stack of protocols used for a diagnostic
application. The ISO 15765-2 protocol is used for the segmen-
tation of CAN frames [8]. As a normal CAN frame can only
hold 8 bytes of payload and does not support the fragmentation
of large data, the glue layer is introduced. An ISO 15765-2
packet can be up to 4 kilobytes big. It divides the data into
separate CAN packets with 7 bytes of payload each.

Stream Processing

Stream processing systems [9] define a computational pat-
tern. Data are processed on-the-fly, so that the original data,
that may be of rather high volume, can be discarded after
the computation and only aggregated and filtered data need
to be saved or evaluated further. It is related to data flow
architectures in a way that data are processed immediately,
if available at the inputs.

Requirements and demands for processing streams vary
largely by the given constraints and the objectives, so that
research in the field of stream processing spreads out rather
widely. Golab and Özsu compiled a comprehensive overview
of stream processing approaches [9]. On the one hand, there
are systems to process large amounts of trading data or
position data [10], [11] with real-time quality of service re-
quirements [12] (Aurora, Borealis). On the other hand, stream
processing solutions are influenced by traditional relational
data base systems [13] (Stanford’s STREAM), where so-called
continuous queries are applied to data streams. These systems
operate on very large volumes of data – for example, think of
data streams involving all credit card actions in the US. These

systems are designed to process large amounts of data and
some support distributed processing of streams. They are not
designed for embedded deployment and don’t incorporate flex-
ible re-configuration as it is valuable for diagnosis. There exist
different approaches in the embedded world. These, however,
focus on distributed sensor and processing nodes [14], [15].
One topic of these sensor networks is in-network aggregation
[16]. As a matter of fact, the vehicle’s infrastructure is a
little different. ECUs are not homogeneous by means of the
same sensors, processing power and so forth. Also, it is not
envisaged or even possible to easily change software on these
embedded devices. Especially for diagnosis, a single point of
acquisition is defined for diagnostic tools (OBD-II), so that
distributed processing is not feasible for our needs.

Large stream processing systems, such as Aurora, Bore-
alis, Stream and TelegraphCQ are considerably too large for
an embedded deployment. The most promising work as in-
vehicle system is probably VEDAS [17], which follows a
distributed data-mining approach for automotive sensor data.
Similar to our work, they are exploiting the existing diagnosis
infrastructure of the vehicle. In fact, their system also collects
aggregated, statistical data, but does not allow an on-the-fly
modification of the data processing. Their goal is towards
detecting mis-behavior of the vehicle, for example at rental
car agencies. This is a rather different focus compared to
needs of engineering testing. The Encirq Corporation has
designed a distributed automotive data processing system, built
around a special query language “DeviceSQL”. Their work
[18] aims on the distribution of data sources, but does not take
timely behavior and on-the-fly reconfiguration into account.
We believe that these are two generally important topics for
the automotive domain, especially for engineering testing and
diagnosis. We designed our system towards these purposes.

II. A STREAM PROCESSING MODEL FOR AUTOMOTIVE
SENSOR DATA

The underlying model of our stream processing system is
a directed acyclic graph (DAG), which consists of different
kinds of processing nodes. These processing nodes (operators)
are connected by data paths as edges (streams). We call this
graph a Stream Processing Graph (SPG). The graph can be
adjusted to different situations to allow a varying scope of data
processing and recording. Triggers for the adjustment of the
graph are defined as part of the graph itself (see below).

The extension of the stream processing graph by event-
action pairs allows an adaptation of the graph at runtime.
We introduce event triggers for the re-arrangement and re-
configuration of the SPG. The two major problems of previous
recording systems in the vehicle are addressed: Customized
aggregation and filtering of data is now possible and actions
may be taken upon individually defined events.

We will first present a formal model of the graph. The
global system design has been carried out in a modularized
manner, with protected queues as comunication channels, as
pointed out in [19]. In detail, we follow a data-flow oriented
approach, which is similar to, but weaker than the SPF
(Stream Processing Function) algebra of Broy et al., a so-
called Basic Network Algebra as discussed in [20]. They
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specify a complete calculus towards concurrent computation.
We don’t need such a fine granular model and do not adopt,
for example, direct data feedback loops that explicitly are part
of the SPF algebra. We use control inputs and an adaptation
of the graph’s topology and operator node’s parameters as
feedback principle. Modifications of the graph are described in
Section III. Our model and the terms used throughout the paper
are inspired and adopted from operational stream processing
research approaches, that have been presented in the previous
section. In detail, these are [9], [10], [11], [12], [13] and
[21], where the latter gives a good introduction to the stream
processing paradigm. In contrast to these approaches, our
model allows for dynamic reconfiguration of the processing
structures at runtime.

