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Recording Channels, based on Regressive and

Autoregressive Noise Models
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Abstract—A recent work presents a regressive noise
model for the data-dependent correlated noise, at the
output of a magnetic recording channel detector. This
paper generalizes this channel model, considering digital
equalization and a more efficient correlation matrix, in
order to make a comparison with the usual detector in a
more realistic environment. Simulation results show that
the regressive detector performs better when the number of
trellis states is lower than needed, while both approaches
are comparable when the number of states matches the
channel memory.

Index Terms—data-dependent channel noise, perpen-
dicular magnetic recording, regressive and autoregressive
models, non-stationary process, Taylor expansion, linear
model, Cholesky factorization, Viterbi algorithm.

I. I NTRODUCTION

The state-of-the-art of data detection in per-
pendicular magnetic recording (PMR) channels is
based on data-dependent Gauss-Markov detectors
[1]. The reader can find in [2] a complete presen-
tation of this approach. According to this approach,
data-dependent correlated noise results to be auto-
regressive and then it can be whitened by means
of data dependent FIRs (Finite ImpulseResponse).
This is the approach widely adopted in present-
day read channels implementations. Recently, a very
interesting paper [3] highlighted that such model
implies an exponential increase in the number of
states in the detector trellis against a linear increase
of the channel density. As a consequence, the con-
tinuous request for higher density would result in
an unsustainable growth of the detector complexity.
More interestingly, the aforementioned paper argues
that such growth is mostly due to the inherent
non-Markov nature of the media noise. The paper
assumes a simple linear model of the read channel
derived from the first order Taylor approximation.
According to this approximation, data-dependent
correlated noise results to be regressive and then

whitening can be achieved by means of IIR (Infinite
Impulse Response) filters. According to [3] the
regressive noise model is closer to the actual noise,
and IIR whithening would require less predictors
and, as a consequence, the corresponding detec-
tor would be smaller compared to the AR (Auto
Regressive) version. An alternative approach able to
counteract the increasing number of channel states,
with a joint detection-coding scheme, is shown in
[4]
The present work generalizes the noise regressive
model formerly presented by S. Gratrix in [3]
by proposing a first-order model for the noise on
magnetic recording channel which considers more
than three-banded correlation matrix. This extension
is more realistic, given the present day channel
densities, and it easily includes the effect of the
digital equalization (sec. III-D) (sec. III-B). In this
paper, the channel conditions under which this
model is acceptable are reviewed (sec. III-F). Then
the noise regression coefficients, used to solve the
ML (M aximum Likelihood) problem, are proved
to coincide with the model coefficients themselves
(sec. III-G). The section III-K suggests a simple
method to avoid numerical instabilities during the
ML detection. Finally, the performances of the re-
gressive detector are compared to the autoregressive
in a realistic context.

II. SIGNAL MODEL

A. Read-Back Waveform

Assuming that transition jitter and AWG
(AdditiveWhite Gaussian) are the two predominant
noise components on magnetic channel, the read-
back waveform can be described by the following
equation:

r(t) =
∑

k∈Z

akh(t− kT + τk) + e(t) (1)
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bk are the information bits,ak = bk − bk−1, T is the
bit interval,τk ∼ N (0, σ2

j ) represents the amount of
position jitter int = kT , e(t) is AWG noise. For an
ideal perpendicular magnetic channel, the transition
responseh(t) is defined as:

h(t) = erf

(
2
√
ln2 t

T.CBD

)
(2)

where the parameterPW50 is the width ofdh(t)/dt
at half height andCBD represents the channel bit
density:

CBD =
PW50

T
(3)

Moreover, both the stochastic processes{τk} and
{ek} are assumed to be strictly stationary, white and
mutually independent.

