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Abstract—In this paper, we propose a method to identify
and group together traces left on low interaction honeypotsby
machines belonging to the same botnet(s) without having anya
priori information at our disposal regarding these botnets. In
other terms, we offer a solution to detect new botnets thanks
to very cheap and easily deployable solutions. The approachis
validated thanks to several months of data collected with the
worldwide distributed Leurr é.com system. To distinguish the
relevant traces from the other ones, we group them according
to either the platforms, i.e. targets hit or the countries of
origin of the attackers. We show that the choice of one of
these two observation viewpoints dramatically influences the
results obtained. Each one reveals unique botnets. We explain
why. Last but not least, we show that these botnets remain
active during very long periods of times, up to 700 days, even
if the traces they left are only visible from time to time.
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I. I NTRODUCTION

There is a consensus in the security community to say that
botnets are today’s plague of the Internet. A lot of attention
has been paid to detect and eradicate them. Several ap-
proaches have been proposed for this purpose. By identifying
the so calledCommand and Control (C&C)channels, one
can keep track of all IPs connecting to it. The task is more
or less complicated, depending on the type ofC&C (IRC[1],
[2], [3], [4], HTTP [5], [6], fast-flux based or not [7], [8],
P2P [9], [10], [11], etc.) but, in any case, one needs to have
some insight about the channels and the capability to observe
all communications on them. Another approach consists in
sniffing packets on a network and in recognizing patterns of
bot-like traffic. This is, for instance, the approach pursued
by [12], [13] and [14], [15]. The solutions mostly aim at
detecting compromised machines in a given network rather
than to study the botnets themselves as they only see the
bots that exist within the network under study.

In this work, we are interested in finding a very general
technique that would enable us to count the amount of
various botnets that exist, their size and their lifetime. As
opposed to previous work, we are not interested in studying
a particular botnet in details or in detecting compromised
nodes in a given network. We also do not want to learn
the various protocols used by bots to communicate in order

to infiltrate the botnets and obtain more precise information
about them [4]. By doing so, we certainly will not be able
to get as much in depth information about this or that botnet
but our hope is to provide insights into the bigger picture of
today’s (and yesterday’s) botnets activities.

The solution described in the following is generic and
simple to deploy widely. It relies on a distributed system of
low interaction honeypots. Based on the traces left on these
honeypots, we provide a technique that groups together the
traces that are likely to have been generated by groups of
machines controlled by a similar authority. Since we have
no information regarding theC&C they obey to, we do not
know if these machines are part of a single botnet or if they
belong to several botnets that are coordinated. Therefore,to
avoid any ambiguity, we write in the following that they are
part of a army of zombies. An army of zombiescan be a
single botnet or a group of botnets the actions of which are
coordinated during a given time interval.

In this paper, we propose a technique to identify and study
the size as well as the lifetime of sucharmies of zombies.
The approach does not pretend to be able to identify all
armies of zombiesthat could be found in our dataset. At
the contrary, we show that, depending on how the dataset is
preprocessed, i.e. depending on the observation viewpoint,
different armies can be found. Exhaustiveness is not our
concern at this stage but, instead, we are interested in
offering an approach that could easily be widely adopted.

The idea exposed here is similar, in its spirit, to the one
presented in the paper coauthored by Allmann et al. [16].
However, instead of ”[...] leveraging the deep understanding
of network detectives and the broad understanding of a large
number of network witnesses to form a richer understanding
of large-scale coordinated attackers”, our approach relies on
a diverse yet limited number of low interaction honeypots.
They do not need to be neither as smart as the network de-
tectives nor as numerous as the network witnesses proposed
in that work. Both approaches are quite complementary.

Finally, Kitti et al have proposed an approach to detect
related attacksin [17]. The method has been validated
thanks to data collected from DShield project [18]. In that
work, related attacks are understood as attacks mounted



by the same sources against different networks which is a
narrower view of the problem than ours.

