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Abstract. This paper investigates a new family of RFID protocols called
Ff that grew out of a proposal made at ESORICS 2007. This family has
the property of having highly efficient implementations and simultane-
ously providing some security arguments which shares some features with
the HB protocol family. In this work, we exhibit links between the Ff

protocol and the LPN problem, and demonstrate two attacks against the
Ff family of protocols which run with a time complexity of about 252

and 238 respectively against the instance proposed by the designers that
has a 512-bit secret key. Our two attacks have the nice property that
they only require interactions with the tag alone and does not involve
the reader.

1 Introduction

Radio Frequency IDentifiers (RFID) are tiny electronic tags attached to items
that allow them to be identified in an automatic way, without requiring physical
access or line of sight. The main incentive to their introduction has been the
ease and simplification of the supply chain management, but RFID tags already
found a great variety of applications: postal tracking, tickets in transportation
networks, airline luggage tracking, counterfeits fighting. . . The economics behind
the above mentioned use-cases requires that RFID tags can be built at a very
low cost, which translates into very strong design constraints for security. In
particular, the memory available is very limited and the overall number of gates
must be lower than a few thousand for most of the applications.

These constraints explain why the first RFID tags basically only hold a
unique identifier. This however, posed a security threat as the RFID tags entered
more and more into the life of end users, attached to the items they carry around.
To solve these security issues, several proposals have been made, with different
trade-offs between security and efficiency. As an example, forward-privacy was
reached at the expense of embedding hash functions [15], whereas several au-
thors tried to reduce the resources needed by common cryptographic primitives
as much as possible: a lightweight block cipher, PRESENT, was proposed in [4],
a clever tweak of Rabin’s mapping, SQUASH, was introduced in [17]. One line
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of cryptographic designs that looked very promising is built around the problem
of learning parity with noise (LPN) and was initiated by the introduction of the
HB protocol [10]. But reaching high security requirements proved to be hard as
shown by the cryptanalysis of the members of this family. The HB protocol is
secure against passive attackers, but fails against a simple active attack. The
HB+ protocol introduced in [11] corrected this but succumbed a more subtle
active attack [7]. Almost every other proposals were flawed in some way [8], and
the most robust proposal to date might be [9].

Although the simplicity of protocols from the HB family and the fact that
they build on the LPN hard problem make them very attractive, they have the
main drawback of requiring quite long secret keys to be able to reach a given
level of security. Some alternatives to the HB family have recently appeared. One
of these was introduced by Chichoń, Klonowski, and Kuty lowski in [6] where the
secret consists in the knowledge of linear subspaces, but this proposal has been
recently broken [12]. Another recent proposal that shares some features with
HB-like protocols is the Ff protocol recently proposed in [2] which aims for an
implementation that fits about 2kGE for which best known attacks require a
time complexity of more than 2130.

In this work, we study the security of the Ff protocol, and exhibit two key-
recovery attacks on it. For the parameters chosen by the authors (512-bit secret
keys) our best attack runs in time 238. Moreover, our two attacks only require to
query the tag and do not need to interact with the reader. In order to explain our
attacks, we first expose the LPN problem and give the best known algorithms
to solve it. We then briefly describe the Ff protocol which shares some features
with the HB protocol together with its main underlying building block, the
f function, very similar in spirit to a universal hash function family. After this
preliminary descriptions, we explain the connexions between the Ff protocol and
the LPN problem. We then proceed to a study of the f function that unveils
some of its properties that we use in our attacks. The first of our attacks indeed
directly relies on the particularities of the function f to lower the complexity of
the LPN problem underlying the Ff protocol. Our second attack relies on the
existence of collisions in the random number generator used in Ff to mount a
low complexity key-recovery.

2 Learning Parity with Noise

We now describe the problem of learning parity with noise (hereafter the LPN
problem). To this end, let us denote the scalar product of two vectors x and y
of GF(2)n by x · y. The problem of recovering a binary vector s ∈ GF(2)n given
the parity of a · s for randomly chosen vectors a of GF(2)n is easy: given any set
{(ai, ai · s)} where the ai span GF(2)n, the value of s can be found by Gaussian
elimination. In the case of LPN, the problem consists in learning the parity in
the presence of noise: given enough values (a, a·s⊕ν) where a is randomly chosen
and Pr[ν = 1] = ε, recover the value s. The LPN problem is much more difficult
and the best currently known algorithms have a time complexity of 2Θ(n/ log(n)).