Definition: A Stream Processing Graph is a DAG G =
(N,E) consisting of nodes N and edges E. Edges are a subset
of all possible connections between the nodes E ⊂ N ×N .2

Nodes N of the graph represent operators, which process
data streams. Edges of the graph represent the flow of data
between operators. An edge e = (n1, n2) represents the flow
of data between node n1 and node n2. We denote the space
of all possible graphs by G.

Nodes without incoming edges are source nodes and nodes
with no outgoing edges are sink nodes. We say that a node
with in- and outputs is an inner node. There needs to be at
least one source and one sink node within an SPG. As a matter
of fact, data flows from source nodes to sink nodes. Source
nodes produce data obtained from sensors or alike, while sink
nodes take action on arriving data. The most common action
is to save incoming data. Inner nodes of the graph process
data from their incoming edges and output processed data to
outbound edges.

Data within an SPG are encapsulated as data packets,
called tuples t. They are called tuples, because they do not
only contain the data but also meta data, such as a time-stamp
of creation.

Definition: A tuple t = (val, τ,m) ∈ T consists of a
value val, a time-stamp τ and a mileage stamp m, which are
addressed with t.val, t.τ and t.m. The set T is the tuple space.

Definition: A stream s = (t∗) consists of an ordered
sequence of tuples t∗, so that for all tuples t1, t2 ∈ s that
fulfill t1 ≤ t2, the tuple t1 will be before t2 in s. The relation
≤ reflects both time and mileage, i.e. t1.τ ≤ t2.τ iff t1.m ≤
t2.m. S denotes the set of all streams. At any given time,
the bijective function me : E 7→ S maps all edges of the
graph structure to corresponding streams. The sets of input
and output streams of a node n are defined as:

Sin
n = {s ∈ S|∃e = (·, n) ∈ E : me(e) = s}

Sout
n = {s ∈ S|∃e = (n, ·) ∈ E : me(e) = s}

Definition: An operator o associated with a node n is given
by o = (f select

n , f output
n , f update

n ) at any time t. The according
function spaces are denoted as F select, F output and F update

2It is a real subset, because a complete graph is not a valid graph structure
within the posted limitations.

respectively. Operators have an internal state σ, which is
introduced below. To execute an operator means to update
output streams and the inner state of the node as follows.

Generating a tuple, i.e., adding it to an output stream s,
triggers the function f select

n for the succeeding nodes n, for all
n : s ∈ Sin

n . This function decides whether the operator is
executed. It maps the input streams of the node to a modified
set of streams, which consists of the tuples selected to be
processed by the operator.

f select
n (Sin

n ) = Sin◦
n

Only if data is available from any input streams, i.e. at least
one of the member-sets of Sin◦ is not empty, the operator itself
is executed. The tuples are taken out of the input streams:
∀si ∈ Sin

n : s′i = si \ s◦i , where s◦i denotes the corresponding
tuple-set from Sin◦

n .
Operators may be configured by parameters p ∈ P . For

example, a predicate for filtering the stream’s data or a window
for aggregating data from within that specific window can be
given as a parameter.

We distinguish between stateful and stateless operators. A
state is, for example, a preliminary output result. The state
σn ∈ Σ of a node n is changed to σ′n by the update function

f update
n : S|S

in
n | × Σ× P 7→ Σ

The output of an operator is generated by its function

f output
n : S|S

in
n | × Σ× P 7→ S

The output of an operator is usually only a single tuple. The
operator node’s output streams s changes to s′ so that

∀s ∈ Sout
n : s′ = s ∪ f output

n (Sin◦
n , σ′, p)

This means me(e) now maps to the stream s′ for the graph’s
corresponding edge e. All output streams are appended with
the same tuple.

Similar to the function me(e), there exist functions

mselect
n : N 7→ F select

mupdate
n : N 7→ F update

moutput
n : N 7→ F output

These functions map the according semantic to the operator
node at a given time.

We allow a dynamic reconfiguration of the graph. The
semantic of reconfiguration depends on updating the state
of affected operators accordingly. A reconfiguration therefore
will always update the operator’s state for stateful operators.
For every action and every operator a parameter-state-update
function fp-s-upd : P×Σ×P 7→ Σ is needed. It updates the old
state, that originated from the old parameters, to a new state,
so that the operator’s consistency is maintained. For example,
when changing the window size of an operator, the internal
state has to be modified in a way that either the preliminary
result is modified or the state is reset to the initial value.