The remainder of the paper is organised as follows.
Section II defines the terms used in the paper. Section III
describes the dataset we have used and what we mean when
we refer to the notion ofobservation viewpoint. It provides
some motivation for the work. In Section IV, we describe
the method itself and provide the main characteristics of
the results obtained as well as two precise, yet anecdotal,
examples of armies detected thanks to our method. Finally,
Section V concludes the paper.

II. T ERMINOLOGY

In order to avoid any ambiguity, we introduce a few terms
that will be used throughout the text. Some of them are taken
from [19]. Readers who are familiar with the Leurré.com
project are invited to skip this Section.

• Platform : A physical machine simulating, thanks to
honeyd [20], the presence of three distinct machines.
A platform is connected directly to the Internet and
collects tcpdump traces that are fed daily into the
centralized Leurré.com’s database.

• Leurr é.com: The Leurré.com project is a distributed
system of such platforms deployed in more than 50
different locations in 30 different countries (see [21]
for details)

• A Source corresponds to an IP address that has sent
at least one packet to, at least, one platform. A given
IP address can correspond to several distinct sources.
Indeed, a given IP remains associated to a given source
as long as there is no more than 25 hours between 2
packets received from that IP. After that, a new source
identifier will be assigned to the IP. By grouping pack-
ets by sources instead of by IPs, we minimize the risk
of gathering packets sent by distinct physical machines
that have been assigned the same IP dynamically after
25 hours, or machines that have the same IP address
seen from the outside due to side-effect of Network
Address Translation.

• An Attack , in the context of this paper, is defined
as the packets exchanged between one source and one
platform.

• A Cluster is made of a group of sources that have left
highly similar network traces on all platforms they have
been seen on. Clusters have been precisely defined in
[22].

• An Observed cluster time seriesΦT,c,op is a function
defined over a period of timeT , T being defined as
a time interval (in days). That function returns the
amount of sources per day associated to a clusterc

that can be seen from a givenobservation viewpoint
op. The observation viewpoint can either be a specific
platform or a specific country of origin. In the first
case,ΦT,c,platformX

returns, per day, the amount of
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Figure 1. on the top plot, cluster 60232 attacks seven platforms from day
393 to day 400. On the bottom plot, peak of activities of cluster 0 from
Spain on day 307

sources belonging to clusterc that have hitplatformX .
Similarly, in the second case,ΦT,c,countryX

returns,
per day, the amount of sources belonging to clusterc

that are geographically located incountryX . Clearly,
we always have:ΦT,c =

∑∀i∈countries
ΦT,c,i =

∑∀x∈platforms
ΦT,c,x

• An attack event is defined as a set of observed cluster
time series exhibiting a particular shape during a limited
time interval. The set can be a singleton. We denote the
attack eventi as ei = (Tstart, Tend, Si) where the at-
tack event starts atTstart, ends atTend andSi contains
a set of observed cluster time series identifiers(ci, opi)
such that allΦ[Tstar−Tend),ci,opi

are strongly correlated
to each other∀(ci, opi) ∈ Si. As an example, the top
plot of Figure 1 represents the attack event 225 which
consists of a given cluster attacking seven platforms.
Each curve represents the amount of sources of that
cluster observed from one of these platforms. As we can
observe, the attack event starts at day 393 and ends at
day 400. According to our convention, we havee225 =
(393, 400, {(60232, 5), (60232, 8), ..., (60232, 31)}).
Similarly, the bottom plot of Figure 1 represents
an attack event due to one cluster during a single
day and mostly due to a single country (e14 =
(307, 307, {(0, ES)}))

III. IMPACT OF THE OBSERVATION VIEWPOINT

A. Dataset Description

For our experiments, we have selected the traces observed
on 40 platforms out of 50 at our disposal. All these 40
platforms have been running for more than 800 days. None
of them has been down for more than 10 times and each
of them has been up continuously for at least 100 days at
least once. They all have been up for a minimum of 400
days over that period. We denote byT , the time series
representing the total amount of sources observed, day by



day, on all these 40 platforms. We can split that time series
per country1 of origin of the sources. This gives us 231
time seriesTSX where theith point of such time series
indicates the amount of sources, observed on all platforms,
located in countryX . We represent byTS L1 the set of
all these Level 1 time series. To reduce the computational
cost, we keep only the countries from which we have seen at
least 10 sources on at least one day. This leaves us with 85,
instead of 231, time series. We represent byTS L1′ this
refined set of Level 1 time series. Then, we split each of
these time series by cluster to produce the final set of time
seriesΦ[0−800),ci,countryj

