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Abstract—In this paper, we propose a method to identify
and group together traces left on low interaction honeypotdy
machines belonging to the same botnet(s) without having any
priori information at our disposal regarding these botnets In
other terms, we offer a solution to detect new botnets thanks
to very cheap and easily deployable solutions. The approadk
validated thanks to several months of data collected with th
worldwide distributed Leurr €.com system. To distinguish the
relevant traces from the other ones, we group them according
to either the platforms, i.e. targets hit or the countries of
origin of the attackers. We show that the choice of one of
these two observation viewpoints dramatically influenceshe
results obtained. Each one reveals unique botnets. We exiia
why. Last but not least, we show that these botnets remain
active during very long periods of times, up to 700 days, even
if the traces they left are only visible from time to time.
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to infiltrate the botnets and obtain more precise infornratio
about them [4]. By doing so, we certainly will not be able
to get as much in depth information about this or that botnet
but our hope is to provide insights into the bigger picture of
today’s (and yesterday’s) botnets activities.

The solution described in the following is generic and
simple to deploy widely. It relies on a distributed system of
low interaction honeypots. Based on the traces left on these
honeypots, we provide a technique that groups together the
traces that are likely to have been generated by groups of
machines controlled by a similar authority. Since we have
no information regarding th€&C they obey to, we do not
know if these machines are part of a single botnet or if they
belong to several botnets that are coordinated. Thereffore,
avoid any ambiguity, we write in the following that they are
part of aarmy of zombiesAn army of zombiegan be a
single botnet or a group of botnets the actions of which are

There is a consensus in the security community to say thatoordinated during a given time interval.

botnets are today’s plague of the Internet. A lot of attemtio

In this paper, we propose a technique to identify and study

has been paid to detect and eradicate them. Several afire size as well as the lifetime of suelhmies of zombies
proaches have been proposed for this purpose. By idergifyinThe approach does not pretend to be able to identify all

the so calledCommand and Control (C&Cghannels, one

armies of zombieshat could be found in our dataset. At

can keep track of all IPs connecting to it. The task is morethe contrary, we show that, depending on how the dataset is

or less complicated, depending on the typ&&iC (IRC[1],
[2], [3], [4], HTTP [5], [6], fast-flux based or not [7], [8],

preprocessed, i.e. depending on the observation viewpoint
different armies can be found. Exhaustiveness is not our

P2P [9], [10], [11], etc.) but, in any case, one needs to haveoncern at this stage but, instead, we are interested in
some insight about the channels and the capability to obsenoffering an approach that could easily be widely adopted.
all communications on them. Another approach consists in The idea exposed here is similar, in its spirit, to the one
sniffing packets on a network and in recognizing patterns opresented in the paper coauthored by Allmann et al. [16].
bot-like traffic. This is, for instance, the approach pursuedHowever, instead of I...] leveraging the deep understanding
by [12], [13] and [14], [15]. The solutions mostly aim at of network detectives and the broad understanding of a large
detecting compromised machines in a given network rathenumber of network witnesses to form a richer understanding
than to study the botnets themselves as they only see thaf large-scale coordinated attacké&r®ur approach relies on

bots that exist within the network under study.

a diverse yet limited number of low interaction honeypots.

In this work, we are interested in finding a very generalThey do not need to be neither as smart as the network de-
technique that would enable us to count the amount ofectives nor as humerous as the network witnesses proposed
various botnets that exist, their size and their lifetimes A in that work. Both approaches are quite complementary.
opposed to previous work, we are not interested in studying Finally, Kitti et al have proposed an approach to detect
a particular botnet in details or in detecting compromisedelated attacksin [17]. The method has been validated
nodes in a given network. We also do not want to learnthanks to data collected from DShield project [18]. In that
the various protocols used by bots to communicate in ordework, related attacks are understood as attacks mounted



by the same sources against different networks which is a 60

narrower view of the problem than ours. § Juster 60322 attacks on 7 platforms 5.8, 11, p1

The remainder of the paper is organised as follows. é
Section |l defines the terms used in the paper. Section Il ‘§2°’ /&
describes the dataset we have used and what we mean wher 880 35 390 ti;2%33y> 400 405 10
we refer to the notion obbservation viewpointit provides
some motivation for the work. In Section IV, we describe p 300 ‘ ‘ — -
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Section V concludes the paper.