The operators assigned to source nodes supply the vehi-
cle sensor data. One can think of their states as externally
controlled (i.e., by the environment and state of the vehicle).
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Fig. 4. Example 1: Sensor data (ELI: Engine Load Indicator as percentage)
are sent to a filter as well as to a histogram. Only tuples that match the
predicate are logged (in this case: low-load state), while the distribution of
total engine load is maintained in the four-bin histogram. The filter’s predicate
may be adjusted through the control input depticted above. It is used by a
different end-operator (not shown).

They execute whenever new data were gathered (i.e., according
to a sensor’s sampling interval). The nodes on the other end
of the graph, the sink-nodes, are end-operators. They take
action on incoming tuples, which is the core of the graph’s
reconfiguration strategy.

Example of an Operator: Assume a filter predicate is
pfilter = < 20 . The update function f update

filter (t, σ, p) has no
influence on the operator’s behavior (as it is stateless). The
output function is defined as:

f output
filter = {t | t.val < 20 }

This means that the operator produces an output iff the
predicate is true. Another example, where an internal state
is maintained by the operator, is presented below.

Graphical Representation of SPGs: We have adopted the
graphical representation of operators and streams as boxes and
arrows that was suggested in [21], [22] and [11]. The data
flows from source nodes (operator boxes on the left) to sink
nodes on the right. We introduce another kind of arrow: We
allow to change the node’s behavior via a control input, that
is depicted as a dashed arrow at the affected operator(s). The
so called actions that make use of these control inputs are
explained in III.

A small SPG is shown in Fig. 4 as Example 1. The input
sensor source ELI (Engine Load Indicator, a percentage value
internally calculated by the engine ECU) is branched to two
operators: A filter operator and a histogram. There is a simple
logging store connected to the filter operator. The filter will
only output tuples that fulfill its predicate < 20 . The filter’s
predicate can be changed by the control input denoted above.
It can be changed upon an event condition that is not part of
the figure. The histogram and log store do not have outgoing
edges (they are sink nodes) and record incoming data.

Window Operators

Operations on data streams in automotive applications are
typically performed on so-called windows. This allows, for
example, to reduce a sequence of tuples from the input to
only a single tuple as the output. Every operator with a given
window size > 1 holds a state σ, which represents either
the current preliminary result or buffered, unprocessed input

tuples for later batch processing, e.g. when the calculation
requires more than one pass over the data. The state is updated
whenever the operator function processes incoming tuples or
produces outgoing tuples.

A window consists of a finite number of consecutive tuples
of a stream. The tuples of a stream are assigned to windows
upon arrival. They are processed with respect to these win-
dows. We denote the size3 of a window by ω.

Windows can be defined over different attributes. They are
typically defined over the time dimension: the window size
is given as an interval size in time. However, a window size
can also be defined by a count. Then the window of size ω
consists of exactly ω tuples. In that case, the time difference of
the tuples within this count-window is variable as opposed to
the number of tuples, which is fixed. A third dimension, most
important in the automotive application context, is mileage.
For determining whether a tuple is within the boundaries of
a specific window, their time or mileage stamp is compared
to the window’s start time or mileage. We call the dimension,
over which a window is defined, the windowing attribute D.

The time stamps of tuples inside a window are less than or
equal to ω apart, so that for the first tuple tf and the last tuple
tl of a time-based window, the expression tl.τ − tf .τ ≤ ω is
always valid4.

An incoming tuple t falls into a window w if the tuple’s
time stamp t.τ ∈ [tf .τ, tf .τ + ω], where tf is the first tuple
of window w. If the tuple does not fall into window w, then
w is closed, because the stream’s metadata are monotonically
increasing. This means that the window size is reached, i.e.,
the distance of the time stamps of the first (tf ) and the new
tuple (t) of w is at least ω: t.τ − tf .τ > ω. The window can
now be processed by the operator’s aggregate function, which
may require more than one pass over the data. If only one
pass is required, an iterative calculation of the result may be
performed, so that the tuples of the current window do not
need to be saved5. The operator’s function f calculates a new
tuple, which is the output of the operator – for example, the
mean value within the given window.

We allow more than one window to be open at a time,
resulting in overlapping windows. The parameter window slide
δ indicates when (i.e., after how much time elapsed since the
start of the last window) a new window shall be opened. For
the simple case δ = ω, windows are non-overlapping, so that
there will be exactly one open window for processing at a
time. These windows are called tumbling windows [12] [23].

Example of a Stateful Operator: Now that we have intro-
duced windows, we will give an example of how they can be
used within stateful operators. We define an average-operator
AVG that takes the average of an input of ω = n tuples as
follows. The according parameters are ω = n, D = count,
δ = ω. For this operator, the internal state consists of two parts,

3The window size is sometimes also called a window range [23].
4To simplify matters, we use the windowing attribute time in our examples.

