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Abstract

We present a general game-theoretical framework for the resource allocation problem in the down-

link scenario of distributed wireless small-cell networks, where multiple access points (APs) or small

base stations send independent coded network information to multiple mobile terminals (MTs) through

orthogonal frequency division multiplexing (OFDM) channels. In such a game-theoretic study, the central

question is whether a Nash equilibrium (NE) exists, and if so, whether the network operates efficiently

at the NE. For independent continuous fading channels, we prove that the probability of a unique

NE existing in the game is equal to1. We show that this resource allocation problem can be studied

as a potential game, and hence efficiently solved. We discussthe convergence of waterfilling based

best-response algorithm. Finally, numerical results are provided to investigate the inefficiency of NE.

I. I NTRODUCTION

Recently, there has been an increasing interest for small cell networks, where people can

access Internet over many different APs or small base stations (also known as out-door femto-

cells or small cells [1, 2]). Typically, in such a wireless network, several femto-cells are installed

out-door on a given backbone network (with heterogenous links as fiber, ADSL, power line) to

provide signal coverage in dense environments. The generalidea is to exploit the heterogeneous

wired infrastructure without any new cabling and provide wireless high data rate to the users
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through self-organized mechanisms. Unfortunately, if users are connected to a single out-door

femto-cell, they may suffer from low throughput from time totime due to the limited-backhaul

capacity (some wireless high speed femto-cells access the Internet through low capacity DSL or

power line links, e.g., 1Mbps), despite the presence of a high speed wireless link. As a result,

users need to access to different APs in the nearby femto-cells in order to aggregate the sum

capacity of the backhaul links. An interesting concept is toconsider the nearby femto-cells as

a virtual femto-cell group, whose backhaul capacity is the sum of the access capacities of all

the nearby femto-cell group (as shown in Fig. 1). The issue ofload balancing [3] in the wired

network (and how the different packets are split with respect to the backhaul capacity from a

main decentralized scheduler), although important, is notdealt with in this contribution and we

will suppose that perfect load balancing holds.

In this paper, we focus on the resource allocation problem for the downlink scenario (from

femto-cell group to MTs) using OFDM air-interface [4] over anumber of dedicated sub-channels.

We assume that all these femto-cells get independent independent packets (network coding is

applied at the source) from the Internet via their backhauls, and send them physically to each

MT in a distributed manner. Usually, in this situation each femto-cell needs to decide how

to distribute the total available transmit power overN downlink sub-channels (sub-carriers or

clusters of sub-carriers), i.e., should it allocate all itspower to a single sub-channel, spread the

power over all the sub-channels, or choose some subset of sub-channels on which to transmit?

Traditionally, this resource allocation problem is considered as a global optimization problem.

It is well known that the problem of maximizing a single user’s sum-rate (corresponding to

the Shannon transmission rate [5]) over all the sub-channels is a classic convex optimization

problem [6], whose solution is “waterfilling” [7, 8, 9]. The multi-user version of this problem

is, a non-convex optimization which is generally difficult to find the exact solution, since it

may have several local optimal points [10, 11, 12]. However,to solve the multi-user problem,

it usually requires a central computing resource (a scheduler with comprehensive knowledge of

the channel state information (CSI)) to globally manage the system resources. This process is

centralized, it involves feedback and overhead communication whose load scales linearly with

the number of transmitters and receivers in the network.

It is certainly possible to improve the useful data transmissions by reducing transmissions

of insignificant or unnecessary feedback information. In this direction, a selective multi-user
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diversity algorithm has been introduced in [13]. The key idea is to find a suitable trade-off

between the network performance and the feedback load. Nevertheless, this partial feedback

approach still has its self-limitation in network scaling problems. As wireless networks are

becoming more and more dense, the global optimization approach will be more and more difficult

to meet the needs of future wireless communication development.

Within the recent ten years, increased research interest has been given to self-organizing wire-

less networks in which nodes allocate resources in a decentralized manner [1]. Non-cooperative

games theory [14], borrowed from many economic applications [15] provides an alternative

solution by considering every femto-cell as a selfish playerwho “plays” the game by rationally

choosing its transmit power levels. In this respect, it is important to study the NE [16] (the

solution concept of non-cooperative games) because it represents a predictable outcome for a

self-organizing network.

It is worth to mention that a special case of this game has beenstudied in [10], where the

authors show an infinite number of NE under their specific channel gain assumptions. However,

up to now, the characterization of NE in the wireless settingis still not clear as it depends on the

channel fading statics and the number of players. The goal ofthis paper is therefore to address

this fundamental problem as well as the convergence issue.

The paper is organized in the following form: In section II, we introduce the problem for-

mulation. In section III, we study the existence and uniqueness of NE and we characterize the

NE set. In section IV, we study the problem as a potential game. Finally, numerical results are

provided in section V followed by conclusions in section VI.