∀ci and∀countryj ∈ bigcountries.
The ith point of the time seriesΦ[0−800),X,Y indicates the
amount of sources originating from countryY that has been
observed on dayi attacking any of our platforms thanks to
the attack defined by means of the clusterX . We represent
by TS L2 the set of all these Level 2 time series. In this case
|TS L2| is equal to 436,756 which corresponds to 3,284,551
sources.

As explained in [19], time series that barely vary in
amplitude over the 800 days are meaningless to identify
attack events and we can get rid of them. Therefore, we only
keep the time series that highlight important variations. We
represent byTS L2′ this refined set of Level 2 time series.
In this case|TS L2′| is equal to 2,420 which corresponds
to 2,330,244 sources.

We have done the very same splitting and filtering by
looking at the traces on a per platform basis instead of on
a per country of origin basis. The corresponding results are
given in Table I.

TS consists of 3,477,976 sources
OVP country platform
|TS L1| 231 40
|TS L1

′| 85 40
(94,4% TS) (100% TS)

|TS L2| 436,756 395,712
|TS L2

′| 2,420 2,127
sources 2,330,244 2,538,922

(67% of TS) (73% of TS)

Table I
DATASET DESCRIPTION: TS: all sources observed on the period

under study, OV P : observation viewpoint, TS L1: set of time
series at country/platform level, TS L1

′ : set of significant time
series inTS L1, TS L2 : set of all cluster time series, TS L2

′

set of strongly varying cluster time series

B. Attack Event Detection

Having defined the time series we are interested in, we
now need to identify all time periods during which 2 or more
of these observed cluster time series are correlated together.

1We use Maxmind to get the geographical location of IPs

To do this, in a first step, we use a sliding window of L
days to compute the Pearson correlation of all pairs of time
series. That is, we compute the correlation of N time series
for T-L+1 time interval{[1, L], [2, L + 1], . . . [T − L, T ]}.
As a result, we obtain, for every pair of time series in N,
the time intervals during which they are correlated. Then
we group together all pairs of cluster time series that are
correlated together over the same period of time. Each such
group constitutes anattack eventas defined before.

It is worth noting that this method, which we refer to as
M1 in the sequel, can not detect attack events made of a
single cluster time series. This is typically the case for peaks
of activities occurring on a single day. In such cases, it is
more efficient to apply another, less expensive, algorithm to
identify the attack events. For the sake of conciseness, we
do not to include the description of this second method,M2.

C. Impact of the Observation Viewpoint

1) Results on Attack Event Detection:We have applied
these algorithms against our 2 distinct datasets, namely
TScountry and TSplatform. As shown in Table II, for
TScountry, method M1 (resp. second method M2) has found
549 (resp. 43) attack events, accounting for a total of
552,492 sources (resp. 21,633). Similarly, withTSplatform,
applying M1 (resp. M2) leads to 564 (resp. 126) attack
events, containing 550,305 (resp. 28,067) sources.

Table II
RESULT ON ATTACK EVENT DETECTION

AE-set-I(TScountry) AE-set-II(TSplatform)
No.AEs No.sources No.AEs No.sources

M1 549 552,492 564 550,305
M2 43 21,633 126 28,067
Total 592 574,125 690 578,372
No.AEs: amount of attack events
M1,M2: methods represented in Section III-B

2) Analysis: The table highlights the fact that depending
on how we decompose the initial set of traces of attacks (i.e
the initial time seriesTS), namely by splitting it by countries
of origin of the attackers or by platforms attacked, different
attacks events show up. To assess the overlap between attack
events detected from different observation viewpoints we use
the common source ratio, namely csr, measure as follows:

csr(e, AEop′ ) =

∑

∀e′∈AEop′
|e ∩ e′|

|e|

in whiche ∈ AEop and|e| is the amount of sources in attack
evente, AEop is AEcountry andAEop′ is AEplatforms (or
vice versa).