[l. TERMINOLOGY
In order to avoid any ambiguity, we introduce a few termsFigure 1. on the top plot, cluster 60232 attacks seven pragdrom day
that will be used throughout the text. Some of them are taked®3 ©© daé’ 400. on the bottom plot, peak of activities of @u from
.- . . ain on aa
from [19]. Readers who are familiar with the Leurré.com P Y
project are invited to skip this Section.

« Platform: A physical machine simulating, thanks to
honeyd [20], the presence of three distinct machines.
A platform is connected directly to the Internet and
collects tcpdump traces that are fed daily into the
centralized Leurré.com’s database.

« Leurré.com The Leurré.com project is a distributed
system of such platforms deployed in more than 50
different locations in 30 different countries (see [21]
for details)

« A Source corresponds to an IP address that has sent
at least one packet to, at least, one platform. A given
IP address can correspond to several distinct sources.
Indeed, a given IP remains associated to a given source
as long as there is no more than 25 hours between 2
packets received from that IP. After that, a new source
identifier will be assigned to the IP. By grouping pack-
ets by sources instead of by IPs, we minimize the risk
of gathering packets sent by distinct physical machines
that have been assigned the same IP dynamically after
25 hours, or machines that have the same IP address
seen from the outside due to side-effect of Network
Address Translation.

« An Attack, in the context of this paper, is defined

as the packets exchanged between one source and one

platform.
« A Cluster is made of a group of sources that have left

sources belonging to clustethat have hiplat form x.
Similarly, in the second caselr . countryy, returns,
per day, the amount of sources belonging to cluster
that are geographically located wvuntryx. Clearly,
we always have:d,, = Y VEcountricsg, . o—

VazeEplat forms o
T,c,x

« An attack eventis defined as a set of observed cluster

time series exhibiting a particular shape during a limited
time interval. The set can be a singleton. We denote the
attack event ase; = (Tstart, Tend, Si) Where the at-
tack event starts af,;,,:, ends afl.,,; and.S; contains

a set of observed cluster time series identifigrsop; )

such that al® (7, _7., .).c;.0p; @re strongly correlated

to each otheiv(c;,op;) € S;. As an example, the top
plot of Figure 1 represents the attack event 225 which
consists of a given cluster attacking seven platforms.
Each curve represents the amount of sources of that
cluster observed from one of these platforms. As we can
observe, the attack event starts at day 393 and ends at
day 400. According to our convention, we havgs; =
(393,400, {(60232,5), (60232, 8), ..., (60232, 31)}).
Similarly, the bottom plot of Figure 1 represents
an attack event due to one cluster during a single
day and mostly due to a single country;{ =
(307,307, {(0, ES)}))

highly similar network traces on all platforms they have ||| |MPACT OF THE OBSERVATION VIEWPOINT

been seen on. Clusters have been precisely defined in
[22].
» An Observed cluster time seriesbr . ., iS a function

A. Dataset Description
For our experiments, we have selected the traces observed

defined over a period of tim&', T' being defined as on 40 platforms out of 50 at our disposal. All these 40
a time interval (in days). That function returns the platforms have been running for more than 800 days. None
amount of sources per day associated to a cluster of them has been down for more than 10 times and each
that can be seen from a givaabservation viewpoint of them has been up continuously for at least 100 days at
op. The observation viewpoint can either be a specificleast once. They all have been up for a minimum of 400
platform or a specific country of origin. In the first days over that period. We denote ki, the time series
case,Pr . piatformy returns, per day, the amount of representing the total amount of sources observed, day by