II. SYSTEM MODEL

A. Multi-user OFDM model

We consider an OFDM downlink scenario withM non-cooperative APs simultaneously send-

ing information toN MTs over N sub-channels (as shown in Fig. 2). We assume that each

sub-channel is pre-assigned to a different MT by a scheduler, i.e., each MT receives signals

only on the assigned sub-channel. Without loss of generality, throughout this paper we assign

sub-channeln to MT n, for n = 1, . . . , N . This implies that both MT set and sub-channel set

share the same index in our context.
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Furthermore, we assume that the sub-channels are block fading, i.e. the channel fading coeffi-

cients are constant during the transmission of a codewords or block. Within a given transmission

block, letG ∈ R
M×N
++ be the channel gain matrix whose(m,n) entry isgm,n, the channel gain

of the link from AP m to MT n on the pre-assigned sub-channeln. We assume thatG is a

randomM × N matrix with i.i.d. (due to independent fading) entries. We further assume that

the distribution function of each positive entrygm,n is a continuousfunction.

By assuming that the MTs use low complexity single-user decoders [7], we can write the

signal-to-interference-plus-noise-ratio (SINR) of the signal from APm received at MTn as

γm,n =
gm,npm,n

σ2 +
∑M

j=1,j 6=m gj,npj,n

wherepm,n is the power transmitted from APm on sub-channeln, σ2 is the variance of the

white Gaussian noise. For APm, write the maximum achievable sum-rate as [7]

Rm =
N∑

n=1

log (1 + γm,n) , ∀m (1)

and the power constraint as

N∑

n=1

pm,n ≤ Pmax
m , ∀m (2)

wherePmax
m is maximum transmit power of APm andPmax

m > 0, ∀m.

B. As a non-cooperative game

Here, we introduce a non-cooperative strategic game for this OFDM model. Intuitively, the

natural goal of each APm is to maximize the transmission rateRm (1) by choosing its

transmit power vectorpm , [pm,1 . . . pm,N ]T, subject to its power constraint (2). Denote by

p =
[
pT

1 , . . . ,pT
M

]T
the outcome of the game in terms of transmit power levels of all M APs

on N sub-channels. We can completely describe this non-cooperative resource allocation game

as

G ,
[
M, {Pm}m∈M , {um}m∈M

]

where the elements of the game are

• Player set:M = {1, . . . ,M};
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• Strategy set:{P1, . . . ,PM}, where the strategy of playerm is

Pm =

{

pm : pm,n ≥ 0,∀n and
N∑

n=1

pm,n ≤ Pmax
m

}

;

• Utility or payoff function set:{u1, . . . , uM}, with

um (pm,p−m) =
N∑

n=1

log

(

1 +
gm,npm,n

σ2 +
∑

j 6=m gj,npj,n

)

= Rm

wherep−m denotes the power vector of length(M −1)N consisting of elements ofp other

than themth element, i.e.,

p−m = [pT
1 , . . . ,pT

m−1,p
T
m+1, . . . ,p

T
M ]T

III. C HARACTERIZATION OF NASH EQUILIBRIUM

A. Definition of Nash equilibrium

In such a non-cooperative game setting, each playerm acts selfishly, aiming to maximize its

own payoff, given other players’ strategies and regardlessof the impact of its strategy may have

on other players and thus on the overall performance. The process of such selfish behaviors

usually results inNash equilibrium, a common solution concept for non-cooperative games [16].

Definition 3.1: A power strategy profilep⋆ is a Nash equilibrium if for everym ∈ M,

um

(
p⋆

m,p⋆
−m

)
≥ um

(
pm,p⋆

−m

)
(3)

for all pm ∈ Pm.

From above, it is clear that a NE simply represents a particular “steady” state of a system,

in the sense that, once reached, no player has any motivationto unilaterally deviate from it.

In many cases, the NE represents the result of learning and evolution of all the participants.

Therefore, it becomes fundamentally important to predict and characterize such point(s) from

the system design perspective of wireless networks. In the rest of the paper, we will focus on

charactering such point(s). The following questions will be addressed one by one:

• Does a NE exist in our game?

• Is the NE unique or there exist multiple NE points?

• How to reach a NE if it exists?

• How does the system perform at NE?
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B. Existence and uniqueness of Nash equilibrium

It is known that in general NE point does not necessarily exist. Therefore, we first investigate

the existence of NE in our game. We introduce the following theorem:

Theorem 3.2: A Nash equilibrium exists in the OFDM gameG.

Proof: SincePm is convex, closed, and bounded for eachm; um (pm,p−m) is continuous

in both pm andp−m; andum (pm,p−m) is concave inpm for any setp−m, at least one Nash

equilibrium point exists forG [17], [15].