Figure 2 represents the two cumulative distribution func-
tions corresponding to this measure. The point(x, y) on
the curve means that there arey ∗ 100% of attack events
obtained thanks toTcountry (respTplatforms) that have less
thanx ∗ 100% of sources in common with all attack events
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obtained thanks toTplatforms (respTcountry). TheTcountry

curve represents the cumulative distribution obtained in
this first case and theTplatforms one represents the CDF
obtained when starting from the attacks events obtained
with the intial Tplatforms set of time series. As we can
notice, around 23% (resp. 25%) of attack events obtained
by starting from theTcountry (resp.Tplatform ) set of time
series do not share any source in common with any attack
events obtained when starting the attack even identification
process from theTplatform (resp. Tcountry ) set of time
series. This corresponds to 136 (16,919 sources) and 171
(75,920 sources) attack events not being detected. In total,
there are 288,825 (resp. 293,132) sources present in AE-Set-
I (resp. AE-Set-II), but not in AE-Set-II (resp. AE-Set-I).
As a final note, there are in total 867,248 sources involved
in all the attack events detected from both datasets which
correspond to 25% the attacks observed in the period under
study.

3) Explanation: The reasons why we can not rely on a
single viewpoint to detect all attacks events are described
below.
Split by country: Suppose we have one botnetB made
of machines that are located within the set of countries
{X, Y, Z}. Suppose that, from time to time, these machines
attack our platforms leaving traces that are also assigned to a
clusterC. Suppose also that this clusterC is a verypopular
one, that is, many other machines from all over the world
continuously leave traces on our platforms that are assigned
to this cluster. As a result, the activities specifically linked
to the botnetB are lost in the noise of all other machines
leaving traces belonging toC. This is certainly true for the
cluster time series (as defined earlier) related toC and this
can also be true for the time series obtained by splitting
it by platform, Φ[0−800),C,platformi

∀platformi ∈ 1..40.
However, by splitting the time series corresponding to cluster
C by countries of origins of the sources, then it is quite
likely that the time seriesΦ[0−800),C,countryi

∀countryi ∈
{X, Y, Z} will be highly correlated during the periods in
which the botnet present in these countries will be active

against our platforms. This will lead to the identification of
one or several attack events.
Split by platform: Similarly, suppose we have a botnet
B′ made of machines located all over the world. Suppose
that, from time to time, these machines attack a specific
set of platforms{X, Y, Z} leaving traces that are assigned
to a clusterC. Suppose also that this clusterC is a very
popular one, that is, many other machines from all over
the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activ-
ities specifically linked to the botnetB′ are lost in the
noise of all other machines leaving traces belonging to
C. This is certainly true for the cluster time series (as
defined earlier) related toC and this can also be true
for the time series obtained by splitting it by countries,
Φ[0−800),C,countryi

∀countryi ∈ bigcountries. However, by
splitting the time series corresponding to clusterC by
platforms attacked, then it is quite likely that the time
seriesΦ[0−800),C,platformi

∀platformi ∈ {X, Y, Z} will be
highly correlated during the periods in which the botnet
influences the traces left on the sole platforms concerned
by its attack. This will lead to the identification of one or
several attack events.

The top plot of Figure 3 represents the attack event 79.
In this case, we see that the traces due to the cluster 175309
are highly correlated when we group them by platform
attacked. In fact, there are 9 platforms involved in this
case, accounting for a total of 870 sources. If we group
the same set of traces by country of origin of the sources,
we end up with the bottom curves of Figure 3 where the
specific attack event identified previously can barely be seen.
This highlights the existence of a botnet made of machines
located all over the world that target a specific subset of the
Internet.
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Figure 3. top plot represents the attack event 79 related to cluster 17309
on 9 platforms. The bottom plot represents the evolution of this cluster by
country. Noise of the attacks to other platforms decrease significantly the
correlation of observed cluster time series when split by country



IV. ON THE ARMIES OFZOMBIES

So far, we have identified what we have called attack
events which highlight the existence of coordinated attacks
launched by a group of compromised machines, i.e. a zombie
army. It would be interesting to see if the very same army
manifests itself in more than one attack event. To do this,
we propose to compute what we call theaction sets. An
action set is a set of attack events that are likely due to
the same army. In this Section, we show how to build these
action sets and what information we can derive from them
regarding the size and the lifetime of the zombie armies.

