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Abstract

Transitive trust propagation on webs of trust (social networks representing trust relationships between
individuals) is a well-known pattern used to compute reputation, to defend against Sybil attacks and to
introduce incentives to cooperation in peer-to-peer applications. Based on the fact that it is difficult for an
attacker to get trusted by many honest users, it is possible to prove that some methods based on transitive
trust propagation are indeed resilient to attacks mounted by malicious users.
The other side of the coin is that honest users can be mistaken for malicious ones: such an event is likely
to happen when the web of trust has a high mixing time. Performing a random walk over the web of trust,
mixing time is the number of steps needed to ensure that the landing point of the random walk does not
depend on the starting node.
To help assessing the effectiveness of methods based on transitive trust propagation, we measure the mixing
time of four large and publicly available webs of trust. Our experimental results show that mixing time
is not directly related with well-known characteristics such as degree distribution or clustering coefficient.
Rather, they suggest that mixing time is an interesting metrics on its own, explained by the presence or
absence of long-range links in the social network.
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1 Introduction

Trust value computation is an important application of social networks: to decide
whether a user deserves to be trusted, endorsements received by peers are taken in
consideration. This approach can be used to secure collaborative applications, to
introduce incentives to cooperation in P2P networks, and to defend against Sybil
attacks.

The idea of transitive trust stems from a circular definition: given a network
of endorsements between users (a “web of trust”), a trusted user is one which is
endorsed by other trusted users. This idea is reflected into a pattern where trust
gets propagated “transitively” (e.g., “I trust people that my friends trust”) from
some pre-trusted nodes along paths in the social network. Underlying this is the
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assumption that honest users are connected to each other via a tight network of
connections, while malicious and/or fake ones won’t be able to trick more than a
few honest users into trusting them. Even if malicious users collude or create fake
identities, this won’t create problems since the endorsements received from untrusted
users won’t be taken in consideration.

A well-designed system can ensure that it is difficult for a malicious attacker to
get trusted. However, another issue must be taken into account: honest users should
be trusted. This happens more often if the former assumption – that is, having tight
trust relationships between honest nodes – is verified. When this happens, the social
network is fast mixing : after a short random walk over the network, the probability
distribution describing the endpoint of this random walk rapidly converges to the
stationary distribution of this random walk. By measuring mixing speed in a net-
work, we can therefore help assess the effectiveness of trust computation algorithms.

The small-world property discovered by Watts and Strogatz [21] is related to
mixing speed: small-world networks, while possibly highly clustered, have short
paths that connect arbitrary pairs of nodes. A fast mixing graph is necessarily a
small world, but the opposite is not true: even if short paths that connect arbitrary
pairs of nodes exist, random walks over the network can often remain confined in a
local cluster. For a small world network to be fast mixing, the “long range” edges that
connect different clusters do not only need to exist: they have to be a substantial
percentage, since otherwise most of the random walks would remain confined within
the originating cluster.

The small world property is widely observed in many kind of networks and it is
virtually ubiquitous in social network [18]. On the other hand, while the relevance
of mixing time in trust propagation algorithms is acknowledged [23,12], not much is
known about mixing time of real social networks. Systems that depend on mixing
speed are typically validated by running the trust propagation algorithm on a single
dataset and evaluating the performances of the algorithm under scrutiny [22], with-
out explicitly taking mixing speed into account. This work strives to fill this gap by
measuring mixing time on four different large-scale publicly available webs of trust,
by discussing the differences observed between them and by explaining these differ-
ences with a model based on the long-range connections between nodes in different
large clusters.

The rest of this paper is structured as follows: Section 2 discusses the relevance
of mixing speed with respect to applications in social networks; Section 3 introduces
the datasets and Section 4 shows measurements performed on them; in Section 5
we interpret the data obtained and propose a model describing mixing speed based
on the synthetic model for navigable small worlds created by Jon Kleinberg [11].
Section 6 concludes.