Once existence is established, it is natural to consider thecharacterization of the equilibrium

set. The uniqueness of an equilibrium is quite a desirable property, if we wish to predict what will

be the network behavior. But unfortunately many game problems have more than one equilibrium

point [15]. As an example of system with infinite NE we could consider a special instance of our

game, namely thesymmetric waterfilling game. This case is studied in [10] and it is characterized

by equal cross-talk channel coefficients. Then, in general,our gameG does not have a unique

equilibrium. Nevertheless, under the assumption ofi.i.d. continuous entries inG, we will show

that the probability of having a unique Nash equilibrium is equal to1.

For any playerm, given all other players’ strategy profilep−m, the best-responsepower

strategypm can be found by solving the following maximization problem,

max
pm

um (pm,p−m)

s.t.
N∑

n=1

pm,n ≤ Pmax
m (4)

pm,n ≥ 0, ∀n

which is a convex optimization problem, since the objectivefunctionum is concave inpm and the

constraint set is convex. Therefore, the Karush-Kuhn-Tucker (KKT) conditions for optimization

are sufficient and necessary for the optimality [6]. The KKT conditions are derived from the

Lagrangian for each playerm,

Lm (p, λ, ν) =
N∑

n=1

log

(

1 +
gm,npm,n

σ2 +
∑

j 6=m gj,npj,n

)

− λm

(
N∑

n=1

pm,n − Pmax
m

)

+
N∑

n=1

νm,npm,n
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and are given by

gm,n

σ2 +
∑M

j=1 gj,npj,n

− λm + νm,n = 0, ∀n (5)

λm

(
N∑

n=1

pm,n − Pmax
m

)

= 0 (6)

νm,npm,n = 0, ∀n (7)

whereλm ≥ 0, νm,n ≥ 0, ∀m ∀n are dual variables associated with the power constraint and

transmit power positivity, respectively. The solution to (5)-(7) is known as waterfilling [7]

pm,n =

(

1

λm

−
σ2 +

∑

j 6=m gj,npj,n

gm,n

)+

, ∀n (8)

where(x)+ , max{0, x} andλm satisfies

N∑

n=1

(

1

λm

−
σ2 +

∑

j 6=m gj,npj,n

gm,n

)+

= Pmax
m . (9)

Before analyzing the equilibrium set, we derive the following theorem:

Theorem 3.3: A power strategy profile{p⋆
1, . . . ,p

⋆
M} is a Nash equilibrium of the gameG if

and only if each player’s powerp⋆
m is the single-player waterfilling result(8) while treating

other players’ signals as noise. The corresponding necessary and sufficient conditions are:

gm,n

σ2 +
∑M

j=1 gj,npj,n

− λm + νm,n = 0, ∀m ∀n (10)

λm

(
N∑

n=1

pm,n − Pmax
m

)

= 0, ∀m (11)

νm,npm,n = 0, ∀m ∀n. (12)

The proof can be found in Appendix A.

From (10), it is easy to findλm > 0, sinceνm,n ≥ 0, gm,n > 0, ∀m ∀n. From (11), we have
N∑

n=1

pm,n = Pmax
m , ∀m (13)

This equation implies that, at the NE, all APs must dedicate their maximum power. However,

it is still difficult to find an analytical solution for (10)-(12), since the system consisting of (8)

and (9) is nonlinear. To simplify this problem we considerlinear equations instead of nonlinear

ones. The following lemma provides a key step in that direction.
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Lemma 3.4: For any realization of channel matrixG, there exist unique values of the Lagrange

dual variablesλ and ν for any Nash equilibrium of the gameG. Furthermore, there is a unique

vectors = [s1, . . . , sn]T such that any vectorp corresponding to a Nash equilibrium satisfies

M∑

m=1

gm,npm,n , sn, ∀n (14)

The proof can be found in Appendix B.

Now, let Z be the following(M + N) × MN matrix:

Z =













IM IM · · · IM

gT
1 0T

M · · · 0T
M

0T
M gT

2 · · · 0T
M

...
...

. . .
...

0T
M 0T

M · · · gT
N













(M+N)×MN

wheregn is thenth column ofG, IM is theM ×M identity matrix, and0M is the zero vector

of lengthM . Let c be the following vector of lengthM + N

c = [Pmax
1 Pmax

2 . . . Pmax
m s1 s2 . . . sN ]T

Then, (13) and (14) can be written in the form oflinear matrix equation

Zp = c (15)

Define the following sets

X , {(m,n) : νm,n = 0}

N , {n : ∃m such that(m,n) ∈ X}

and denote by|X | and |N | their cardinalities. From equation (12), if an index(m,n) /∈ X we

must havepm,n = 0. Without loss of generality, we assume thatN = {1, . . . , Ñ} for Ñ ≤ N .