Our considerations also apply for the other windowing attributes.
5Even when the result can be calculated iteratively and an additional

buffering within the operator is not needed, it can still be advantageous,
because it allows to change the window size in operation without a loss of
data, as discussed in III-B.
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σ.sum and σ.cnt. For the initial state σinit, both values are
zero. AVG has one input stream, for which f select did produce
{{t}} as output.

f update
AVG ({{t}}, σ, p)

=


σ′.sum = σ.sum+ t.val if σ.cnt ≤ n
σ′.cnt = σ.cnt+ 1

σ′.sum = t.val if σ.cnt > n
σ′.cnt = 1

f output
AVG ({{t}}, σ′, p)

=

{
{} if σ′.cnt 6= n

{(σ
′.sum
σ′.cnt , tnow,mnow)} if σ′.cnt = n

III. DYNAMIC RECONFIGURATION

We now describe how our concepts of graph adaptation and
recording of data are modeled. Sink nodes (without outgoing
edges) are so-called end operators. The first possible function
of an end operator is to simply store the incoming tuples.
However, in our approach they are also used to trigger changes
of the stream processing graph during run time. This can be
done by either updating numerical parameters of other operator
nodes, or by altering the graph structure in itself.

At the end operators of an SPG, data has already been
filtered and processed and thus “each path from a sensor input
to an output can be viewed as computing the condition part
of a complex trigger.” [22]. End operators represent event-
condition-action (ECA) rules. The arrival of a tuple on the
input stream may be regarded as a basic event. One event
triggers one or more actions. In order to be more flexible, the
actions taken upon a “tuple-arrival-event” may also depend on
boolean conditions ci.

Definition: An end operator oe is defined by at least one
input stream and a set of condition-action rules (ci, ai). A
condition ci is a predicate defined on tuples of the input
stream. If ci(t)6 is true, action ai of the pair (ci, ai) is
executed.

In case of rules ri = (c, ai) and rj = (c′, aj) with c = c′,
both actions ai and aj are performed. This is abbreviated as
r = (c, {ai, aj}). Action ai of the rule (>, ai) is executed
unconditionally. This means that the basic event, the arrival of
any tuple, causes the execution of the action in this case.

We distinguish three types of actions, that may be taken at
an end operator:
• Storage actions aS , which do not modify the processing

pattern of the graph,
• Parameter modification actions aP and
• Topology modification actions aT ,

of which the latter two change the system’s behavior.

6For n input streams it would be ci(t1, . . . , tn) with tuples from the
different streams.

A. Storage Actions

Storage actions aS conform to the signature aS(t,S), where
S is a store location (e.g. memory or a file). The content of the
store is addressed by [S]. A simple storage operator, as shown
in Example 1 in Fig. 4, only saves all input data. It consists of
an empty condition (i.e., c = >) and an action to save the input
tuple. Saving is done by appending data to the store. The store
S can be regarded as logfile, which aS(t,S) = ([S] concat t)
appends to. Another kind of storage operator, that was used
in Example 1, is an equi-width histogram. It is adaptable by
the number of quantization levels, a minimum, and maximum
value.

B. Parameter Modification Actions

An action aP (N,P ) with P = {(p1, . . . , pn)} modifies the
parameters pi for every operator node n ∈ N .

If the parameters of a stateful operator are changed, its
state σ has to be modified, too. It depends on the type of
operator state (incremental or buffering), whether for example
decreasing the window size ω is possible consistently. If the
operator holds all previous tuples of all open windows in
its state, a batch processing of the old tuples with the new
window parameters can be performed. If the state of the
operator is only a partial result of its computation, then it is
not possible to decrease the window size consistently. There
will be a gap in calculation to the next subsequent window
result. Increasing the window size and changing the parameters
of stateless operators (e.g., filter predicate, map function) are
always possible. The afore mentioned function fp-s-upd updates
the state of the operator. It is given for every operator that is
affected by the parameter modification action. The new state
is calculated from the old state and the old parameter set.

C. Topology Modification Actions

Actions aT map G 7→ G. The graph structure of the SPG
is modified in a way that either new nodes and edges are
inserted and connected, or specific nodes or edges are deleted.
The graph requires also an adequate modification, for example
when an inner node is deleted, by inserting and deleting
edges. Actions aT must always modify the SPG in a way that
the graph stays consistent (i.e., inner nodes have a sufficient
number of inbound edges and at least one outbound edge).

Graph modifications may either add or delete a node nmod,
as explained below.

