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Abstract

This work presents new eigenvalue bounds, neces-
sary conditions and existence results for approxi-
mately universal linear (lattice) codes that can be
drawn from lattices of reduced dimension, and can
thus incur reduced decoding complexity. Currently
for the n×nr MIMO channel, all known n×T ap-
proximately universal codes, except for the Alam-
outi code for n = 2,nr = 1, draw from lattices of
dimension equal to or larger than nT , irrespec-
tive of nr. Motivated by the case where nr < n,
the work describes construction criteria for lattice
codes that maintain their approximate universality
even when they are drawn from lattices of reduced
dimensionality.

1. Introduction

Consider the quasi-static, fading, space-time
(ST) MIMO channel with n transmit and nr receive
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antennas. The (nr ×T ) received signal matrix Y is
given by

Y = θHX +W (1)

where X is an (n× T ) code matrix drawn from a
ST code X , T is the duration of transmission, W is
the additive noise matrix, H is the (nr ×n) channel
matrix, and the scalar θ is such that

θ 2||X ||2F ≤ T SNR, all X ∈ X . (2)

The entries of W are assumed to be i.i.d., circularly
symmetric, complex Gaussian CN (0,1) random
variables, and the entries of H are drawn randomly
from an arbitrary distribution.

1.1. Approximate universality over the n × nr

MIMO channel

Let X have cardinality |X | = 2RT , cor-
responding to transmission rate R. The high
SNR fundamental error-performance limit over the
MIMO channel is defined by the channel’s outage
region

O := {H : max
px

I(x;y|H) < R} ⊂ Cnr×n,

where max
px

I(x;y|H) describes the instantaneous

capacity of the channel. This limit was captured
in the form of the diversity multiplexing tradeoff
(DMT) [1], which describes the high-SNR (SNR
is here denoted as ρ) approximation of the optimal
diversity-gain

d(r) := − lim
ρ→∞

P(H ∈ O)
logρ

= − lim
ρ→∞

P(error)
logρ

(3)



as a function of the multiplexing gain

r := R/ logρ .

The work in [2, 3, 5] shows that there exist ST de-
signs that perform DMT optimally, irrespective of
the fading statistics. Such codes were defined to be
approximately universal in [2] as follows.

Definition 1 ([2]) A code X is said to be approx-
imately universal over the n× nr MIMO channel
if

lim
ρ→∞

Pr(error|X ,H /∈ O)
logρ

= −∞, ∀X ∈ X . (4)

For a code matrix X , we denote the k smallest
eigenvalues of XX† as

λ1(X) ≤ λ2(X) ≤ ·· · ≤ λk(X).

The work in [2] provides necessary and sufficient
conditions for a code to be approximately univer-
sal.

Lemma 1 ([2]) A code is approximately universal
over the n×nr MIMO channel if and only if

min(n,nr)

∏
i=1

λi(X) ≥̇ ρmin(n,nr)−r, ∀X ∈ X . (5)

In the above we used the symbol .= to denote ex-
ponential equality, i.e., the relation

lim
ρ→∞

logg(ρ)
logρ

= c

is denoted by g(ρ) .= ρc and ≥̇, ≤̇ are defined sim-
ilarly.

1.2. q-dimensional linear ST codes: Fully di-
mensional v.s. reduced-dimensional de-
signs

Let X be a lattice ST code mapping q infor-
mation elements from a discrete constellation Aρ ,
via a lattice generator matrix G ∈ CnT×q

G =

G1(n×q)

G2(n×q)
...

GT (n×q)

.

Each codematrix is constructed via column-by-
column stacking of an nT -length lattice vector G f ,
where

f ∈ A q
ρ ∈ Cq, and ∥ f∥2 ≤̇ ρ.

The corresponding code is then given by1

X =
{

matr(G · f ), f ∈ A q
ρ

}
,

=
{[

G1 f G2 f · · · GT f
]
, f ∈ A q

ρ

}
.