2 Background

This section introduces the concept of transitive trust on webs of trust and discusses
the importance of mixing speed in measures that rely on transitive trust propagation.
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Fig. 1. Transitive trust propagation. User A trusts B, who in turn trusts C. Since B is considered a good
recommender, C gets also trusted by A. This mechanism can happen recursively, so a (possibly lower) degree
of trust is propagated also to D.

2.1 Transitive Trust

A web of trust is a social network where connections express trust between individ-
uals. It may be modeled as either a directed or an undirected graph; in directed
graphs, an A → B edge expresses the information that A trusts B, while an undi-
rected edge connecting the two nodes represents mutual trust between the two prin-
cipals. An undirected web of trust can easily be converted to a directed network
where an undirected edge between A and B maps to both the A → B and the
B → A edges. Without loss of generality, we will thus refer to directed networks in
the following.

The core assumption of transitive trust is exemplified in Figure 1: trusted users
are considered faithful recommenders. Therefore, users that are recommended by
trusted users get trusted themselves, albeit possibly to a lower degree. This assump-
tion is not, in general, verified – in plenty of cases, people do not get along with
the friends of their friends. It is however a valuable heuristic, yielding both good
results and resilience to attack in many practical cases, as the rest of this section
will attest.

2.2 Mixing Time

As definition of mixing speed, we adopt the one described in the book of Mitzen-
macher and Upfal [16]. A random walk on a web of trust can be described by a
Markov chain whose states represent users and transitions represent web of trust
links. A unique equilibrium probability distribution π for this random walk is guar-
anteed to exist for all connected undirected graphs, and for all aperiodic strongly
connected directed graphs. A sufficient condition for a graph to be aperiodic is to
have cycles of lengths with greatest common divisor of 1. Since all of our graphs
are strongly connected and have cycles of length 2 and of length 3, the uniqueness
of the stationary distribution is guaranteed.

The variation distance between two probability distributions D1 and D2 on a
countable state space S is defined as

‖D1 −D2‖ =
1
2

∑
x∈S
|D1 (x)−D2 (x)| .

The variation distance between the probability distribution ptx of a random walk of
length t starting from node x and the stationary distribution π is

∆x (t) =
∥∥ptx − π∥∥ .(1)
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Given a threshold ε, we can now define the mixing time for node x as

τx (ε) = min {t : ∆x (t) ≤ ε}

and the mixing time for the whole network as

τ (ε) = max
x∈S

τx (ε) .

τ (ε) is therefore the length of time needed to ensure that the deviation between the
stationary probability distribution and ptx falls below ε for all values of x.

A network is regarded as fast mixing if τ (ε) is O (log n).

2.3 Trust Propagation and Mixing Speed

Many families of algorithms for computing reputation have been proposed based on
the transitive pattern; from them, we can highlight two recurrent strategies:

(i) Based on random walks: these approaches compute the probability that a ran-
dom walk that follows trust links starting from trusted nodes would land onto a
given node. The seminal work introducing this approach is PageRank [19], the
algorithm used by Google to rank web page relevance; algorithms using vari-
ations of this idea have been extensively used as foundation for trust metrics.
For a review, see [10].

(ii) Based on flow: the trust value given to a node is proportional to the maximal
flow (or, equivalently, the minimal cut) in the web of trust having pre-trusted
nodes as sources and the target node as sink [13,8].

Mixing time is correlated with the quotient cut problem [9]: finding a small number
of edges which disconnect a large number of nodes from the rest of the graph. If a
small quotient cut exists, then the network is slow mixing (and the maximal flow
between pairs of nodes will often be low); on the contrary, a fast mixing network has
no small quotient cut. Given the relationship between network cut and mixing speed,
in both cases the trust metrics distribute trust effectively between well-intentioned
nodes only if the network is fast-mixing. This means that, in a slow-mixing network,
the case where well-intentioned nodes are incorrectly recognized as malicious will be
frequent.