Inserting a node: To add a node nmod to the SPG, a sorted
set of preceding nodes N− ⊆ N, |N−| = k, where k is
the necessary number of inputs for the operator, has to be
supplied by the action. Additionally, the set N+ ⊆ N has to be
specified, which contains the operator nodes that shall receive
the new operator’s output. The resulting graph G′ = (N ′, E′)
is:

N ′ = N ∪ {nmod}
E′ = E ∪ {(ni, nmod)|ni ∈ N−} ∪ {(nmod, no)|no ∈ N+}
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Fig. 5. Example 2: Topology Modification. Upon the conditions c1 the
additional storage nodes Store1 and Store2 are created. Condition c2 is the
counter-condition, that removes the storage nodes.

Deleting a node: Deleting a node nmod modifies the graph
G = (N,E) in the following way.

N ′ = N \ {nmod}
E′ = E \ {e = (n1, n2)|n1 = nmod ∨ n2 = nmod} ∪ E′′

The node nmod is removed from the set of nodes and all
incoming and outgoing edges are removed from E. The set of
new edges E′′ is to fulfill the consistency of the SPG. It may
be empty, for example, if node nmod had no successors (i.e.,
nmod was a sink node).

Example 2: An intuitive example for modifying the graph
is adding and deleting additional storage nodes for recording
the streams at any source or inner node of the SPG upon
condition and counter-condition. The graphical representation
of this graph can be found in Fig. 5. By this selective adding
of additional recording points, specific situations, such as “at a
high temperature”, may be monitored selectively and in detail.
Two temperature values are merged into one stream in pairs by
a union operator. This results in a stream that carries data from
both streams (e.g., left and right cylinder head temperature).
The adjacent operator averages the incoming tuples over a
30-second time-window. Now if one of the resulting tuples
exceeds a threshold and c1 : t.val > thrshld comes true,
the actions aT1a and aT1b are taken. These actions each add a
new node nmod = Storei to the first and second temperature
sensor, so that an individual monitoring of the two sensors for
this situation is achieved. An opposite condition is shown as
c2: If the value drops under thrshld− ε, the graph is restored
by deleting the storage nodes7.

IV. IMPLEMENTATION

We have implemented a prototype system on an embed-
ded Linux telematic device, which is equipped with a CAN
transceiver. It is equipped with a 150MHz TriCore processor,

7The ε is considered for hysteresis. Otherwise a bouncing between the two
conditions would possibly occur and constantly insert and delete the storage
operator nodes.

ECUs KWP

req./resp.

Streams

SPG

Fig. 6. Acquisition Module: The request/response polling of data from the
ECUs via KWP is decoupled from the actual stream processing engine.

128MB of RAM and a CF slot for data storage. Via USB it
can be enhanced by additional hardware, e.g., an IEEE 802.11
network interface. We connect to the OBD-II’s diagnostic
CAN bus and use the diagnostic protocols KWP and UDS to
query the various ECUs. The ECUs are periodically queried
for their sensor values, as schematically shown in Fig. 6.
We separated these two parts in system design to allow
re-simulation with specific rides where all data have been
recorded. These values comprise the input of the processing
graph, i.e., the source nodes of the SPG. The total volume of
sensor data that can be acquired by the system depends on a)
the vehicle’s bus topology, b) the load of the CAN buses, and
c) the processing load of the individual ECUs, which may
reject requests for sensor data when they are busy. Because
of the arbitration mechanism of the CAN bus, security and
safety relevant data are always prioritized before our requests.
In average, we obtain data with a frequency of 1 Hz. This is of
course not sufficient for an in-depth analysis of, for example,
faulty lambda sensor loops. It is, however, very adequate for
detecting most faults and possible relations between faults –
especially considering that no modifications of the vehicle
have to be made.

The programming language C++ was used for the prototype.
Inheritance allowed an encapsulation of communication and
control flow structure of the SPG and thereby separating it
from the operator functionality. All operators inherit functions
that allow to connect them to any other operator of the SPG
and safely operate on streamed data tuples. A “window opera-
tor” class, for example, encapsulates operations on sequences
of tuples, such as keeping track of currently open and to-be-
processed windows. Custom operators inherit these functions
and only need to implement code for processing the input data
accordingly. In Fig. 7 we show a UML class diagram, which
explains how inheritance is used in our implementation. We
show an exemplary set of classes and, for two of them, their
corresponding attributes and function. The operator class Op
provides all functions to interconnect the stream processing
graph. Other classes enhance different groups of operators
(e.g., the storage operators) with a common interface. The
Command class implements actions on the SPG itself and, for
certain actions, on specific families of operators, e.g., with
buffered storage operators to save their state.