B. SNR definition

The Signal-to-Noise Ratio is defined as:

SNRdB = 10 log10

1

No +Mo

(4)

whereNo is the single-sided AWGN power spectral
density andMo is twice the media noise vari-
ance; the parametermix expresses the percentage
of AWGN power with respect to the overall noise
power:

mix =
No

No +Mo

(5)

so that:

No = mix . 10−SNRdB/10 (6)

Mo = (1 −mix) . 10−SNRdB/10 (7)

The varianceσ2
j of jitter random variableτ can be

derived fromM0 as follows:

Mo/2 ∼= 1

2
σ2

j

∑

k∈Z

(
d

dt
h(t− kT )

)2

(8)

III. R EGRESSIVE MODEL OF NOISE

A. Taylor Expansion of Read-Back Signal

Assuming h(t) infinitely differentiable ∀t, and
σj ≪ T , the Taylor expansion ofh(t− τ):

h(t+ τ) = h(t) +
∞∑

i=1

τ i

i!

di

dti
h(t) (9)

is convergent with very high probability. The first
order approximation of channel noise results [7][8]:

r(t) ∼= rid(t) +
∑

k∈Z

akτk
d

dt
h(t− kT ) + e(t) (10)

∼= rid(t) + ν(t) (11)

where:
rid(t) =

∑

k∈Z

akh(t− kT ) (12)

andν(t) is the noise component.
Let ḣk the first derivative ofh(t) evaluated int=kT .
The signalr(t) sampled att=kT results to be:

rk
∼= rid,k +

∞∑

i=−∞

ak−iτk−iḣi + ek (13)

The accuracy of this approximation is already
demonstrated in [3].

It is reasonable to assume that

ḣ(t) ∼= 0 for |t| > λT (14)

whereλ depends onCBD. As a result, the first order
approximation of the noise becomes:

νk =
λ∑

i=−λ

ak−iτk−iḣi + ek (15)

B. Equalization

Typically, the sampled read-back signal is equal-
ized by a digital1 filter f ; here, let us suppose that the
equalization is applied to the symbol-time sampled
signalr:

req = (rid + ν) ⋆ f (16)

req
k = req

id,k +

λp∑

i=−λf

ak−iτk−iḣ
eq
i + eeq

k (17)

where the parametersλf , λp are the so-called pre-
and post-cursor of the equalized transition response:

ḣeq
k
∼= 0 for k > λp, k < −λf (18)

and 2:

ḣeq = ḣ ⋆ f (19)

eeq = e ⋆ f (20)

1digital signals are named with bold font
2⋆ is the digital convolution
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On the contrary, if the equalizator filterf is defined
over an oversampled grid andρ ∈ N is the over-
sampling factor, the expression of the equivalent
time-invariant impulse responsėheq associated to
transition jitter noise becomes3:

ḣeq
k =

{[
ḣ(t).

∑

i

δ(t− iT/ρ)
]
⋆t f(t)

}
t=kT

(21)

where:

f(t) =

ρΓ∑

i=−ρΓ

fiδ(t− iT/ρ) (22)

and2ρΓ+1 is the number of samples of the digital
signal f .

Finally, the first-order approximation of the noise
when digital equalization is taken into account is:

nk =

λp∑

i=−λf

ak−iτk−iḣ
eq
i + eeq

k (23)

It is evident from (23) that the noise at the output
of the equalizer remains Gaussian; the introduction
of the equalizer only affects the spectrum shape
of Gaussian noise and the jitter impulse response
which changes froṁh (see eq.15) tȯheq.
The stochastic processn is non-stationary and,
accordingly, noise samplenk is data-dependentand
its value depends on the patternαk:

αk = [bk−λp−1bk−λp
. . . bk+λf

] (24)

In the following we assume that the sampled read-
back signal is equalized by a digital filterf , whose
coefficientsfi are defined as in (22).

C. Noise Mean

When the Taylor series in (9) is not limited to the
first term, the noise mean is given by:

E[nk|αk] =

λp∑

i=−λf

ak−i

∞∑

j=1

E[τ 2j]

(2j)!

d2j

dt2j
heq(iT )

(25)
where:

d2j

dt2j
heq(iT ) =

{[ d2j

dt2j
h(t) .