2.4 Sybil Attacks

Social networks and transitive trust propagation can be used to defend against Sybil
attacks, i.e. the cases where an attacker creates many malicious identities with the
goal of subverting a P2P system. Among them, two approaches can be isolated:

(i) Sybil attack-resistant reputation metrics [13,4,14]: the number of Sybil nodes
that will be able to cooperate in the network can be unlimited, but those nodes
will have low reputation. The application needs to be carefully designed so that
low-reputation nodes cannot damage the system.

(ii) Systems that aim to actually limit the number of Sybil identities [24,22,5] par-
ticipating in the system. This approach is less flexible in the sense that nodes
that are tagged as Sybils cannot interact with the rest of the network. Such
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an approach can also be implemented by creating a reputation system of the
former type, and only accepting in the P2P network nodes whose reputation
score exceeds a given threshold.

For these systems to be efficient, it is essential that the social network is fast-mixing:
when clusters of honest nodes are separated, some of them may be mistaken for
Sybils. Again, a slow mixing network would result in bad performances for the
algorithm taken in consideration.

2.5 Mix Networks

Mix networks are designed to anonymize communications by relaying them via chains
of proxy using nested encryption. Nagaraja [17] investigated the usage of social net-
works as underlying topologies, letting data be exchanged only between friends,
leveraging on the trust between them to ensure cooperation. The fast mixing prop-
erty is essential to ensure that the exit point of the proxy chain is not correlated
with the originator of the message without needing to resort to extremely long proxy
chains. Nagaraja measured the entropy of the probability distribution for the exit
point on various synthetic networks and one real social network from LiveJournal.
With respect to his work, we focus on measuring and comparing various real-world
social networks, showing that the mixing time can be very different from network
to network.

2.6 Other Applications

Fast mixing time is also essential to provide fast convergence for gossip algorithms
[2,6]: knowing the mixing time of social networks is essential to discuss the feasibility
of these algorithms in darknets (or “friend-to-friend networks”) [20]: peer-to-peer
networks where each node establishes connections only to trusted acquaintances. If
the social network has an adequately fast mixing time, then the algorithms can be
efficient enough to be deployed unmodified on the social network. Conversely, a
slow-mixing social network would not be adequate for this kind of applications.

Transitive trust propagation has also been used in recommender systems [15,25,7],
based on the homophily property stating that “birds of a feather flock together”:
friends in the social network will have similar preferences. In this case, a slow mix-
ing social network will result in stronger personalization of the recommendation,
while a fast mixing social network will result in recommendations which are more
homogeneous between users.

3 Datasets

In this section, we describe the datasets on which we performed our mixing speed
measurement. The Advogato, DBLP and Epinions datasets were obtained from the
Trustlet.org website 3 ; the OpenPGP web of trust has been obtained via the “Web
of trust statistics and pathfinder” website 4 developed by Jörgen Cederlöf. All the

3 http://www.trustlet.org/wiki/Datasets
4 http://www.lysator.liu.se/~jc/wotsap/
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graphs have been managed using the Python NetworkX library 5 .

• Advogato 6 is an online community devoted to free software. Its participants
certify each other as belonging to different levels of trust (Observer, Apprentice,
Journeyer and Master). A custom trust metric [13] assigns one of those labels to
each user of the website, assigning them different rights (for example, untrusted
users cannot post stories on the front page). In our analysis, we didn’t take into
account the certification level, considering the network as unweighted.

• DBLP 7 is a computer science bibliography listing more than 1.2 millions pub-
lications. The web of trust, in this case, is the graph connecting authors who
co-authored papers.

• Epinions 8 is a website of consumer-generated reviews. Users register for free
and write reviews about any kind of product; they can actually be paid if their
reviews are found useful. Each user can add others to their “web of trust”, i.e.
the set of reviewers “whose reviews and ratings have been consistently found to
be valuable” 9 .