For concurrency, we use POSIX pthreads and follow a
different approach for the execution for Linux kernel series
2.4 and 2.6. The Linux 2.4 kernel series, which was used
on the on board unit, does not support lightweight threads
[24]. Due to this, we used threads conservatively with respect
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Fig. 7. UML class diagram extract. The concept of multiple inheritance
was used, so that e.g., individual storage operators inherit graph functionality
from Op and a storage interface from StorageOp. Actions are taken via the
Command interface.

to the embedded environment on v2.4. We use threads only
for the sensor source operators, which trigger the execution
of subsequent operators throughout the SPG. For v2.6, we
employ threads for every operator, so that operator can be
scheduled individually without relying on sensor input to
trigger the execution. Apart from that, the event-system is
always scheduled separately, so that a timely execution of
actions is ensured. While an event changes the processing of
the graph, for example, adjusts parameters and state of an
operator, the specific operator is held from being executed
and thus maintains a deterministic state.

(a) On-Board Unit (b) Engine ECU

Fig. 8. The On-Board Unit acquires data from the various ECUs within the
vehicle via KWP and UDS.

Actions that change the stream processing graph’s topology
or parameters may be taken on event conditions, which have
been defined as a path within the SPG. The afore mentioned
“basic event” of a stream triggers actions. Every event is
mapped to one or more actions, which themselves affect one or
more operators of the graph. To give an example, an action to
save time-series is applied to a set of ring buffers (default: all)
for a defined window (default: 30 seconds). The same event-
action rule can be triggered from different locations within the
SPG (e.g., ‘drop of tire pressure’ or ‘high lateral acceleration’).

We implemented a number of processing operators, e.g.,
a filter operator with customizable predicate, a delta/gradient
operator and window-aware versions of the standard functions
MIN, MAX and AVG, along with a number of recording
operators.

For complex technical problems such as engine manage-
ment, it is often necessary to look at a combination of different
sensor values (e.g., for engine RPM, throttle position, and in-
take manifold pressure). We implemented a multi-dimensional
histogram storage operator, that allows multiple input streams

with individual quantization attributes (min, max, numbins)o.
The input streams are synchronized within time windows.
Because a multi-dimensional histogram is a very sparsely
populated data structure, we had to store the data in an
intelligent way, that a) allowed to save data space-efficiently,
i.e., only to store non-zero elements and b) has an acceptable
access time, i.e., does not depend on the size of the histogram.
We used a trie [25], a search tree, to store the histogram. The
index of the histogram is stored as key at the edges of the
tree. One byte is used as quantization index of each input. The
actual count of a histogram bin is saved in the leaf nodes of
the tree. The access time of the trie only depends on the depth,
i.e., the number of input streams, which makes it suitable for
recording long time intervals.

V. EXPERIMENTS AND EVALUATION

We have conducted a number of experiments on the road,
which showed that our approach is suitable for different
scenarios of data collection. In the following, we will give an
example, of how to apply our SPG model to a given problem.
The data that we present as part of the evaluation is delib-
erately modified, so that confidentiality and proprietary rights
are preserved. After the use-case study, we show a quantitative
analysis by means of comparing recording techniques, i.e.,
the SPG-based approach, selective recording on the diagnostic
application layer and raw data recording with respect to data
volume to be transmitted. We show how worst-case response
time of ECUs compares to the observed latency, and how the
size of an SPG affects memory consumption.

The problem of qualifying intermittent and non-
reproducible errors is inherent to the automotive industry.
We have taken up cylinder misfires as an example for
indeterministic events, that we want to investigate. Knocking
and misfires, against the common perception, are still quite
common for modern engines, as the combustion is usually
most efficient when it happens close to the knocking limit
[26].

Objective: To obtain a profile of the situation, where a
specific error (i.e., misfire in our example) occurs. The profile
must be informative enough to find a lead to the root-cause of
the error, while its data volume must not exceed the available
storage capacity.

Rationale: A complete log of the vehicle’s environment
data is not sensible. Actually, even short time-series for every
occurrence will produce large quantities of data for a high
event-frequency, for many sources, and over a long time-span.

Approach: We use a multi-dimensional histogram as state-
space, that represents a partial state of the vehicle. The non-
zero states represent those in which an error situation has
occurred. Ring buffers provide the input to every dimension of
the state space. A ring buffer may be placed anywhere within
the SPG, so that sources (e.g., speed) or pre-processed streams
(e.g., average or maximum of speed within the last minute)
can be used as input. For every dimension of the state-space,
there are parameters for the minimal and maximal value and
the number of quantization levels. One may, for example, only
be interested in a rough quantization of the engine temperature
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(cold, warm, hot), but need a finer granularity for other
dimensions. By using these additional a-priori information
about the number of necessary discrete states, much storage
space can be saved.

Implementation: The engine ECU supplies a misfire-
counter for every cylinder. We monitor the counters for
changes and—upon an increment of a counter—we trigger an
update of the state-space via an event/action pair.