We call X a q-dimensional lattice code.
When q ≥ nT , the code will be labeled as fully-
dimensional, whereas when q < nT , as reduced-
dimensional.

2. Existence of approximately universal
linear codes

All known approximately universal ST code
designs, except for the Alamouti code for n =
2,nr = 1, are lattice code designs of dimen-
sion equal to or greater than nT . Such fully-
dimensional optimal designs ([5]) achieve approx-
imate universality for all channel dimensions, i.e.,
for all nr. For the case where nr < n, the question
is raised whether approximate universality can be
achieved by reduced-dimensional codes. The exis-
tence of such codes would establish the ability to
communicate in a provably optimal manner over
all MIMO fading channels, irrespective of fading
statistics, and do so with reduced decoding com-
plexity whenever nr < n.

In relation to this issue, we provide new
bounds on code eigenvalues and then apply these
bounds to give criteria for constructing reduced-
dimensional approximately universal codes. The
criteria will also establish that, with the exception
of the Alamouti code for n = 2,nr = 1, currently
the only known approximately universal designs
are fully-dimensional irrespective of nr.

1Without loss of generality we consider that the complex
and real parts of f are transformed by the same lattice gener-
ator matrix.



For nr ≥ n, the result in [5] establishes the fact
that approximate universality can be achieved in
minimum delay (T = n), utilizing the minimum
possible lattice dimensionality of q = nT = n2. We
henceforth restrict our attention to the case where
nr < n, and T ≥ n, which is necessary for achieving
full diversity over the Rayleigh fading channel and
consequently is necessary for approximate univer-
sality.

Towards establishing the conditions we pro-
ceed with bounds on the code eigenvalues. Hence-
forth all the results refer to q-dimensional n × T
lattice ST codes that are generated by a lattice gen-
erator matrix G.

Lemma 2 For k ∈ [1,2, ...,n] and for

tk := min
Uk∈GL(k,n)

{rank[(IT ⊗Uk)G]}, (6)

there exists a matrix X ′
k ∈ X such that

k

∏
i=1

λi(X ′
k) ≤̇ ρk−krT/tk . (7)

In the above we use ⊗ to denote the Kronecker
product of matrices, and GL(k,n) to denote the set
of k×n matrices of rank k ≤ n.

For each k, the eigenvalues of X are bounded
as a function of the minimum rank tk of all possible
kT ×q lattice generator matrices

A(Uk) := (IT ⊗Uk)G =


UkG1

UkG2
...

UkGT

 (8)

that generate k × T codes UkX , which are row
deleted versions of faithful mappings of X .

Using the above bounds on the eigenvalues of
the code, we proceed with the necessary condi-
tions.

Theorem 3 A necessary condition for a code to
be approximately universal over the n×nr MIMO
channel is that

min
k∈[1,2,..n]

1
k

min
Uk∈GL(k,n)

rank
(
(IT ⊗Uk)G

)
≥ T. (9)

We proceed with the proofs of Lemma 2 and The-
orem 3.

Proof of Lemma 2: With

A(Uk) = (IT ⊗Uk)G,

let
U ′

k ∈ GL(k,n)

be such that

rank(A(U ′
k)) = tk.

Using a standard packing argument, we then have
that

∃ f ′
k
∈A q

ρ such that ∥A(U ′
k) f ′

k
∥2

F ≤̇ ρ1−rT/tk . (10)

Let X ′
k be the n×T codematrix of X correspond-

ing to vector f ′
k
, i.e., let

X ′
k := matr(G f ′

k
)

where the column stacking here is done every n
elements. Now note that

A(U ′
k) =

 U ′
kG1
...