Let us denote by x
∆←− X the random choice of an element x from X according

to the probability distribution ∆. We also denote by $ the uniform distribution,
by Berε the Bernouilli distribution of parameter ε ∈]0, 1

2 [, that is Pr[ν = 1] = ε

and Pr[ν = 0] = 1− ε for ν
Berε←−−− GF(2). The LPN problem can be stated more

formally as follows:

Definition 1 (LPN Problem). Let s be a vector randomly chosen from GF(2)n,
ε ∈]0, 1/2[ be some noise parameter, and Os,ε be an oracle that outputs indepen-
dent values according to the following distribution:{

a
$←− GF(2)n; ν Berε←−−− GF(2) : (a, a · s⊕ ν)

}
An algorithm A such that

Pr
[
s

$←− GF(2)n : AOs,ε(1n) = s
]
≥ δ ,

running in time at most T using at most M memory and making at most
q queries to oracle Os,ε is said to (q, T, M, δ)-solve the LPNn,ε problem.

The LPN problem can be reformulated as the problem of decoding a ran-
dom linear code, which is well-known to be NP-complete [1]. Combined to the
extreme simplicity of implementation of scalar products over GF(2)n, this hard-
ness makes it a problem of choice for the design of cryptographic primitives. It
has served, among other cryptographic uses, as main building block of various
RFID protocols designs [10, 11, 9, 5].

As stated above, the best known algorithms have a complexity of 2Θ(n/ log(n)).
The first algorithm to reach this complexity has been proposed by Blum, Kalai,
and Wasserman in [3] and uses ideas similar to that put into use in the general-
ized birthday paradox [20]. By introducing the Walsh-transform during the last
step of the BKW algorithm, Levieil and Fouque were able in [13] to give a sen-
sible improvement of the complexity. Typical values of the complexity of the LF
algorithm and stated in terms of memory sorting are given in Table 1. Finally,
both algorithms given above require 2Θ(n/ log(n)) queries. As noted in [14], it is
possible to lower this number of queries to Θ(n) by first generating very low-
weight linear combinations of the original set of queries; the loss of independence
does not seem to have a great impact in practice [13].

3 The Ff Family of Protocols

At ESORICS 2007, a new RFID protocol was proposed [16] that relies on a
lightweight function called DPM in order to perform identification. DPM is a
function of degree two in the secret key and is very weak as it only involves very
few of the set of possible monomials of degree two. Even more problematic is
the fact that an attacker is able to access the output of the DPM function for
various inputs, leading to very simple algebraic attacks [19, 18].



Table 1. Complexity of the algorithm LF1 from [13] to solve an LPN problem over
vectors of n bits and with an error probability of ε. The table should be read in the
following way: it takes 2130 bytes of memory to solve LPN problem with n = 512 and
a noise parameter of ε = .49.

ε\n 128 192 256 512 640

0.0001 13 17 21 36 44

0.2500 34 41 55 89 109

0.4375 44 53 66 105 130

0.4900 55 67 88 130 162

In order to deal with these issues, a new family [2] of lightweight functions Ff

was designed, and the RFID protocol was reworked. The rationale behind the
design of this protocol is to minimize the workload on the tag. To this end,
it uses a lightweight function with an output of very small size instead of the
usual cryptographically strong hash functions. This, however, implies colliding
outputs for a large number of the secret keys; the resulting ambiguity is resolved,
as usual, by using a large number of interactions. The most interesting feature of
this new protocol lies in the way it prevents an attacker from having direct access
to Ff ’s output: instead of providing the reader (and thus, the attacker) with a
lightweight function of a known random R and the secret key K, it manages
to keep some level of uncertainty. This calls for a parallel with the HB family
of protocols [10, 11, 9, 5] where at each pass, a very simple function is used—a
scalar product between R and K, but some uncertainty is ensured by adding
noise.
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Fig. 1. The Ff function



Before describing the protocol that relies on it, let us first describe the
Ff function family. The Ff function is built around a small fan-in function
f : GF(2mt) × GF(2mt) → GF(2t). The function f operates on the t-bit blocks
of its mt-bit inputs. As described in Figure 1, Ff in turn operates on mt-bit
blocks of lmt-bit inputs. Denoting by x[i] the i-th mt-bit block of any lmt-bit
value X, we can define Ff as:

Ff (K, R) =
l⊕

i=1

f
(
k[i], r[i]

)
.