Filter ( >0 )Delta ECA ('MISFIRE')MFC i

Fig. 9. The event ‘MISFIRE’ is triggered, if misfire counter (MFC) of
cylinder i was incremented. Not shown: The according action triggers an
update of the state-space with data from various buffered sensor sources.

Four consecutive operators are used per cylinder, to set
off the event (Fig. 9). The SPG-arrangement is started by
the source operator that supplies the misfire counter value, a
delta, a filter and an event operator. Tuples periodically arrive
at the delta operator, which outputs the difference between
two following tuples to the filter. They are dropped, if their
value is zero. Otherwise—this indicates the misfire—the tuple
is forwarded to the event operator, which propagates the event
“misfire” to the event handler. The event handler performs an
action that releases the most recent data tuple from ring buffers
via their control input, which are themselves the input to the
multi-dimensional histogram store.

Results and Interpretation: The evaluation of a multi-
dimensional state-space reveals patterns, on how the vehicle
was used when errors occurred. A clustering of occurences
within the state space points out potential root-causes of the
problem.

We used a set of seven sensor sources for the state space.
In Fig. 10, we show a plot of two dimensions (a projection
on this plane) of the error profile recorded for misfires. The
profile shows a cluster of misfires around 3400 rpm for all
speeds. The second cluster at low engine revolutions does not
spread over all vehicle speeds, and concentrates on the low
(0-30 km/h) speeds.

As a subsequent question, one may ask why the misfires
do occur mostly in the interval around 3400 rpm. An obvious
guess for reasons of misfire is that they occur at excessive

Fig. 10. Two-dimensional histogram profile for sensor readings of the
vehicle’s velocity and crankshaft RPM, sampled, whenever a misfire occurred:
Every misfire is represented by a non-zero, i.e., non-black field (displayed as
grey scale value). Misfires seem to occur more frequently at around 3400
RPM.
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Fig. 11. Engine RPM (right scale) and Throttle Pedal tilt in percent (left
scale), thirty seconds before a misfire occurs. The steep and high peaks
indicate abrasive driving.

changes of engine revolutions or load of the engine. To prove
this guess right, we added an additional action to the misfire
event, which records a time-series from a buffered sensor-
source (see Fig. 11 for a plot of engine RPM and accelerator
pedal percentage). We can see that before the misfire occurred,
a rapid change of the engine speed has happened. One may
presume that the engine load also changed rapidly, during these
thirty seconds before the misfire.

As far as a reduction of collected data is concerned, it may
even be adequate not to record time-series, but only to record
the maximal gradient for a recent time interval. The SPG-
design easily allows to insert a delta operator with specified
time-window (e.g., two seconds) and a maximum operator—
with window size equal to the ring-buffer’s—just before the
final log operator. This way, only one value (i.e., the maximal
gradient) would be saved instead of a complete time series.

Performance Aspects:

Let us consider the data that needed to be recorded for the
preceding example. We have observed a number of 19 misfires
during a period of one day. To record the two-dimensional
state-space (using a naı̈ve implementation—it is even less with
the trie structure we used), one needs 14× 5× 2 = 140 bytes
(this corresponds to a resolution of 14 levels for RPM and
5 for the speed and a two byte value as counter). Plus, for
every occurrence of a misfire, a 30 second time series of two
values (crankshaft RPM and throttle pedal tilt, both as two byte
value and with 1 Hz resolution) is recorded. This makes an
additional 19× 30× 2× 2 = 2.280 bytes for the 19 misfires.
Compared to that, a raw recording of these selected values
would need 3.600×8×2 = 57.600 bytes per hour8. A complete
recording of the power train CAN bus data would result in

8Each cylinder’s MFC produces 2 bytes per second and we assume a 6
cylinder engine.
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SPG Sel. KWP LIDs CAN complete
140 + 120 / event 57600 / hour 75.825.000 / hour

Fig. 12. Data volume (bytes) to be saved and transferred for the presented
experiment. Use case: Profiling of misfires with two data sources to be
recorded when the misfire event takes place. Please keep in mind that for
the SPG use case, event-based recording is used, where with KWP the input
sources have to be recorded continuously. The same is true for the third
column, where no filter is applied during recording.