U ′
kGT


and observe that

matr(A(U ′
k) f ′

k
) = U ′

kX ′
k,

where this particular column stacking is done every
k elements, resulting in the k×T matrix U ′

kX ′
k. Let

U ′ =:
[

U ′
k

U ′′

]
∈ GL(n,n)

be an n×n matrix having U ′
k as its first k rows and

note that U ′
kX ′

k are the first k rows of U ′X ′
k. Then

(
k

∏
i=1

λi(X ′
k))

1/k .=
k

∏
i=1

λ 1/k
i (U ′X ′

k)

≤̇
k

∏
i=1

λ 1/k
i (U ′

kX ′
k)

≤̇
k

∑
i=1

λi(U ′
kX ′

k)

= ∥U ′
kX ′

k∥2
F = ∥A(U ′

k) f ′
k
∥2

F

≤̇ ρ1−rT/tk



where the first asymptotic equality follows from
the fact that λmin(U ′) .= λmax(U ′) .= ρ0, the first in-
equality is due to the eigenvalue interlacing prop-
erty, the second inequality due to the arithmetic-
mean geometric-mean inequality, and the last in-
equality comes from (10). �

Proof of Theorem 3: Recall from Lemma 2 that

∃X ′
k ∈ X such that

k

∏
i=1

λi(X ′
k) ≤̇ ρk−krT/tk ,

k = 1,2, ..,n.

First let k ≥ nr and rewrite the above to get

nr

∏
i=1

λi(X ′
k)

k

∏
i=nr+1

λi(X ′
k) ≤̇ ρk−krT/tk

which implies that there exists X ′
k ∈ X such that

nr

∏
i=1

λi(X ′
k) ≤̇

ρk−krT/tk

(ρ1−rT/tk)k−nr

.= ρnr−nrrT/tk ,

k = nr,nr +1, ...,n,

where we have used the fact that
k

∏
i=nr+1

λi(X ′
k) = (ρ1−rT/tk)k−nr

corresponding to the case where all eigenvalues are
equal. It is easy to see that tk ≤ tk+1, which tells us
that the above bound for k = nr implies the bounds
for the other cases of k > nr. As a result the bound
states that

∃X ′
nr
∈ X such that

nr

∏
i=1

λi(X ′
nr

) ≤̇ ρnr−nrrT/tnr .

(11)
Now consider the case where k ≤ nr and note

that there exists X ′
k ∈ X such that

k

∏
i=1

λi(X ′
k)

nr

∏
i=k+1

λi(X ′
k)

≤ ρk−krT/tk(∥X ′
k∥2

F)nr−k ≤̇ ρnr−krT/tnr

where we used the upper bound

k

∏
i=1

λi(X ′
k) ≤̇ ρk−krT/tk

from Lemma 2, and also used that
nr

∏
i=k+1

λi(X ′
k) ≤̇ (∥X ′

k∥2
F)nr−k ≤̇ ρnr−k.

Consequently for k ≤ nr we get that

∃X ′
k ∈ X such that

nr

∏
i=1

λi(X ′
k)≤̇ ρnr−krT/tk .

Combining the two cases k ≥ nr and k ≤ nr gives
that

∃X ′
k ∈ X such that ∏nr

i=1 λi(X ′
k)≤̇ ρnr−krT/tk ,

k = 1,2, ..,n

which in turn is combined with the necessary con-
dition for approximate universality in (5) to give
that

tk/k ≥ T, k = 1,2, ...,n.

�
The necessary conditions in the Theorem also

imply the following, more specific necessary con-
ditions.

Corollary 4 For a q-dimensional code to be ap-
proximately universal over the n×nr MIMO chan-
nel, it is necessary that q ≥ nrT , that rank(Gi) =
n, i = 1,2, ...,T , and that there exists no solution
to the generalized eigenvalue problem

αu†Gi = u†G j, α ∈ C, i ̸= j. (12)

We here note that if the second and third conditions
are not met, then the code fails to be approximately
universal for any q and nr.

Proof: If q < nrT and k = nr then A(Uk) is of
dimension nrT × q, and rank(A(Uk)) ≤ q < nrT
which is a violation of the condition from Theo-
rem 3.

If rank(Gi) < n for some i ≤ T , then setting
the first row u† of Uk to be in the null space of Gi,
results in rank(A(Uk)) < kT which again violates
the condition in Theorem 3.