A. Identification of the armies

1) Similarity Measures:In its simplest form, a zombie
army is a classical botnet. It can also be made of several
botnets, that is several groups of machines listening to
distinct C&C. This is invisible to us and irrelevant. What
matters is that all the machines do act in a coordinated way.
As time passes, it is reasonable to expect members of an
army to be cured while others join. So, if the same army
attacks our honeypots twice over distinct periods of time,
one simple way to link the two attack events together is by
noticing that they have a large amount of IP addresses in
common. More formally, we measure the likelihood of two
attacks eventse1 and e2 to be linked to the same army by
means of their similarity defined as follows:

sim(e1, e2) =

{

max( |e1∩e2|
|e1|

,
|e1∩e2|
|e2|

) if |e1 ∩ e2| < 200

1 otherwise

We will say thate1 ande2 are caused by the same army
if and only if sim(e1, e2) > δ. This only makes sense for
reasonablevalues ofδ. We address this issue in the next
subsections.

2) Action Sets:We now use thesim() function to group
together attack events into action sets. To do so, we build a
simple graph where the nodes are the attack events. There
is an arc between two nodese1 and e2 if and only if
sim(e1, e2) > δ. All nodes that are connected by at least
one path end up in the same action set. In other words, we
have as many action sets as we have disconnected graphs
made of at least two nodes; singleton sets are not counted
as action sets.

We note that our approach is such that we can have
an action set made of three attack eventse1, e2 and e3

where sim(e1, e2) > δ and sim(e2, e3) > δ but where
sim(e1, e3) < δ. This is consistent with our intuition that
armies can evolve over time in such a way that the machines
present in the army can, eventually, be very different from
the ones found the first time we have seen the same army
in action.

3) Results: We skip, for the sake of conciseness, the
discussion on how to define the optimal value for the
thresholddelta. In this paper, results presented have been

obtained with a value ofδ = 10%. Other values could,
possibly, have delivered more armies but the point we want
to make is that these armies exist, not that we have found a
method to find all of them.

For such value ofδ we have identified 40 (resp. 33) zom-
bie armies from AE-set-I (resp. AE-set-II) which have issued
a total of 193 (resp. 247) attack events. Figure 4 represents
the distribution of attack events per zombie army. Its top
(resp. bottom) plot represents the distribution obtained from
AE-set-I(resp. AE-set-II). We can see that the largest amount
of attack events for an army is 53 (resp. 47) whereas 28
(resp. 20) armies have been observed only two times.
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Figure 4. Zombie Army Size

B. Main Characteristics of the Zombie armies

In this section, we will analyze the main characteristic of
the zombie armies.
Lifetime of Zombie Army Figure 5 represents the cumula-
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tive distribution of minimum lifetime of zombie armies ob-
tained fromTSplatform andTScountry (see Section IV-A3).
According to the plot, around 20% of zombie armies have
existed for more than 200 days. In the extreme case, two
armies seems to have survived for 700 days! Such result
seems to indicate that either i) it takes a long time to cure
compromised machines or that ii) armies are able to stay
active for long periods of time, despite the fact that some
of their members disappear, by continuously compromising
new ones.
Lifetime of Infected Host in Zombie Armies In fact,
we can classify the armies into two classes as mentioned



in the previous Section. For instance, Figure 6a represents
the similarity matrix of zombie army 33, ZA33. To build
this matrix, we first order its 42 attack events according to
their time of occurrence. Then we represent their similarity
relation under an42×42 similarity matrixM . The cell (i,j)
represents the value ofsim() of the ordered attack event
ith and jth. Since,M is a symmetric matrix, only half of
it is shown. As we can see, we have a very high similarity
measure between almost all the attacks events, around 60%.
This is also true between the very first and the very last
attack events. In this case, the time elapsed between the
first and the last event is 753 days!