We now turn to the description of the protocol itself. Each tag TID in the sys-
tem is initialized with a pair of secret keys (KID,K ′

ID) and the back-end system
stores the corresponding tuples (ID,KID,K ′

ID) in its database. An execution of
the protocol proceeds as follows:

– the reader sends a nonce N ∈ GF(2lmt) to the tag TID;
– the tag TID replies with a seed ρ, and the following q values:

v1 = Ff (KID, Ra1
1 )⊕ Ff (K ′

ID, N1) ,

v2 = Ff (KID, Ra2
2 )⊕ Ff (K ′

ID, N2) ,

...

vq = Ff (KID, R
aq
q )⊕ Ff (K ′

ID, Nq) .

The seed ρ is used to generate q sets {R1
i , . . . , R

d
i } consisting of d random values

computed by the tag using a simple LFSR. To generate the i-th value sent to
the reader, the tag TID first secretly selects a number ai in {1, . . . , d} and then
computes

Ff (KID, Rai
i )⊕ Ff (K ′

ID, Ni)

using the corresponding Rai
i , one out of the d random values from the i-th set.

The rational behind generating the q sets of d randoms is to avoid sending them
over the air and thus, to prevent an active attacker from tampering with them.
(In a similar way, the tag uses the same LFSR to derive the values N1, . . . , Nq

from the nonce N .)
On the reader side, the answer of the tag is processed as follows. From the

seed ρ, the reader first derives the q sets of d random values {R1
i , . . . , R

d
i }. Then,

for each of the q received values vi, the reader discards from its database every
identity j such that:

∀a ∈ {1, . . . , d} Ff (Kj , R
a
i )⊕ Ff (K ′

j , Ni) 6= vi .

Obviously, a valid tag is never discarded as vi is obtained at least when a = ai.
Additionally, if the f function is well balanced, the parameters d and t can be
chosen in such a way that by increasing q, the probability of accepting invalid
tag is negligible, see [2] for further details.



Since it is well known how to design identification protocols with crypto-
graphically strong hash functions, the main advantage of the Ff protocol is to
allow for highly compact implementations. As cryptographic hash functions and
lightweight block ciphers currently respectively require around 7 kGE and 5 kGE,
the Ff protocol targets implementations of size about 2 kGE. The practical set
of parameters given in [2] is

lmt l m t

256 64 1 4
d q

8 60

and the function f : GF(24)×GF(24)→ GF(24), (r, k) 7→ z is such that

z1 = r1k1 ⊕ r2k2 ⊕ r3k3 ⊕ r4k4 ⊕ r1r2k1k2 ⊕ r2r3k2k3 ⊕ r3r4k3k4 ,
z2 = r4k1 ⊕ r1k2 ⊕ r2k3 ⊕ r3k4 ⊕ r1r3k1k3 ⊕ r2r4k2k4 ⊕ r1r4k1k4 ,
z3 = r3k1 ⊕ r4k2 ⊕ r1k3 ⊕ r2k4 ⊕ r1r2k1k4 ⊕ r2r3k2k4 ⊕ r3r4k1k3 ,
z4 = r2k1 ⊕ r3k2 ⊕ r4k3 ⊕ r1k4 ⊕ r1r3k3k4 ⊕ r2r4k2k3 ⊕ r1r4k1k2 ,

(1)

where (r1, r2, r3, r4), (k1, k2, k3, k4), and (z1, z2, z3, z4) respectively stand for a
representation of r, k, and z in GF(2)4. Let us also note the projection πi

from GF(24) to GF(2) that, according to this representation, sends any element
of GF(24) to its i-th output bit: πi(z) = zi.