Finally setting u† to be the solution to the gen-
eralized eigenvalue problem

αu†Gi = u†G j



results in having two linearly dependent rows of
A(Uk) and in rank(A(Uk)) < kT . �

Towards characterizing some properties of lay-
ered and perfect codes [11, 4, 5], we proceed with
the following necessary condition.

Proposition 5 A necessary condition for a code
X to be approximately universal is that there
should exist no n×n full rank matrix U, such that
UX has a fixed entry, i.e., it should not be the case
that

UX(i, j) = c,∀X ∈ X ,

for some fixed i ∈ [1,n], j ∈ [1,T ], and some fixed
constant c. If this condition is not met, then the
code fails to be approximately universal, for any q
and nr.

Proof: Consider that there exists an n× n full
rank matrix U , such that UX has a fixed entry, i.e.,
that

UX(i, j) = c,∀X ∈ X ,

for some fixed i ∈ [1,n], j ∈ [1,T ], and some fixed
constant c. Without loss of generality, set c = 0.
Consider the code UX operating over an n× nr

channel where all fading coefficients are constantly
zero except the fading vector h†

i corresponding to
the ith transmit antenna. The optimal error per-
formance over such a channel is equal to the op-
timal performance over the 1 × nr SIMO chan-
nel described by hi. At the same time, the er-
ror performance provided by UX over the above
n×nr channel, is identical to the performance, over
the corresponding SIMO channel, provided by the
time-only 1×T code UX1 given by the ith row of
the codematrices of UX . Let rmax denote the max-
imum multiplexing gain achievable in this SIMO
channel. It is straightforward to see that due to the
fixed zero in its codevectors (no information trans-
mitted), this time-only code can only achieve max-
imum multiplexing gain of

rmax(T −1)/T < rmax

and thus cannot be optimal over the SIMO chan-
nel, which in turn means that the original n × T

code UX cannot be optimal over the correspond-
ing n× nr MIMO channel. As a result UX does
not meet the coding gain requirement of Lemma 1,
and neither does X . �

The following is a direct result from Proposi-
tion 5.

Corollary 6 For z < n and for any nr, z-layered
codes (including z-layered perfect codes) fail to be
approximately universal.

This is seen directly from the fact that for z < n,
z layered codes have T − z > 0 zero elements per
row.

Finally, drawing from Corollary 4 we have the
following.

Corollary 7 There is no n-dimensional linear
space-time code which is approximately universal
over the n×nr MIMO channel.

Proof: Set k = nr = 1 and q = kT = n, and
first consider minimum delay (n× n) codes over
the n×1 MISO channel. Let

A(Uk) = A(u†) = (In ⊗u†)G =

 u†G1
...

u†GT

 .

Having a Gi of rank less than n violates the con-
ditions in Corollary 4. On the other hand if
rank(Gi) = n,∀i then a guaranteed to exist eigen-
vector u† of G jG−1

i solves

αu†Gi = u†G j (13)

causing a violation of the conditions in Corollary 4.
The extension to the general case of n× T codes
and the general n× nr MIMO channel follows by
noting that if T > n or if nr > 1 then q < nrT which
is a violation of Corollary 4.

�

3. Conclusion

The work provided new bounds on the eigen-
values of ST codes as a function of the mini-
mum rank over all possible lattice generator ma-
trices that generate codes which are row deleted



versions of faithful mappings of the original code.
Based on these bounds, the work also presented
existence results and new construction criteria for
codes that perform in a provably optimal manner
over all MIMO fading channels, irrespective of
fading statistics, and do so by drawing from lat-
tices of reduced dimension whenever nr < n. Re-
duced dimensional codes incur reduced decoding
and signaling complexities.

This setting is particularly relevant to coopera-
tive communications in wireless networks [15][16]
where the fading statistics can be arbitrary, the
number of receive antennas is usually small, the
number of transmitting nodes can be large and the
decoding complexity must be kept small due to the
small size of the nodes.
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