• OpenPGP is a standard for privacy and authentication based on public-key cryp-
tography [3]. The system relies on mutual authentication of public keys: users
certify each other that a public key belongs to a given individual they met in per-
son, and make those signed attestations public by uploading them to a network
of “keyservers”. No trusted central certification authority is required: a user’s
identity can be validated if some other trusted user has signed their key. It is
sometimes customary to organize “key-signing parties” where attendants verify
each other’s identities and mutually certify their keys.

Since the notion of equilibrium distribution for random walks has meaning only on
connected components, we performed our measurements only on the biggest (“giant”)
strongly connected component (SCC) of each dataset. The giant components of each
network have sizes which is orders of magnitude larger than all other SCCs in the
network; moreover, even if many nodes do not belong to the giant components, most
of the links of the networks belong to them. This is explained by the fact that nodes
outside the giant SCC are generally “less active”, with none or few links between
them. Information about the strongly connected components in our datasets is
synthesized in Table 1 on the following page.

4 Measurements

In Table 2 on the following page, we show various key features of our datasets.
For the undirected case, the degree is the number of incident edges per node; in a
directed network, the out-degree and in-degree refer respectively to outgoing and
incoming edges. Obviously, the average outdegree and average indegree have the
same value.

5 http://networkx.lanl.gov/
6 http://advogato.org/
7 http://www.informatik.uni-trier.de/~ley/db/
8 http://www.epinions.com/
9 From the Epinions Web of Trust FAQ (http://www.epinions.com/help/faq/?show=faq_wot).
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Network Giant SCC nodes Giant SCC edges Second biggest SCC size

Advogato 23.59% 82.27% 3

DBLP 84.78% 94.82% 46

Epinions 31.88% 83.98% 15

Table 1
Percentage of nodes and edges belonging to the biggest (“giant”) strongly connected components. All other

connected components have size orders of magnitude smaller. Most of the edges belong to the giant
strongly connected component, suggesting that nodes outside of it are peripheric and less active in the
social network. No data is available about OpenPGP, since our source already excluded nodes not

belonging to the giant strongly connected component.

Network Type Nodes Edges Avg. degree C

Advogato Directed 3,254 47,227 14.51 0.2527

DBLP Undirected 565,612 2,087,803 7.38 0.6409

Epinions Directed 36,490 602,722 16.52 0.1763

OpenPGP Directed 41,292 414,424 10.04 0.3641

Table 2
Statistics about the giant strongly connected components of our datasets. The C column refers to the

clustering coefficient defined in Equation 2.

4.1 Clustering Coefficient

The clustering coefficient C is a measure introduced by Watts and Strogatz [21]
to describe “small world” networks. For a node i with degree ki in an undirected
network G = (V,E), the clustering coefficient is defined as

Ci =
2 |{ejk ∈ E such that eij ∈ E ∧ eik ∈ E}|

ki (ki − 1)
,

that is the number of neighbors of i which are connected by an edge divided by all
possible ki(ki−1)

2 pairs. In directed graphs, since there may be two edges between j
and k (j → k and k → j), this value becomes

Ci =
|{ejk ∈ E such that eij ∈ E ∧ eik ∈ E}|

ki (ki − 1)
,

The value C representative of the whole network is obtained by simply averaging
all the Ci values:

C =
∑

i∈V Ci

|V |
.(2)

The clustering coefficient C measures the “cliquishness” of a graph by taking into
account the local neighborhoods of each node. Networks where most links are part
of tightly-connected communities (i.e., subgraphs where each node is connected to
many of the others) have high clustering coefficient. Intuition may suggest that
networks with higher C have slower mixing times, but, as we will show, our evidence
shows that these measures are not obviously correlated.

7



Dell’Amico and Roudier

100 101 102 103 104

(In-)Degree

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
e
q
u
e
n
cy

Advogato
DBLP
Epinions
OpenPGP

Fig. 2. Degree distribution: frequency of nodes with degree higher than x. It can be described as 1 minus
the CDF (cumulative distribution function) of node degrees, and would result in a straight line in this
log-log plot for a power-law degree distribution.