Our two attacks given below work for other values of t, but in order to ease
the exposition, we focus on the choice of t = 4 made by the authors of Ff .

4 Preliminary Remarks for the Attacks

4.1 On the LPN problem underlying Ff .

If we discard the anti-replay nonce, the problem of recovering the key K in the
Ff protocol can be seen as an LPN problem. Indeed, each of the q values vi sent
by the tag to the reader yields an equation involving some R among d possible
values R1

i , . . . , Rd
i . Therefore, the attacker can always collect the equations

Ff (R1
i ,K) = vi, . . . , Ff (Rd

i ,K) = vi for i = 1, . . . , q and for several executions
of the protocol. Each equation (which is defined over GF(2t)) can be projected
over GF(2). Then, for each i and each execution, at least one of the d values Rj

i

yields t correct boolean equations, whereas the other ones are uniformly wrong
or false when Ff is well balanced, as requested by the design. Therefore, the
probability that a boolean equation from the set collected by the attacker is
true is 1

d + d−1
d

1
2 . Now the equations contain terms of degree 2 in the key bits:

for the parameters chosen by the authors (t = 4 and 256-bit keys), there are
6 · 64 monomials of degree exactly two, and 4 · 64 linear terms. Moreover, the
choice of d = 8 yields a huge noise of ε = .4375. Therefore, as stated in Table 1,
a direct tentative to solve the LPN problem underlying Ff by linearization of
the 640 monomials would have a complexity of 2130.



4.2 Structure of the f function.

The f function at the core of the Ff protocol is strongly constrained, and con-
sequently exhibits a quite specific structure. Indeed, for the protocol to be both
complete and sound (i.e. reject invalid keys with overwhelming probability), the
f function must be well balanced on its inputs. We now study the effect of the
following function τ on the output values of f :

τ : GF(24)→ GF(2) , x 7→ π1(x)⊕ π2(x)⊕ π3(x)⊕ π4(x) .

According to the definition (1) of f , we derive the following facts:

∀r ∈ {0x0, 0xf} , τ
`
f(k, r)

´
= 0

∀r ∈ {0x1, 0x2, 0x4, 0x8} , τ
`
f(k, r)

´
= k1 ⊕ k2 ⊕ k3 ⊕ k4

∀r ∈ {0x5, 0xc} , τ
`
f(k, r)

´
= k1k3 ⊕ k3k4

∀r ∈ {0x6, 0xa} , τ
`
f(k, r)

´
= k2k3 ⊕ k2k4

∀r ∈ {0x3, 0x9} , τ
`
f(k, r)

´
= k1k2 ⊕ k1k4

and

τ
`
f(k, 0xe)

´
= (k1 ⊕ k2 ⊕ k3 ⊕ k4)⊕ (k1k3 ⊕ k3k4)

τ
`
f(k, 0xb)

´
= (k1 ⊕ k2 ⊕ k3 ⊕ k4)⊕ (k2k3 ⊕ k2k4)

τ
`
f(k, 0xd)

´
= (k1 ⊕ k2 ⊕ k3 ⊕ k4)⊕ (k1k2 ⊕ k1k4)

τ
`
f(k, 0x7)

´
= (k1 ⊕ k2 ⊕ k3 ⊕ k4)⊕ (k1k3 ⊕ k3k4)⊕ (k2k3 ⊕ k2k4)⊕ (k1k2 ⊕ k1k4)

where, in order to save space, an element (z1, z2, z3, z4) of GF(2)4 is denoted by
the corresponding nibble ‘0xz1z2z3z4’. Therefore, τ

(
f(k, r))

)
is always a linear

combination of the four bits c1, c2, c3, and c4 defined as

c1 = k1 ⊕ k2 ⊕ k3 ⊕ k4 ,

c2 = k1k3 ⊕ k3k4 ,

c3 = k2k3 ⊕ k2k4 ,

c4 = k1k2 ⊕ k1k4 .

Our two attacks against the Ff protocol both lead to a step where we have
to solve for the values of c1, . . . , c4 instead of the values of k1, . . . , k4. Although
the underlying mapping that sends k to c is not one-to-one, we will show that k
can be derived from the knowledge of c and a few interactions with the system,
this for a very low computational complexity.