Let Z̃ be the(M + Ñ)×MÑ matrix formed from the firstM + Ñ rows and firstMÑ columns

of Z, p̃ is formed from the firstMÑ elements ofp, and c̃ is formed from the firstM + Ñ

elements ofc. Then, any NE solution must satisfy

Z̃p̃ = c̃. (16)
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Let Ẑ be the(M + Ñ) × |X | matrix formed from the columns of̃Z that correspond to the

elements ofX . Similarly, let p̂ be the vector of length|X | with entriespm,n such that(m,n) ∈ X

(same order as they were inp). Then any NE solution must satisfy

Ẑp̂ = c̃. (17)

Lemma 3.5: For any realization of a randomM × N channel gain matrixG with i.i.d.

continuous entries, ifMÑ > M + Ñ , the probability that|X | ≤ M + Ñ is equal to1.

Lemma 3.6:

1) If MÑ > M + Ñ and |X | ≤ M + Ñ , the probability thatrank(Ẑ) = |X | is equal to1.

2) If MÑ ≤ M + Ñ , the probability thatrank(Z̃) = MÑ is equal to1.

The proofs of Lemma 3.5 and 3.6 can be found in Appendix C and D,respectively.

Based on the results from Lemma 3.4 to Lemma 3.6, we derive the following theorem.

Theorem 3.7: For any realization of a randomM × N channel gain matrixG with i.i.d.

continuous entries, the probability that a unique Nash equilibrium exists in the gameG is equal

to 1.

The proof can be found in Appendix E.

Thus, from Theorem 3.2 and 3.7, we have established the existence and uniqueness of NE in

our gameG.

IV. CONVERGENCE TO THENASH EQUILIBRIUM

Equilibrium is meaningful in practice only if it is reachable from non-equilibria states. In

fact, there is no reason to expect a system to operate initially at equilibrium. The “convergence

to equilibrium” is in general a much harder problem which is usually related to the analy-

sis of synchronous or asynchronous update mechanisms (see some references for interference

channels [20, 21]).
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A. Potential game approaches

Fortunately, our gameG can be studied as a potential game1. Potential games are known to have

nice properties for the convergence of the best-response orgreedy algorithms to the equilibrium.

All the potential games admit apotential function. This potential function is a unique global

function that all the players optimize when they optimize their own utility functions. Thus, the set

of pure Nash equilibria can be found by simply locating the local optima of the potential function.

Such games have received increasing attention recently in wireless networks [24, 25, 26], since

the existence of potential function enables the design of fully distributed algorithms for resource

allocation problems.

In fact, there are various notions of potential games (with different definitions related to slightly

different properties for the existence and convergence of equilibrium), such as exact potential,

weighted potential, ordinal potential, generalized ordinal potential, pseudo potential, etc. Here

we only give the definition of the exact potential games, which is closely related to our game.

Definition 4.1: A strategic gameG is called an exact potential game if there exists a function

v : P 7→ R satisfying

v (pm,p−m) − v (qm,p−m) = um (pm,p−m) − um (qm,p−m) , ∀m (18)

for all (pm,p−m) , (qm,p−m) ∈ P. The functionv is called as exact potential of the game.

Obviously, equation (18) implies that the NE of the originalgameG must coincide with the

NE of the potential game, which is defined as a new game taking potential functionv as utility

functions for all the players. Therefore, we can transform the non-cooperative strategic gameG

into a potential game, if we can find a potential function thatquantifies the difference in the

utility function due to unilaterally deviating each player, as indicated in (18).

Taking inspiration from the result derived in the single channel case [25], it is not difficult

to see that in our multi-channel case,G is an exact potential game with the following potential

1The notation of potential games was firstly used for games in strategic formby Rosenthal (1973) [19], and later generalized

and summarized by Monderer (1996) [22].
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function v⋆, i.e.,

v⋆(pm,p−m) =
N∑

n=1

log

(

σ2 +
M∑

m=1

gm,npm,n

)

=
N∑

n=1

log









gm,npm,n +

(

σ2 +
∑

j 6=m

gj,npj,n

)

︸ ︷︷ ︸

aggregate interference + noise









(19)

Denote byζm,n the term
(

σ2 +
∑

j 6=m gj,npj,n

)

, which represents the aggregate interference plus

noise to userm’s signal on sub-channeln. Now, the potential functionv⋆ is a common utility

for all players in the potential game.

In order to find the single-user best-response in the potential game, one needs to solve the

following maximization problem:

max
pm

v⋆(pm,p−m) ⇔ max
pm

N∑

n=1

log (ζm,n + gm,npm,n)

s.t.

N∑

n=1

pm,n ≤ Pmax
m (20)

pm,n ≥ 0, ∀n

Only when the private channel gaingm = {gm,1, . . . , gm,N} and the aggregate interference plus

noise ζm = {ζm,1, . . . , ζm,N} are both known to playerm, (20) can be solved as a convex

optimization. It is easy to verify that this single-user best-response is the same waterfilling

solution expressed in (8), due to the property of potential function.