4.2 Degree Distribution

Figure 2 shows the degree distribution of these datasets. In all cases, there are
“hubs” with a number of links which is much higher than the average, but the
degree distribution does not correspond to the power laws which are often observed
in complex networks [1]. It could be imagined that the presence of large hubs would
lead to faster mixing (after all, many different paths would rapidly converge to the
same hub) but, again, we will not observe a clear correlation between these features
in our datasets.

4.3 Mixing Time

Since the mixing time defined in Section 2.2 is an asymptotic behavior, it is not
possible to directly measure it in our datasets. We can however measure the variation
distance ∆x (t) from the equilibrium of Equation 1 on page 3 and show how quick
is its convergence to 0.

In our experiments, we computed the values of ∆x (t) for a random sample of
1,000 nodes on each network. The values of ptx can be computed in a straightforward
way by representing the Markov chain as a matrix and multiplying the starting
probability distribution by that matrix for t times; the equilibrium distribution is
the dominant eigenvector of that matrix. To perform these calculations, we adopted
the sparse matrix library included in the Python SciPy package 10 .

In Figure 3 on the following page we plot the variation distance ∆x (t) defined in
Equation 1 on page 3 against t for each of our datasets. It can be easily noticed that
mixing speeds are very different between the four datasets: OpenPGP has by far

10http://www.scipy.org/
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Fig. 3. Mixing time: variation distances ∆x (t) from Equation 1 on page 3.

the slowest mixing speed; the mixing speed of DBLP is slow as well, while a random
walk in Epinions and Advogato converges close to the stationary distribution in as
little as 20 steps.

5 Discussion

Network sizes and degree distributions does not seem closely related with mixing
time: the Epinions and the OpenPGP networks are similar in size, but they have
completely different characteristics in term of mixing time. Moreover, a “fast mixing”
network is defined as having mixing time logarithmic with respect to size; even the
two orders of magnitude of size difference between the smaller Advogato network (3
thousands nodes, 47 thousands edges) and the larger DBLP network (566 thousands
nodes, 2 millions edges) would not justify such a difference in terms of mixing time.
The degree distribution also does not appear closely related with mixing time: for
example, the Advogato network has smaller “hubs” than OpenPGP and Epinions
but has faster mixing than both.

The clustering coefficient (reported in Table 2 on page 7) may appear as a more
correlated measure: after all, a network where nodes are divided into tightly-knit
subcommunities should have a high clustering coefficient (because two members of
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α = 0 α = 1 α = 2 α = 3

Fig. 4. Kleinberg graphs with the same number of nodes and edges. As the α parameter grows, the graph
appears less visually cluttered because long-range links become shorter.

the same community are likely to be connected to a common third neighbor) and
slow mixing speed (because random walks are going to remain often confined in
the same cluster). Results do not confirm this intuition either: while it is true
that the two “slow mixing” networks (OpenPGP and DBLP) have higher clustering
coefficients than Advogato and Epinions, OpenPGP has a definitely slower mixing
speed than DBLP while having a lower clustering coefficient; the same can be said
about respectively Advogato and Epinions.

We believe that, while both clustering coefficient and mixing speed denote the
presence or absence or clusters, the clusters they identify belong to different scales:
while a high clustering coefficient is indicative of the presence of many small com-
munities such as cliques of friends, a low mixing speed is instead indicative of the
presence of larger communities (for example, nations) that have a much lower con-
nection density.

It is very indicative that the two “slow-mixing” networks are those where ac-
quaintances are usually a consequence of physical meetings: people usually meet in
the same place to write a paper together (and establish a connection in the DBLP
network), or when they exchange the fingerprints of their OpenPGP public keys.
This makes it quite unlikely that two people residing in different nations establish a
connection. For a random walk to escape the large-scale cluster of a given nation or
continent, the random walk has to encounter a node with connections outside this
cluster and actually choose one of those connections as exit point for the random
walk. On the other hand, a purely Internet-based community such as Epinions or
Advogato encourages the creation of links between different parts of the globe. We
attribute the difference in mixing speed between DBLP and OpenPGP to the fact
that computer science researchers are more likely to travel and establish connections
across the world than ordinary users of cryptographic applications.