Direct implications for the Ff protocol. It is interesting to note that the
structural property of f uncovered by τ reveals a whole set of weak keys. Indeed,
it is easy to check that: ∀r, ∀k, τ(f(r, k)) = τ(f(k, r)). As an example, if K is
such that for all i, k[i] ∈ {0x0, 0xf} then ∀r, τ(f(r, k)) = 0, a property that
can be easily distinguished. Also, if k[i] ∈ {0x1, 0x2, 0x4, 0x8, 0x0, 0xf} for all i,



τ(f(r, k)) is a linear combination of r, for any r; again, this can be distinguished.
There are 264 keys of the first type and 664 ' 2165 keys of the second type.

Also, the symmetry of f with respect to r and k shows that there is a
very large class of randoms N such that Ff (K ′, N) = 0. This fact can be used
by an attacker to get information about Ff (K, R) directly instead of through
Ff (K, R)⊕ Ff (K ′, N).

5 LPN Solving Attack

In the description of our first attack, we make use of the following property
that was exhibited at the end of Section 4.2: while the tag answers with a
value Ff (KID, Rai

i ) ⊕ Ff (K ′
ID, Ni) to the reader, the attacker—when simulat-

ing a reader—is able to choose “nonces” N (such as N = 0 for instance) so that
Ff (K ′

ID, N) = 0 for any K ′
ID. In the following, we therefore assume without loss

of generality that the tag directly answers with Ff (KID, Rai
i ), and thus, that the

attacker’s goal is to recover the part KID of the tag’s secret key. (We also note
that once KID has been recovered, it is immediate to additionally recover K ′

ID as
the answers of the tag become deterministic in the bits of K ′

ID and the solving
complexity of a simple linearisation is negligible compared to the complexity of
the rest of the attack.)

5.1 The LPN problem through τ

As we have seen in Section 4.1, it is possible to put the Ff protocol into the
framework of the LPN problem. However, the protocol parameters have been
chosen to escape a straightforward attack. In order to lower the complexity, we
take advantage of the properties of f exhibited in Section 4.2. This requires to
consider the LPN problem associated with τ ◦ f instead of with f .

Let us recall that during an execution of the protocol, the tag sends q values
vi defined over GF(24) as vi = Ff (KID, Rai

i ). An attacker who collects equations
of the type τ(vi) = τ

(
Ff (KID, Ra)

)
for every possible a ∈ {1, . . . , d} will get

noisy equations on the bits of KID. What is exactly the corresponding noise ε ?
The probability that the above boolean equation is true is 1 in the case where
a = ai and 1

2 otherwise, so that 1− ε = 1
8 + 7

8
1
2 , that is ε = 0.4375.

5.2 Lowering the complexity of the LPN problem

In order to lower the complexity of the above LPN attack, we seek to lower
the number of unknowns involved, as this is the parameter having the strongest
impact on the complexity. We can achieve a 25% reduction of the number of
unknowns using the following fact stated in Section 4.2:

Prr

[
τ(f(k, r)) = 0

]
= 2

16 , Prr

[
τ(f(k, r)) = c1

]
= 4

16

Prr

[
τ(f(k, r)) = c2

]
= 2

16 , Prr

[
τ(f(k, r)) = c3

]
= 2

16 ,

Prr

[
τ(f(k, r)) = c1 ⊕ c2

]
= 1

16 , Prr

[
τ(f(k, r)) = c1 ⊕ c3

]
= 1

16 .



Indeed, the above values show that the probability over the randoms r that a
4-bit block contribution f(k, r) to Ff (K, R) only involves c1, c2, and c3 instead
of all four unknowns c1, . . . , c4 is equal to µ = 12

16 ' 2−0.415. In order to lower the
number of unknowns involved in the LPN problem from 4 · 64 bits to 3 · 64 bits,
the attacker seeks a seed ρ such that at least one value among the qd randoms
R1

1, . . . , Rd
1, R1

2, . . . , Rd
q has all its 4-bit blocks of the requested form. This

happens with probability 1− (1−µ64)qd ' qdµ64. Thus, about 217.6 interactions
with the tag will give one boolean equation to solve the underlying LPN problem
with noise ε = 0.4375 on 192 unknowns. As explained in Section 2, it is enough
to collect 4 · 192 equations to produce the number of samples by considering
all linear combinations of weight four, yielding a total number of interactions
with the tag lower than 228. As shown in Table 1, the cost for solving the LPN
problem becomes about 253—to be compared to the complexity of 2130 of the
original LPN problem.