∑

k∈Z

δ
(
t−kT

ρ

)]
⋆f(t)

}
t=iT

(26)

3⋆t is the convolution defined in the continuous domain

In fact,
E[τ 2j+1] = 0 for j ≥ 0 (27)

because the zero-mean normal function is even.
Remarkably,under the first order approximation,
noise on magnetic channel iszero-mean.

D. Noise Autocorrelation

Noise autocorrelation has a finite length and
depends both on the stored binary sequenceb and
on the time instantt=kT :

R(0)(k) = E[n2
k|b] = σ2

j

λp∑

i=−λf

(ak−iḣ
eq
i )2 + σ2

e

ρΓ∑

i=−ρΓ

f 2
i

R(γ)(k) = E[nknk−γ|b] = σ2
j

λp∑

i=−λf+γ

a2
k−iḣ

eq
i ḣ

eq
i−γ + . . .

+ σ2
e

ρ(Γ−γ)∑

i=−ρΓ

fifi+ργ for γ ∈

R(γ)(k) = E[nknk−γ|b] = 0 for γ ≥
(28)

where:

̟ = min(λp+λf +1 , 2Γ+1) (29)

It is clear that every correlation coefficient does
not depend on the whole binary sequenceb, but
only on the patternβ(γ)

k :

E[nknk−γ|b] = E[nknk−γ|β(γ)
k ] (30)

β
(γ)
k = [bk−λp−1 . . . bk+λf−γ ] (31)

More precisely, correlation coefficients hinges on
{a2

k}, so it is assumed that:

E[nknk−γ|β(γ)
k ] = E[nknk−γ|β

(γ)

k ] (32)

whereβ is the boolean negation ofβ; this property
is known aspolar symmetry.

E. Noise Regressive Model

Following [3], this section reviews the assump-
tions which make the magnetic channel noise anon-
stationary regressive modellike this one:

nk =
̟−1∑

i=0

c
(k)
i ξk−i (33)
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where c(k)
i ∈ R depends on the instantt = kT

and {ξk} are random variables I.I.D.∼ N (0, 1);
according to this hypothesis, the stochastic process
n can be conceived as the output of anon-stationary
̟-taps FIR digital filter excited by white gaussian
noise.

The unknown quantitiesc(k)
i can be found by

matching the correlation coefficients of the two
different noise expressions (15-33) and by solving
the following iterative non-linear system:




R(0)(k) =
∑̟−1

i=0 c(k)2

i

R(1)(k) =
∑̟−1

i=1 c
(k)
i c

(k−1)
i−1

. . . . . .

R(γ)(k) =
∑̟−1

i=γ c
(k)
i c

(k−γ)
i−γ γ ≤ ̟ − 1

(34)

Since the binary sequenceb has a finite lengthN ,
the first̟ − 1 samples of noise sequence can be
expressed as:

nk =
k−1∑

i=0

c
(k)
i ξk−i for k ∈ [1;̟ − 1] (35)

As a consequence, we may re-formulate the system
(34) into the matricial form:

R(b) = CT
(b)C(b) (36)

whereR(b) is the (2̟−1)-diagonal autocorrelation
matrix of n andC(b) is the upper triangular matrix
of coefficients{c(k)

i }:

R(b) = E[nTn] (37)

C(b)(i, i+ j) = c
(i+j)
j j ∈ [0;̟ − 1], i ∈ [1;N ]

C(b)(i, i+ j) = 0 j < 0, j ≥ ̟ (38)

Commonly, the matrix productCT
(b)C(b) is called

the Cholesky decompositionof R(b).

It is remarkable that the noise expression in (33)
is admissible if and only if noise iszero mean.
Under the first-order approximation of noisy read-
back signal, noise is zero-mean (see section III-C).