B. Distributed algorithm and convergence property

Note also that if each AP has complete knowledge of the channel state information, i.e.,

the matrixG (as considered in Section II), the uniqueness of the Nash equilibrium guaranties

that each AP can determine independently in a decentralizedway the power allocation at the

Nash equilibrium. In order to acquire information about thewhole channel matrixG is typically

necessary a feedback channel from MSs to APs to transmit the channel estimations. In fact, in

this case each AP can perform locally the best-response algorithm described in the following

section and based on repeated maximization of problem (20) by starting from a random point
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p−m ∈
∏

j 6=m P . However, the structure of the problem (20) suggests an alternative approach to

reduce eventually the signalling on the feedback channel. In fact, the repeated optimization of

problem (20) could be performed in a distributed way feedingback at the APs only the private

channel gaingm and the aggregate interference plus noiseζm. Nevertheless, note that such a

distributed implementation of the algorithm would lead to atemporary phase where the APs

are not transmitting at an equilibrium point. In our numerical results we will ignore the cost of

feedback, and we focus on analyzing the theoretic upper-bound.

From the above discussion, we introduce a simple algorithm based on the iterative waterfill-

ing [28] that players can follow to reach the NE

Algorithm 1 DPIWF algorithm

initialize t = 0, p
(0)
m,n = 0, ∀m ∀n

repeat

t = t + 1

for m = 1 to M do

for n = 1 to N do

ζ
(t)
m,n = σ2 +

∑

j 6=m

gj,np
(t)
j,n

end for
[

p
(t+1)
m,1 , . . . , p

(t+1)
m,N

]

= arg max
pm≥0

∑

n pm,n≤P̄m

∑

n

log
(

ζ
(t)
m,n + gm,npm,n

)

end for

until convergence

In this algorithm, we assume that the same game could be myopically played repeatedly:

in each round, every myopic player (player has no memory of past game-rounds) chooses its

best-response according to the single-player waterfillingthat depends on the current state of the

game. The following theorem shows the convergence and optimality of the algorithm.

Theorem 4.2: The DPIWF algorithm converges to a Nash equilibrium of the OFDM non-

cooperative gameG.

The proof can be found in Appendix F.

Although the final convergence (in power allocation) of DPIWFis proved, one may wonder
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whether the convergence behavior of theactual total network rate(the objective function in

(21)) coincide with the convergence behavior of the corresponding potential function (19). We

will discuss this issue in our simulation part.

A more general discussion about the convergence propertiesof potential games can be found

in [22], where it shows that every bounded potential game2 has theapproximate finite improve-

ment property(AFIP), i.e., for everyǫ > 0, every ǫ-improvement path is finite. Then, it is

obvious that every such finite improvement path of the exact potential games terminates in an

ǫ-equilibrium3 point. In other words, thesequential best-response(players move in turn and

always choose a best-response) converges to theǫ-equilibrium independent of the initial point.

Note that this is a very flexible condition for the convergence, sinceorder of playing can be

deterministic or random and need not to be synchronized.It is one of the most interesting

properties of the potential games, especially in order to distributively find the equilibrium in

self-organizing systems.

It is not difficult to find that thesimultaneous best-response(at each iteration, all the players

choose their best-responses simultaneously) does not necessarily converges, due to the “ping-

pong” effect generated by myopic players. However, [23] hasshown that for infinite pseudo-

potential games (a general case of exact potential games) with convex strategy space and single-

valued best-response4, the sequence of simultaneous best-response (reminiscentof fictitious play)

also converges to the equilibrium.

It is interesting to note that for many practical systems with finite transmit power states,

the similar results still hold for the convergence of the sequential best-response. The only

difference is that, in the finite case, the existence of exactpotential function implies thefinite

improvement property(FIP), and therefore, the sequential best-response converges to the exact

Nash equilibrium (instead ofǫ-equilibrium).

V. NUMERICAL EVALUATION

In this part, numerical results are provided to validate ourtheoretical claims. We consider

frequency-selective fading channels with channel matrixG of sizeM ×N , whereM is the total

2A game is called a bounded game if the payoff functions are bounded.

3An ǫ-equilibrium is a strategy profile that approximately satisfies the condition of Nash equilibrium.

4Games with strictly multi-concave potential (concave in each players’ unilateral deviation) have single-valued best-response
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number of transmitters (players) andN is the total number of receivers. We assume the Rayleigh

fading channel gaingm,n are i.i.d. among players and for different sub-channels. The maximum

power constraint for each playerm is asummed to be identical and normalized asP̄m = 1.