Once the values of c1, . . . , c3 are known, the attacker derives a new set of
equations by interacting with the tag, this time removing the constraints on
the initial random seed ρ chosen by the tag. This provides the attacker with a
set of equations in the four values c1, . . . , c4 for each 4-bit block in which the
attacker substitutes the value of c1, . . . , c3 just recovered: this yields another
LPN problem with 64 unknowns the complexity of which is negligible compared
to the complexity of the previous LPN problem. After this step, the attacker
knows c1, . . . , c4 for every 4-bit block of the key K.

5.3 Recovering the key K

At this point, the attacker gained knowledge of c1, . . . , c4 for each of the 64 blocks
of 4 bits, and thus is able to predict the value τ

(
f(R,K)

)
for any R. However,

there still remains to get the value of the bits of K to be able to predict Ff (R,K)
and as explained in Section 4.2, the mapping from (k1, k2, k3, k4) to (c1, c2, c3, c4)
is not one-to-one.

One possibility for the attacker to overcome this issue is to use her knowl-
edge of c1, . . . , c4 for each 4 bits block that allows her to predict with absolute
certainty the value τ(Ff (R,K)) for any R. Therefore, the attacker enters a
few additional interactions with the tag (once again using nonces N0 such that
Ff (N0,K

′) = 0). For each of the q values vi = Ff (Ra
i ,K) returned by the tag

during an interaction, the attacker computes the d values bj = τ(Ff (Rj
i ,K))

for j = 1, . . . , d. If exactly one of {b1, . . . , b8}, say bj0 , is equal to τ(vi), then
we know that necessarily a = j0. This yields an exact equation over GF(24),
namely Ff (Rj0 ,K) = vi, involving all the bits of K. As this event happens only
when the d− 1 values bj where j 6= a are equal to vi ⊕ 1, it occurs with proba-
bility 1

2

d−1. In order to collect N exact equations on the key bits, the attacker
needs N 1

q 2d−1 interactions with tag, which is lower than 210 for the parameters
chosen by the authors of Ff (these parameters yields N = 640 different monomi-
als in the key bits). The resulting system can then be solved with a complexity
of N3 ' 226.



6 A Resynchronization Attack

Contrary to the previous attack which recovers K, our second attack aims to
recover K ′: even without the knowledge of K, the attacker is able to replay any
valid execution of the protocol (this includes traces obtained when the attacker
takes the role of the reader) by removing the contribution involving K ′ and an
incorrect nonce from the trace and incorporating the correct value involving K ′

and the nonce challenged by the reader.
The starting point of our second attack to recover K ′ is the internal generator

that produces the random numbers R1
1, . . . , Rd

1, . . . , R1
q , . . . , Rd

q of an execution
of the protocol. As the goal of Ff is to fit under the 3kGE limit, this number
generator was chosen with a 64-bit internal state. As this generator does not
directly manipulate the key bits, the designers claimed that the uniformity of
its output is the only constraint, and that the generator does not need to be
cryptographically secure [2]:

“We do not care about the secrecy or predictability of the internal state
of PRNG, but only require (pseudo-)random properties for the Rs for
statistical purposes as discussed in the next sections. Therefore, we can
safely use a cheap LFSR to derive R with good enough randomness.”

The authors therefore chose to implement it as an LFSR, but our attack only
relies on its reduced entropy; it remains valid with any other pseudo-random
generator with a 64-bit internal state.

6.1 Deriving noisy information on K′

The main idea of the attack to recover information about K ′ is to find collisions
on the random seed ρ used to generate the randoms R1

1, . . . , R1
d, . . . , Rq

d. Indeed,
the set of d randoms {R1

i , . . . , R
d
i } used at the i-th round of one execution of

the protocol will be identical for any two traces for which the random seeds ρ
collide. As the generator producing the Rj

i has an internal state of 64 bits, it
requires 232 interactions with a tag to find such a collision on the seeds ρ.