F. Linear Dependent Noise

The Cholesky decomposition of a square matrix
A is possible if and only ifA is positive definite;

in general, the autocorrelation matrixR is semi-
positive definite.
In other words, for anya = [a1 . . . aN ] ∈ R

N :

aRa = aE[nTn]aT (39)

= E[(anT)(naT)] (40)

= E[(anT)2] ≥ 0 (41)

As a consequence, the only circumstance whereR

can not be factorized as in (36) is when:

∃ a ∈ RN : E[(anT)2] = 0 ⇐⇒ p(anT = 0) = 1
(42)

that is the condition for which noise samples are
linearly dependent.

The properties of autocorrelation matrix can be
usefully considered in two different instances:

• if σe = 0, there exist some particular binary
patterns which imply linear dependence among
noise samples; two examples will be shown.
1) Let

ϑ1 = [bk−λp−2 . . . bk+λf+2] = [0 . . . 0︸ ︷︷ ︸
λp+2

1 . . . 1︸ ︷︷ ︸
λf+3

]

In this case, noise samplesnk andnk+1 can be
written as:
{
nk = akτkḣ

eq
0

nk+1 = akτkḣ
eq
1

=⇒ nk = [ḣeq
0 /ḣ

eq
1 ]nk+1

2) Let

ϑ2 = [bk−λp−2 . . . bk+λf+3] = [0 . . . 0︸ ︷︷ ︸
λp+2

1 0 . . . 0︸ ︷︷ ︸
λf+3

]

so that:




nk = akτkḣ
eq
0 + ak+1τk+1ḣ

eq
−1

nk+1 = akτkḣ
eq
1 + ak+1τk+1ḣ

eq
0

nk+2 = akτkḣ
eq
2 + ak+1τk+1ḣ

eq
1

The aim is to demonstrate that exist(A,B) ∈
R

2 such that:

nk = Ank+1 +Bnk+2 (43)

The unknown quantitiesA,B satisfy the fol-
lowing linear system:

[
ḣeq

1 ḣeq
2

ḣeq
0 ḣeq

1

] [
A
B

]
=

[
ḣeq

0

ḣeq
−1

]
(44)

which is solvable ifḣeq2
1 − ḣ0ḣ

eq
2 6=0.
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As a general rule, it is possible to assert
that, under the first-order approximation, the
stochastic processn is linearly dependent
if and only if it exists a subsetΛ of noise
samples generated by the linear combination
of the same setΩ of random variables: in the
first case,Λ = {nk, nk+1},Ω = {τk}; in the
secondΛ = {nk, nk+1, nk+2},Ω = {τk, τk+1}.
This is possible only if there are within the
whole sequenceb at least two subsequences
containing no transitions respectively of length
ψ1 ≥ λp + 2, ψ2 ≥ λf + 3; consequently, the
probability thatn is linearly dependent rises
with N .

• As a consequence of the former rule, ifσe 6=0
the matrixR is positive definite, because the
presence of equalizedAWG noise makes it
impossible to find a subset of noise samples
generated by the same set of random variables.

So, it has been mathematically demonstrated under
which channel conditions (σe 6= 0) the regressive
noise model (33) is well-founded.
Remarkably enough, the former considerations are
valid even if the read-back signal is not equalized.

G. Non-Markovianity of Noise

Referring to equation (33), the iterative substitu-
tion:

ξk−i −→ 1

c
(k−i)
0

(
nk−i −

̟−1∑

j=1

c
(k−i)
j ξk−j−i

)
∀i > 0

(45)
results in:

nk = c
(k)
0 ξk +

∞∑

i=1

a
(k)
i nk−i (46)

where a(k)
i are real time-dependent coefficients; if

the noise sequence length isN , the last equation
becomes:

nk = c
(k)
0 ξk +

k−1∑

i=1

a
(k)
i nk−i k ∈ [1;N ] (47)

Noise samplenk results to be the sum of the linear
combination of all previous noise samples and of
the termc(k)