In Fig. 3, we show the convergence behaviors of potential function and the actual total network

rate (we will use the short term “actual rate”) by using the proposed DPIWF algorithm for a

random channel realization. We set the number of transmitters to M = 10 and the number of

receivers toN = 10. As expected, in both Fig. 3a and Fig. 3b the potential function converges

rapidly (at the4th iteration). In Fig. 3a, the actual rate converges slightly slower (at the6th

iteration) and maintains the monotonically increasing slope. However, in Fig. 3b, the actual rate

finally converges, but unfortunately it neither monotonically increases nor rapidly converges (at

the 34th iteration) comparing to the convergence speed of its potential function. Note that we

use this example in order to show readers that a “defective” convergence (for the actual rate)

may happen during the iteration steps of DPIWF algorithm, whereas (we will show immediately

that) the actual rate converges “ideally” in most cases for arandom channel gain matrix with

i.i.d. Gaussian entries.

In order to measure the performance efficiency of distributed networks operating at the unique

NE, we provide here the optimal power allocation strategy incentralized approaches as a

target upper-bound for the total network rate (which is the transmit sum-rate of all players

in the network). We will ignore the performance loss due to the necessary uplink and downlink

signalling transmission. The total network rate maximization problem can be formulated as

max
p

M∑

m=1

um (p)

s.t.
∑

n

pm,n ≤ P̄m, ∀m (21)

pm,n ≥ 0, ∀m ∀n

which unfortunately is a difficult problem, since the objective function is non-convexin p.

However, a relaxation of this optimization problem (see in [12]) can be considered as a geometric

programming problem [27], therefore, can be transformed into a convex optimization problem.

A low complexity algorithm was proposed in [12] to solve the dual problem by updating

dual variables through a gradient descent. Note that the algorithm always converges, but may

converges to a local maximum point in a few cases. We will use this algorithm in our simulations.
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In the following part, we will address two main practical questions through numerical results:

1) How does the network performance behave at the unique NE (the decentralized optimality)

in comparison to the global optimal solution (the centralized optimality)? More precisely,

we are interested in comparing theaveragetotal network rate instead of theinstantaneous

total network rate, i.e.̄u(M,N) is the average total network rate for aM transmitters and

N receivers system,

ū(M,N) = EG

[
M∑

m=1

N∑

n=1

log

(

1 +
pm,ngm,n

σ2 +
∑

j 6=m pj,ngj,n

)]

2) What about the convergence behavior for the actual total network rate when using DPIWF

algorithm? Does it converge rapidly (as in Fig. 3a) for most cases?

Let’s consider the first question. In Fig. 4, we compare the average total network rate of both

decentralizedand centralizednetworks for two different channel noise levelsσ2 = 0.1 and 1,

respectively. Network parameters are selected as follows:the number of transmittersM ∈ [1, 25],

the number of receiversN takes several representative values, such as5, 10 and 15. The plots

are obtained through Monte-Carlo simulations over104 realizations for the channel gain matrix

G. First, we can see in both figures Fig. 4a and Fig. 4b, the centralized optimality always

outperforms the decentralized optimality. Second, for a fixed number of transmittersN , when

we increase the number of receiversM , the performance loss of decentralized systems (compare

to centralized systems) becomes more and more apparent. In fact, this phenomenon can be

intuitively understood as follows:when there are a great number ofselfishplayers, the hostile

competition turns the multi-user communication system into an interference-limited environment,

where interference begins to dominate the performance efficiency.

Moreover, we note that in Fig. 4 the average performance of centralized systems is an increas-

ing function ofM (for a fixed value ofN ), and the average performance of decentralized systems

corresponding to NE show an increasing slope before diminishing and reaching convergence. For

the typical values ofN , i.e.,N = 5, 10 and15, in Fig. 4a, whenσ2 = 0.1 the average performance

of decentralized systems are maximized approximately atM = 4, 9, 14, respectively; in Fig. 4b,

when σ2 = 1 the average performance of decentralized systems are maximized approximately

at M = 6, 11, 16, respectively. It simply shows that different noise variance (in general channel

condition) have a different impact on the decentralized system performance. This observation is
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fundamentally important for improving the spectral efficiency of a distributed multi-user OFDM

hot-spot network:for a given area (given the number of receiversN and the current channel

condition), there exists an optimal number of hot-spots (denoted asM⋆) to be put in the network.

Roughly speaking: whenM > M⋆, the system isoverloadeddue to the increase of competition

over limited resources; whenM < M⋆, the system is operated at theunsaturatedstate, since

system resources are not fully exploited.

Let’s now consider the second question. In Fig. 5, we show theprobability of convergence

to the decentralized optimality (NE) within5 iterations forσ2 = 0.1 and1, respectively. To be

more precise, we define the “convergence” as: the total network rate exceeds99% performance

of the final rate. We find that the probability of convergence is quite satisfactory (more than

98.2% in all cases), and this convergence probability tends to1 whenM ≫ N andM ≪ N . An

interesting observation is that the minimal convergence probability always occurs whenM = N ,

regardless of the noise variance valueσ2.