In our view, the main feature differentiating fast-mixing networks and slow-
mixing ones is the presence of many long-range links connecting users in completely
unrelated places or communities. A network with a high clustering coefficient can
be fast mixing if the links escaping the tightly-connected cliques lead to “far away”,
unrelated, communities. Conversely, a network with a low clustering coefficient can
be slow mixing if nodes are divided into large, sparse communities, and very few
edges connect nodes in these communities.
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Fig. 5. Median variation distances ∆x (t) for Kleinberg networks generated with different values of α. This
experiment has been performed on 100× 100 grids containing thus 10,000 nodes.

5.1 The Kleinberg Model

We claim that network mixing speed depends eminently on long-range links. To
further support this explanation, we adopted Jon Kleinberg’s model for navigable
small world networks [11]. In this model, nodes belong to a 2D grid network mim-
icking a clustered social structure: each node is connected to its neighbors in the
grid; each u node also adds a directed long-range link to another random node. The
probability of choosing a node v is proportional to r−α, where r is the “Manhattan”
distance between u and v (number of grid links that must be traversed in order to
reach v from u). The α parameter influences the length of these random links, with
higher α resulting in shorter connections: social networks where far-away clusters
are unlikely to be connected are represented by a higher value of α. Figure 4 on the
previous page shows some small graphs generated with Kleinberg’s model.

We measured the mixing speed in synthetic Kleinberg networks in the same
way we did with the real-world social networks described earlier in this paper. In
Figure 5, we plot the variation distances with respect to the equilibrium distribution.
Confirming our hypothesis, the α parameter controlling the length of random edges
has a dramatic impact on the network mixing time. It is interesting to note that
the mixing time does not change much when passing from α = 1 (the probability
of choosing a node is inversely proportional to its distance) to α = 0 (endpoints for
long-range edges are chosen uniformly at random). We interpret this by the fact
that, when α = 1, most of the random edges lead to distant nodes anyway. In fact,
the cumulative probability of selecting far away endpoints is higher than for close
ones, simply because the far nodes outnumber the neighbors.

11
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6 Conclusions

Mixing time is an interesting metric, succinctly describing the presence or absence of
large-scale isolated communities in a network. When characterizing a complex net-
work, it is a useful addition to known metrics such as clustering coefficient, average
diameter and degree distribution.

Our study shows that mixing time is very different across networks, and we
proposed an explanation based on the “length” of links connecting nodes in different
large-scale clusters. This hypothesis is substantiated by the fact that the slowest-
mixing datasets that we analyzed are those requiring physical interaction for the
creation of connections. On the other hand, the fast mixing speed of Internet-
based networks can be attributed to the ease of creating social links between users
belonging to very different communities. To describe network mixing speed, we re-
used the model developed by Kleinberg to describe navigable small worlds network:
confirming our hypothesis, the parameter tuning the length of random links in the
network has a dramatic influence over the mixing speed.

Knowing the mixing time of networks is important to design effective algorithms.
Reputation metrics rely on fast mixing time in order to discriminate effectively
between honest and lazy, malicious or fake nodes. Mixing speed is also essential
when considering gossiping algorithms, “friend-to-friend” darknets, and networks
representing homophily for recommender systems.

Our results also yield an interesting lesson that can be applied to webs of trust
and reputation systems: insisting that users add to their webs of trust only well-
known peers results in better quality of trust links. This makes it harder for malicious
users to obtain high reputation values; on the other hand, our results show that this
can have the unwelcome effect of discouraging the long-range links that are essential
to make reputation systems work smoothly, and honest users may suffer from being
not trusted. This trade-off should be carefully taken into account when designing
reputation systems.
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