0 ξk, which is uncorrelatedwith them:

E[ξknk−i] = 0 ∀k, i ≥ 1 (48)

Since{ξk, nk−1, nk−2...} are all zero-mean normally
distributed random variables, it follows that they are
mutually independent and:

E(ξk|nk−i) = E(ξk) = 0 (49)

By definition of linear stochastic model, the terms
a

(k)
i are theregression coefficientsof the random

variablenk on:

n1
k−1 = [nk−1, . . . , n1] (50)

and then:

E[nk|n1
k−1] =

k−1∑

i=1

a
(k)
i nk−i (51)

Moreover, the variance ofnk assuming to know the
value ofnk−1, . . . , n1 is the variance ofc(k)

0 ξk:

V ar[nk|n1
k−1] = V ar[c

(k)
0 ξk] = c(k)2

0 (52)

Given thatξk ∼ N (0, 1):

p(nk|n1
k−1,b) = N

( k−1∑

i=1

a
(k)
i nk−i, c

(k)2

0

)
(53)

The last equation stresses the fact that the stored
binary patternb is known.

H. Maximum Likelihood Algorithm

It is easy to show [5] that the expression of the
maximum-likelihood binary sequence is equivalent
to:

b̃ = argmax
b

N∏

k=1

p(nk|n1
k−1,S

b

k−1 ∪Sb

k ) (54)

= argmax
b

N∏

k=1

N
( k−1∑

i=1

a
(k)
i nk−i, c

(k)2

0

)
(55)

where the sequenceSb

k :

Sb

k = [bk−λp
. . . bk+λf

] (56)

can be considered thestateof the Viterbi trellis.
The log-likelihood metricMb

k associated to the state
transitionS

(b)
k−1 → S

(b)
k is:

Mb

k = ln
[
c
(k)
0

]
+
ξ

2

k

2
(57)

where c(k)
0 and ξk

4 are determined inevery state
and ineverytemporal step of the trellis by the joint

4ξk is a random variable,ξk is its realization.
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solution of the non-linear system (34) and of the
equation:

ξk =
1

c
(k)
0

(nk −
̟−1∑

i=1

c
(k)
i ξk−i) (58)

In order to solve the aforementioned equations,
it is necessary to keep in memory the value of
the following 0.5̟2 + 1.5̟ − 1 coefficients in
correspondence of every node of the trellis:

{
ξk−i, i ∈ [1;̟ − 1]

}
;

{
ck−γ
i−γ , γ ∈ [0;̟ − 1] i ∈ [γ;̟ − 1];

}
(59)

The equation (58) can be interpreted as the whiten-
ing of the noise sequence in correspondence of
every trellis path through an IIR digital filter, which
is the exact inverse of the FIR filter generating the
noise sequence.

I. Detector Calibration

In correspondence of every Viterbi trellis state,
the knowledge of the noise samplenk is necessary
(see eq.58) and, under the first-order approximation,
the following expression is valid:

nk = rk − E[rk|αk] (60)

whereE[rk|αk] can be ergodically estimated as:

Ê[rk|αk] =
1

Nαlev

∑

i: αlev
i ≡ᾱlev

ri αlev
k = ᾱlev, ∀ k

(61)
where:

αlev
k = [bk−Ic−1 bk−Ic

. . . bk+Ia
] (62)

and Ia, Ic are respectively the pre- and post-cursor
of the dibit responsep.
The expected value of the former estimator can be
expressed as:

E[nk] = E[rk] − E
[ 1

Nᾱlev

∑

i:αlev
i =ᾱlev

rcal
i

]

≡ 0 ⇐⇒ Ia ≥ λf , Ic ≥ λp (63)

It is important to underline that the last equality
holds for any degree of approximation order of
noise because, ifIa ≥ λf , Ic ≥ λp, the samples
rk, {ri, i : αlev

i = ᾱlev} can all be considered to
be realizations of the same random variable.
Hence, the estimator (60) is unbiasedonly under

the first order approximation (see section III-C).
It is valuable that, even ifσj were so high to make
unacceptable the first order approximation, the
estimated noise samples would remainzero mean.