VI. CONCLUSIONS ANDFUTURE WORKS

In this paper we described the wireless small-cell networksas a strategic non-cooperative

game. Each transmitter (AP) is modeled as a player in the gamewho decides, in a distributed

way, the strategy of how to allocate its total power through several independent fading channels.

We studied the existence and uniqueness of NE. Under the condition of independent continuous

fading channels, we showed that the probability of the equilibrium being unique is equal to1.

Convergence issues have been addressed based on potential game analysis. Numerical studies

have shown that, with very high probability, the DPIWF algorithm converges to99% of the final

rate under5 iterations.

APPENDIX

A. Proof of Theorem 3.3

Proof: We prove the necessary and sufficient parts separately.

1) Proof of necessary condition (the only if part): From the definition of NE (Definition

3.1), if a power set{pm} is a NE, it must satisfy all the best-response conditions in

(3) simultaneously. Suppose a situation that all the players’ power except playerm’s

power reaches the NE point:
{
p⋆

1, . . . , p
⋆
m−1, pm, p⋆

m+1, . . . , p
⋆
M

}
. In this case when all other
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players’ powers are fixed, as shown in (4), the best-responseof playerm is to set its power

according to(8), which is exactly given by the single-player waterfilling treating all other

players’ signals as noise.

2) Proof of sufficient condition (the if part): From convex optimization theory [6], we know

that the KKT conditions of the convex optimization problem are necessary and sufficient

conditions for optimality. Therefore, we can say that a power strategypm satisfies the best

response condition if and only if it satisfies the single-player KKT conditions (5)-(7). Then

collectively, we say a set{pm} satisfies all the best-response conditions simultaneously

if and only if it satisfies (10)-(12). From Definition 3.1, if aset {pm} satisfies all the

best-response conditions, it must be a NE.

This completes the proof.

B. Proof of Lemma 3.4

Proof: Consider a NEp ∈ R
KN×1, from Theorem 3.3, the following equation is true

φ (p) + ν − λ = 0

where

φ (p) =














g1,1

σ2+
∑

j

pj,1gj,1

g1,2

σ2+
∑

j

pj,1gj,1

...
gK,N

σ2+
∑

j

pj,Ngj,N














KN×1

ν =










ν1,1

ν1,2

...

νK,N










KN×1

λ =










(λ1)N×1

(λ2)N×1
...

(λK)N×1










KN×1

Now, assume there exist two different Nash equilibria, e.g.p0,p1 (p0 6= p1), the following

equation must also hold

[

(p1 − p0)
T

(p0 − p1)
T
]

︸ ︷︷ ︸

αT













φ (p0)

φ (p1)





︸ ︷︷ ︸

β

+




ν0 − λ0

ν1 − λ1





︸ ︷︷ ︸

γ










= 0 (22)
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from where we have

αTβ =
(
p1 − p0

)T
φ(p0) + (p0 − p1)Tφ(p1)

=
N∑

n=1

K∑

k=1

[

(p1
k,n − p0

k,n)
gk,n

σ2 +
∑K

j=1 p0
j,ngj,n

+ (p0
k,n − p1

k,n)
gk,n

σ2 +
∑K

j=1 p1
j,ngj,n

]

=
N∑

n=1

K∑

k=1

gk,n

(
p0

k,n − p1
k,n

)∑K

j=1

[
gj,n

(
p0

j,n − p1
j,n

)]

(

σ2 +
∑K

j=1 p0
j,ngj,n

)(

σ2 +
∑K

j=1 p1
j,ngj,n

)

=
N∑

n=1

[
∑K

j=1 gj,n

(
p0

j,n − p1
j,n

)]2

(

σ2 +
∑K

j=1 p0
j,ngj,n

)(

σ2 +
∑K

j=1 p1
j,ngj,n

) ≥ 0

and

αTγ =
(
p1 − p0

)T (
ν0 − λ0

)
+ (p0 − p1)T

(
ν1 − λ1

)

=
N∑

n=1

K∑

k=1

[
(p1

k,n − p0
k,n)(ν0

k,n − λ0
k) + (p0

k,n − p1
k,n)(ν1

k,n − λ1
k)
]

=
K∑

k=1









(
N∑

n=1

p1
k,n −

N∑

n=1

p0
k,n

)

︸ ︷︷ ︸

P̄k−P̄k=0

(λ1
k − λ0

k)









+
N∑

n=1

K∑

k=1

(
p0

k,nν
1
k,n + p1

k,nν
0
k,n

)

=
N∑

n=1

K∑

k=1

(
p0

k,nν
1
k,n + p1

k,nν
0
k,n

)
≥ 0

From above, it is easy to see that (22) holds if and only if we have αTβ = 0 and αTγ = 0,

which are equivalent to the following two equations, respectively,

K∑

k=1

gk,np
0
k,n −

K∑

k=1

gk,np
1
k,n = 0, ∀n (23)

p0
k,nν

1
k,n = p1

k,nν
0
k,n = 0, ∀n ∀k (24)

First, from (23), we observe that the value ofsn (=
∑

k gk,npk,n) is fixed for any NE point.