around 76MB9 per hour.
The maximal data rate which can be achieved when using

diagnostic protocols for the acquisition of sensor data depends
on multiple factors. An ECU itself is required to answer every
diagnosis packet within a response time of RT = 20ms
[8]. The response packet may also deny the request (such
as ”busy, answer is delayed”). More influential, however,
are the network topology and the size of request’s response
messages. In today’s vehicles, there exist multiple gateways
between the diagnosis interface and an ECU. Each of them
will add a maximum of 5ms of latency. The allowed roundtrip
time for an ECU behind two gateways therefore is RTT =
RT + 2 × 5ms = 40ms (neglecting bus load and possible
interference). For typical ”read local identifier” requests that
carry a number of signals, a request is split into multiple
consecutive network frames, which is in a way similar to
TCP windows. Between these consecutive frames, a suggested
separation time of ST = 16ms has to be kept. A frame of 40
bytes needs to be split into 6 frames (there are seven bytes
of payload, as defined in [8]. One byte is used for KWP
control information, such as frame counter. The first frame
only has 6 bytes of payload.) The first frame needs to be
acknowledged, so this adds an additional round-trip time and
we have a total of 2 × RTT + 4 × ST + RT = 164ms.
This means that the frequency to be achieved in this case is
6 Hz. Our experiments have shown, that this rate is more a
theoretical one. In fact, we found the response time for a single
packet request to be normally distributed around 7ms—despite
two gateways. However, diagnosis traffic may for example be
delayed by higher priority bus load or simply by the ECU’s
flow control, as in KWP an ECU has the freedom to send
a negative response code at any time. We observed, for an
ECU behind two gateways and with 40 byte response packets,
an average response time of 379ms, which corresponds to a
recording rate of 2.639 Hz.

The memory footprint of our system—including an XML
parser and without optimizations—is 2972 bytes. For every
operator that is added to the graph, around 15kb of additional
memory are needed. The actual size depends on the operator.
The 15kb estimate is for an operator used to calculate an
incrementally updated average window. Generally, the memory
consumption is linear to the number of operators in the
graph. For special operators, e.g., storage operators as the
multidimensional histogram, the memory size will increase
during runtime. For the multidimensional histogram however,
even for a large number of dimensions (11), the consumed

9Experiments have shown that (for a typical Mercedes-Benz midsize luxory
sedan) the average bus load was 33.7%. The engine CAN bus operates at
500kbit/s.

memory of the trie structure and its content stayed well under
a megabyte within one day’s use.

VI. CONCLUSIONS

The current automobile’s electronic architecture is influ-
enced by many different standards. There are ambitions within
the automotive industry to standardize the diagnostic software
interface in a way that abstract data sources such as “vehicle
speed” are mapped to concrete sensors on the fly [27]. This
would ease data acquisition. The big advantage of using the
vehicle’s diagnostic infrastructure is that there is virtually no
need to modify the car. Therefore, the system is easy to install
and remove. Our system employs these benefits and combines
them with advanced recording strategies.

Our work shows that given interfaces—OBD-II and diag-
nostic protocols—can be used to achieve a high-level goal by
employing low-level tools and data. We show how a flexible
and adaptable data recorder can be used in various vehicle-
related contexts and for different purposes, by using one stan-
dardized interface and a small amount of processing power and
memory. Our situation-dependent recording demonstrates a
great improvement over existing systems and allows a selective
reduction of data quantity while maintaining the adequate data
quality. Engineers can start out with a generic configuration
and subsequently add filter and aggregate operators, refine
recording operations and actions on specific events. To lever-
age root-cause analysis for detecting and diagnosing unfore-
seen situations, our system could be enhanced by operators
implementing clustering algorithms. The goal of our system
design, however, has been to support engineering testing, so
that engineers can use a-priori knowledge. Therefore, it is
difficult to directly compare recorded data volume to other
systems, as it varies with the system’s configuration and
use. The prototype system has been tested at research and
development facilities in North America and Germany.

In the future, stream processing in the vehicle can be
enhanced with more advanced operators, which can employ
data mining and machine learning techniques on multiple
data-streams and will be able to show correlations in case of
errors. For example, multi dimensional state space clustering
and learning allows to define different states of the vehicle
(e.g., clean combustion and normal acceleration behavior
vs. unusual behavior in acceleration or braking) and detect
unusual patterns automatically. By using such performance-
intensive algorithms, one can use the processing power of the
on-board unit to full capacity. This may lead to additional
requirements, such as scheduling operator execution in a
quality-of-service based manner, as it was already examined
for different (non-embedded) stream processing applications.
As bandwidth volume for transmission is limited, prioritization
of specific, e.g., recent data, with regard to granularity of saved
probes may be applied.

We believe that this area of research, intelligent pre-
processing and condensation of possibly remote sensor data,
will significantly gain attention as electronic automotive sys-
tems increasingly assist the classical mechanical domain. The
electronic systems of a car provide valuable information
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about the vehicle’s state to engineers, workshops and quality
assurance—data only need to be processed, preserved, and
evaluated appropriately.
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[20] M. Broy and G. Ştefănescu, “The algebra of stream processing func-
tions,” Theoretical Computer Science, vol. 258, no. 1–2, pp. 99–129,
2001.
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