(a)

(b)

Figure 6. Renewal rate of zombie armies

Figure 6b represents an opposite case, the zombie army
31, ZA31, consisting of 46 attack events. We proceed as
above to build its similarity matrix. The important values
are now located around the main diagonal ofM . It means
that the attack eventith has the same subset of infected
machines with only few attack events happening just before
and after it. In this case, this army changed its attack vector
over time, launching first attacks against 4662 TCP, then
1025 TCP, then 5900 TCP, 1443 TCP, 2967 TCP, 445
TCP,etc. Its lifetime is 563 days!

C. Illustrated Examples

After having offered a high level overview of the method
and main characteristics of the results obtained, we feel itis
important to give a couple of concrete, simple, examples of
armies we have discovered. This should help the reader in
better understanding the reality of two armies as well as what
they look like. This is what we do in the next two subsections
where we briefly present two representative armies.

1) Example 1:Zombie army 29, ZA-29, is an interesting
example which has only been observed attacking a single
platform. However, 16 distinct attack events are linked
to that army! Figure 7a presents its two first activities
corresponding to the two attack events 56 and 57. Figure 7b
represents other four attack events. In each attack event,
the army tries a number of distinct clusters such as 13882,
14635, 14647, 56608, 144028, 144044, 149357, 164877,
166477. These clusters try many combinations of Windows
ports (135 TCP, 139 TCP, 445 TCP) and Web server (80
TCP). The time interval between the first and the last
activities is 616 days !
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Figure 7. attack events of ZA29

2) Example 2:The zombie army 33, ZA-33, consisting
of 42 attack events (already mentioned in Section IV-B)
is an example of a multi-botnets zombies army. In fact, it
seems that several botnets do different jobs and from time to
time, they do some tasks together. In fact, in some cases, an
important fraction of the machines in the attack events come
from Italy and attack a single platform located in China. The
two top plots in Figure 8 represent such cases. The attack
event 291 consists of several clusters attacking port 64783T.
The attack event 195 also is mostly made of Italian sources
and also uniquely target a platform in China but it is made
of several clusters targeting port 9661 TCP. Interestingly
enough, in some other cases, other attack events of the same



army ZA-33 consistently sends ICMP packets only, are made
of Greek sources, targeting a single platform also located in
Greece (see the two plots in the middle of Figure 8). As
an example of coordination of two components of ZA33,
the two plots in the bottom of Figure 8 represent two attack
events (out of four) coming mostly from these two countries
and attacking these two platforms. As a reminder, by design,
there always is an overlap in terms of IP sources between
the attack events. For instance, attack event 483 has 41 IP
addresses in common with AE 307, whereas 454 and 483
have 47 IP addresses in common.... The interval between the
first and the last attack event issued by this zombie army is
753 days.
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Figure 8. 6 attack events from zombie army 33

V. CONCLUSION

In this paper, we have addressed the important attack
attribution problem. We have shown how low interaction
honeypots can be used to track armies of zombies and
characterize their lifetime and size. More precisely, this
paper offers three main contributions. First of all, we pro-
pose a simple technique to identify, in a systematic and
automated way, the so-called attack events in a very large
dataset of traces. We have implemented and demonstrated
experimentally the usefulness of this technique. Secondly,
we have shown how, by grouping these attack events, we
can identify long living armies of zombies. Here too, we
have validated experimentally the soundness of the idea
as well as the meaningfulness of the results it produces.
Last but not least, we have shown the importance of the
selection of the observation viewpoint when trying to group
such traces for analysis purposes. Two such viewpoints
have been considered in this paper, namely the geolocation
of the attackers and the platform attacked. Results of the
experiments have highlighted the benefits of considering
more than one viewpoint as each of them offers unique
insights into the attack processes. Future work includes the
application of these techniques to richer data feeds, such
as the ones produced by the European WOMBAT project
(www.wombat-project.eu).
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