Second, for a specific positive power coefficient, e.g.p0
k∗,n∗ > 0, we must haveν0

k∗,n∗ = 0 due

to (7), therefore, from (24) we must also haveν1
k∗,n∗ = 0. This impliesλ1

k∗ = λ0
k∗ because of

(5). Finally, we obtainν0
k∗,n = ν1

k∗,n ∀n, since we have shown thatsn is fixed for any NE point.

The same proof holds for any other indexk∗.
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C. Proof of Lemma 3.5

Proof: Whenνm,n = 0 , from (5) we have

λm − gm,ndn = 0, ∀(m,n) ∈ X (25)

wheredn , 1
σ2+sn

. From Lemma 3.4, we know that all the Nash equilibria must satisfy (25),

with the sameλm anddn. In (25), the number of independent linear equations is|X |, while the

number of unknown parameters isM +Ñ (since the rest ofdn, n /∈ N is known to bedn = 1
σ2 ).

It is well known that the solution to the system of linear equations is the empty set, if the number

of independent equations is larger than the number of variables [18]. Since each entrygm,n is

i.i.d. random, it is obvious that, with probability1, the equations in (25) are independent from

each other, therefore, we must have|X | ≤ M + Ñ .

D. Proof of Lemma 3.6

Proof: We only give the proof for case1) MÑ > M + Ñ , case2) MÑ ≤ M + Ñ can be

proved in a similar way. Matrix̂Z can be transformed into a2× 2 block matrices, by applying

some elementary column and row operations, as follows,

Ẑ
column
−→




Iτ Aτ×ξ2

Bξ1×τ Cξ1×ξ2




column
−→




Iτ 0τ×ξ2

Bξ1×τ Ĉξ1×ξ2




row
−→




Iτ 0τ×ξ2

0ξ1×τ Ĉξ1×ξ2





whereτ = min{M, Ñ}, ξ1 = M + Ñ − τ ≥ τ, ξ2 = |X | − τ . Ĉ is a ξ1 × ξ2 matrix, where

each column contains one or two random variables, and each row contains at least one random

variable. Again we can transform̂C in row echelon form, denoted aŝCr. Note that the rank of

Ĉr is ξ2 with probability 1, since each leading coefficient of a row isa random variable or the

linear combination of two i.i.d. random variables. So, withprobability 0, any leading coefficient

takes the value of 0. Therefore, we haverank(Ẑ) = τ + ξ2 = |X | with probability 1.

E. Proof of Theorem 3.7

Proof: If MÑ > M+Ñ , we have from Lemma 3.5 that, with probability 1,rank(Ẑ) = |X |.

Any NE must satisfy (17); assume that two different power strategieŝp andp̂′ are both solutions

to (17). ThenẐ (p̂ − p̂′) = 0. By the rank-nullity theorem [18], since the rank ofẐ is equal to

the number of its columns, this implieŝp− p̂′ = 0, which means there must be exactly one NE.
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If MÑ ≤ M + Ñ , we have from Lemma 3.6 that, with probability1, there is at most one

solution to (16). Since any NE must satisfy (16) and we know that there is at least one NE

solution, so the NE must be unique.

F. Proof of Theorem 4.2

Proof: We prove this theorem in two steps.

1) Algorithm convergence: It is easy to see that the potential functionv⋆ (P) is non-decreasing

within each round of the single-player waterfilling. Moreover, since each player’s transmit

power is limited by a maximum but finite power constraint, there must exist an upper-bound

for the potential functionv⋆ (P). This confirms the convergence.

2) Converge to NE: From the discussions above, we directly have that the KKT condition of

the potential game coincide with the KKT condition of the original OFDM gameG, due

to the property of potential function (18). By using the sufficient part of Theorem 3.3, we

know that if each player’s power allocationpm is given by the single-player waterfilling

while treating other players’s signals as noise, the set{pm} must be a NE of the original

gameG. Therefore, we can conclude that if the algorithm DPIWF converges (through the

process of iterating single-player waterfilling), it must converge to a NE point.

This completes the proof.
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Fig. 1 Illustration of femto-cell group with distributed network information flow

Fig. 2 The multi-user OFDM model
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(a) An example of “ideal” convergence
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(b) An example of “defective” convergence

Fig. 3 Convergence and performance of potential function andactual total network rate
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Fig. 5 Probability of convergence within5 iterations
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