Therefore, the attacker first chooses two nonces N1 and N2 and challenges
the tag with each of these nonces 232 times so that the seeds ρ will collide
for an execution of the protocol involving the nonce N1 and another execution
involving the nonce N2 about once. This way, the attacker is able to collect
values v

(1)
i = Ff (K, R

ai,1
i ) ⊕ Ff (K ′, N1) and v

(2)
i = Ff (K, R

ai,2
i )⊕ Ff (K ′, N2)

for i = 1, . . . , q. In order to get information on K ′ alone, the attacker hopes that
Ff (K, R

ai,1
i ) = Ff (K, R

ai,2
i ) so that:

v
(1)
i ⊕ v

(2)
i = Ff (K ′, N1)⊕ Ff (K ′, N2) .

When the seeds ρ collide however, this equation only holds when ai,1 = ai,2

or when ai,1 6= ai,2 but Ff (K, R
ai,1
i ) = Ff (K, R

ai,2
i ) over GF(2t). There are

d2 possible couples (Rai,1
i , R

ai,2
i ) and the first case happens with probability

d
d2 while the second one happens with probability 1

2t

(
1− d

d2

)
since Ff is well

balanced and the Ri are randomly chosen.



6.2 Decreasing the noise and solving for K′

A major issue with the approach described above is that the equations on K ′

collected by the attacker are very noisy—projected over GF(2) they are true
with probability 1

8 + 7
8

1
2 = 1

2 + 1
16 for the parameters chosen by the authors.

As explained earlier, the number of monomials in the bits of K ′ that occur in
Ff (K ′, N) is 640, and Table 1 shows that trying to solve the corresponding LPN
problem requires a complexity of 2130.

One possibility to overcome this issue is to decrease the noise affecting the
collected equation. In contrast with what happened for our first attack, it is
possible to get several noisy samples of the same equation. Therefore, by finding
several collisions on ρ, the value v

(1)
i ⊕ v

(2)
i obtained by the attacker is more likely

to be equal to Ff (K ′, N1) ⊕ Ff (K ′, N2) than to any other value. With enough
collisions, the attacker is thus able to recover the value Ff (K ′, N1)⊕Ff (K ′, N2)
by voting for the value that appears the most often. As the analysis of such a
strategy is a little bit involved over GF(2t), we instead project each collected
equation over GF(2)t and consider each of the t boolean equations independently:
this yields a very lose upper-bound for the complexity of our attack.

Let us determine the probability that the majority vote for N versions of a
boolean equation is correct. Recall that each boolean equation collected by the
attacker is true with probability 1

2 + ε where ε = 1
16 . Therefore, let us assume

that the constant member is a random variable b distributed according to the
probabilities Pr[b = 0] = 1

2 + ε and Pr[b = 1] = 1
2 − ε. If we denote by bi the

constant member for the i-th version of the boolean equation, the mean value of
the random variable B =

⊕N
i=1 bi is ( 1

2 − ε)N and so the majority vote is wrong
when B > N

2 . The Chernoff bound shows that:

Pr
[
B > N

2

]
< e−Nε2(1+2ε)−1

.

To make the probability of getting a wrong equation become η, the attacker has
to perform a majority vote on N = −2ε2 ln(η) samples. To solve the linearized
system of 640 monomials, we need to get 640 correct equations, which happens
with probability (1 − η)640. As there are q = 60 rounds in one execution of the
protocol, the attacker needs Ñ = 232N 1

q (1− η)−640 interactions with the tag to
get a linearized system in the 640 monomials which is correct with probability
greater than 1

2 . For the parameters chosen by the authors, setting N = 4096 leads
to an error probability η = 0.00018, and thus to a total number of interactions
with the tag of Ñ = 238.4. The complexity to solve the linearized system is less
than 228 and thus negligible compared to the above complexity.

7 Conclusion

In this paper we studied the connections between the Ff RFID protocol and
the LPN problem. We showed several properties of the f function underlying
the Ff protocol and described two key-recovery attacks that build on these
properties. In our attacks, the adversary only requires interactions with the tag
and does not need to interact with the reader.
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