Even the autocorrelation contributes
R(γ|β(γ)) ∀k, that are used to solve the iterative
non-linear system (34) in each node of the trellis,
can be estimated in the ergodic way:

R̂(γ|β(γ)) =
1

Nβ(γ)

∑

k:β
(γ)
k

≡β(γ)

n̂kn̂k−γ (64)

whereNβ(γ) is the number of recurrences of the
patternβ(γ) within the entire sequenceb and the
termsn̂k are computed through equations (60,61).

It is important to stress that both the estimates
(60) and (64) are computedoff-line for every value
of the patternsα andβ.

J. Complexity

If the estimator suggested in (61) is used, then
the knowledge of the pattern:

α′

k = [bk−max(λp,Ic)−1 . . . bk+max(λf ,Ia)] (65)

is necessary to estimate the noise samplenk in
correspondence of every state transition of Viterbi
trellis; so, let us define the newextendedstate,
which takes into account also the ISI part:

S′

k = [bk−max(λp,Ic) . . . bk+max(λf ,Ia)] (66)

Hence, the number of trellis states of the regressive
detector becomes:

NREG
st = 2max(λp,Ic)+max(λf ,Ia)+1 (67)

∼= 2ISI (68)

where ISI = Ia + Ic + 1, because typicallyIc >
λp, Ia ≈ λf .

K. Numerical Instability

It has been demonstrated that, given the binary
patternbi, which is associated with thei-th trellis
path, the iterative resolution of the non-linear
system (34) is equivalent to the on-the-fly Cholesky
decomposition of noise autocorrelation matrix
R(bi).

Unfortunately, each element ofR(bi) can only be
statistically estimated as in (64), and the probability
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that the matrixR̂(b) be non-definite (even ifσe 6=
0) rises with the decreasing ofNβ(γ) , Nαlev ; in this

case, the Cholesky decomposition ofR̂(bi) would
not be allowed.
Since the following three statements are valid:

• a matrix is positive definite if and only if all
its eigenvalues are positive;

• supposing that the eigenvalues of the square
matrix R̂(bi) are {ν(i)

1 , . . . , ν
(i)
N }, the eigenval-

ues ofR̂(bi)+ωI are{ν(i)
1 + ω, . . . , ν

(i)
N + ω};

• the principal diagonal of the matricesR(bi),∀i
are constituted by the termsR(0|β(0)), while
changingβ(0);

then, if the minimum eigenvalueνmin is negative, it
is reasonable to carry out the replacement:

R̂(0|β(0)) −→ R̂(0|β(0)) + |νmin| (69)

νmin = min
r,s

ν(s)
r (70)

after the detector calibration, in order to guarantee
the numerical stability of the non-linear system
along every trellis path.

In the absence of the equalizator, the terms
R(0|β(0)) are the only ones depending on theAWGN
varianceσ2

e (see eq.28), so the equation (69) can be
interpreted as a fictitious increase of the parameter
mix.

Remarkably, the physical explanation of this ma-
thematical trick is in accordance with the remarks
in section (III-F).

IV. COMPARISON BETWEEN THE REGRESSIVE

AND THE AR APPROACH

As already mentioned before, the great advantage
of regressive approach is expected to be the low
number of Viterbi trellis states, which exponentially
increases with the intersymbol interference length
only. In fact, the number of predictors doesnot
depend on the number of states and the information
on all of the past noise samples is contained in the
stored IIR coefficients (see eq.59).

In the AR-based trellis, the number of predictors
L′ determines the number of states which grows
exponentially with the sumL′ + ISI.

It stands to reason that the two different methods
tend to be closely related when the numberL′ of
AR predictors approaches to the effective channel
memory lengthL. Hence, the regressive detector
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Fig. 1: SFR vs. SNR

performances converge faster to the optimum
compared to the AR detector when the trellis state
number rises. However, it is worth anticipating here
that 2L′+ISI states may not be strictly necessary
to achieve most of the performance gain of the
AR detector and several variations of the canonical
approach are available. For example, the number
of predictors can be left equal to ISI without
increasing the number of states; despite suboptimal,
this approach generally provides most of the gain.
Other combinations in between this approach and
the canonical one can be easily envisioned.

Both detectors have been simulated in a realistic
perpendicular channel model, directly implementing
the jittered channel represented by equation (1)
(see Section II), withmix = 0.2. For both the
implementations 4, 8 and 16 states are compared.
The AR detector always adopts the maximum
number of predictors (1, 2 and 3 for 4, 8, and 16
states, respectively). The user bit density (defined
as the product betweenCBD and the code rate) is 2
which approximately leads to an ISI of 2-3 samples
after a Generalized Partial Response equalization.
Sectors with 512 bytes user data are protected with
a GF (210) Reed-Solomon code with correction
power t = 20 symbols. The figure 1 demonstrates
that the 4-states regressive detector performances
are about 0.3 dB better than the 4-states AR
detector in terms of SFR (Sector Failure Rate) vs.
SNR. When the number of states rises, the two
methods tend to be equivalent because the number
of predictorsL′ of the AR detector approach to the
effective channel memory lengthL.
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The authors believe that the results presented in
[3] are affected by the channel model choice. In fact,
the detectors are compared with a channel model
developed according to the first order approxima-
tion, which matches exactly the assumptions of the
regressive detector. For this reason, the performance
gains in favour of the regressive detector result to
be exaggerated. Actually, both regressive and AR
channel assumptions are an approximation of the
channel. The approximations become closer each
other when the number of states grows. Neverthe-
less, the present work result confirms that, given a
limited number of states, the regressive model cap-
tures more accurately the noise characteristics and
makes the regressive detector a powerful detection
method. When the detection performances are to be
maximized both approaches seems to be comparable
and other considerations arise. The calibration of the
regressive MLSD (MaximumLikelihood Sequence
Detection) algorithm is very simple because it im-
plies the estimation of ISI levels and data-dependent
correlation matrices. During the calibration of the
AR detector, besides the measurement of ISI (Inter
Simbol Interference) levels, it is necessary to es-
timate and - above all - invert2̟−1 the square
L′- dimensional matrices. However, the Yule-Walker
equations can be solved easily with a recursive
and cheaper LMS (LeastMean Square) approach.
Instead, the regressive MLSD algorithm is compu-
tationally more onerous (and numerically critical)
than the AR one: the first involves the resolution of
a non-linear system (see eq.34) with̟ unknown
quantities inevery node of the trellis, while the
second one implies a simple data-dependent FIR
filtering of the noise sequence.

V. CONCLUSION

The noise regressive model and the corresponding
detector presented in [3] have been reviewed and
extended to larger correlation lengths. The channel
conditions under which it is valid have been inferred
and the numerical problems of this approach have
been considered, too. The regressive approach has
been compared against the well-known AR detector.
The results confirmed that the regressive model is
a powerful approach especially when the number
of states is limited. However, when detection is to
be performed at its best, the two approaches seem
to be comparable. This conclusion, which results

to be not perfectly in line with the one contained
in the original work [3], is justified by the adoption
of a more realistic channel model which makes it
evident that the assumptions of the two approaches
are different approximations of the actual channel.

As reviewers suggest, it would be interesting to
compare the regressive detector performance with
those obtained by using reduced states AR-detectors
which often perform very close to the optimum
one with an appreciable lower complexity [11]. An
interesting line of development could be the applica-
tion of regressive detectors to the multidimensional
front-end presented in [9]. Furthermore, the detector
could be extended in order to include nonlinear
transition shift noise [10].
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