day, on all these 40 platforms. We can split that time series To do this, in a first step, we use a sliding window of L
per country of origin of the sources. This gives us 231 days to compute the Pearson correlation of all pairs of time
time seriesT'Sx where thei®" point of such time series series. That is, we compute the correlation of N time series
indicates the amount of sources, observed on all platformdpr T-L+1 time interval {[1, L], [2,L + 1],...[T — L,T]}.
located in countryX. We represent byl'S_L1 the set of As a result, we obtain, for every pair of time series in N,
all these Level 1 time series. To reduce the computationahe time intervals during which they are correlated. Then
cost, we keep only the countries from which we have seen ave group together all pairs of cluster time series that are
least 10 sources on at least one day. This leaves us with 86orrelated together over the same period of time. Each such
instead of 231, time series. We represent®§_L1’ this  group constitutes aattack events defined before.

refined set of Level 1 time series. Then, we split each of It is worth noting that this method, which we refer to as
these time series by cluster to produce the final set of timé/1 in the sequel, can not detect attack events made of a
series®(o_goo),c;,country; V¢i aNdVeountry; € bigeountries- single cluster time series. This is typically the case fakse
The i*" point of the time serie®(y_gq0),x,y indicates the of activities occurring on a single day. In such cases, it is
amount of sources originating from counfrythat has been more efficient to apply another, less expensive, algoritbm t
observed on day attacking any of our platforms thanks to identify the attack events. For the sake of conciseness, we
the attack defined by means of the clusi&rWe represent do not to include the description of this second methaa,

by T'S_L2 the set of all these Level 2 time series. In this caseC Impact of the Observation Viewpoint
|T'S_L2|is equal to 436,756 which corresponds to 3,284,551 P P _ _
1) Results on Attack Event Detectiol/e have applied

sources.
As explained in [19], time series that barely vary in these algorithms against our 2 distinqt datasets, namely
amplitude over the 800 days are meaningless to identify Scountry @Nd T'Spiatform. AS shown in Table II, for
attack events and we can get rid of them. Therefore, we only Scountry, Method M1 (resp. second method M2) has found
keep the time series that highlight important variatione W 49 (résp. 43) attack events, accounting for a total of
represent byI'S_L2' this refined set of Level 2 time series. 952,492 sources (resp. 21,633). Similarly, Wity iat form.
In this case|T'S_L2'| is equal to 2,420 which corresponds @PPlying M1 (resp. M2) leads to 564 (resp. 126) attack
to 2,330,244 sources. events, containing 550,305 (resp. 28,067) sources.
We have done the very same splitting and filtering by
looking at the traces on a per platform basis instead of on
a per country of origin basis. The corresponding results are

Table I
RESULT ONATTACK EVENT DETECTION

; ; AE-set-Il"Scountr AE-set-I'Spiatform
given in Table I. No.AEs (TNo.sourzé)es No.AEs (TNg.sgurce)s
M1 549 552,492 564 550,305
. M2 43 21,633 126 28,067
S e S AT7 970 S0 tees Total | 592 | 574,125 | 690 | 578,372
TSI 731 20 No.AEs: amount of attack events
TS LT 35 70 M1,M2: methods represented in Section IlI-B
(94,4% TS) | (100% TS)
;g—ﬁ," 42‘2;86 352’51;%2 2) Analysis: The table highlights the fact that depending
sources 2330244 2.538.922 on how we decompose the initial set of traces of attacks (i.e
(67% of T'S) | (73% of T'S) the initial time seried"S), namely by splitting it by countries
Table | of origin of the attackers or by platforms attacked, differe

DATASET DESCRIPTIONT'S: all sources observed on the period
under studyOV P: observation viewpointl’S_L1: set of time
series at country/platform level’'S_L1’: set of significant time
series inT'S_L1, TS_L?2 : set of all cluster time serie§d’S_L2’
set of strongly varying cluster time series

B. Attack Event Detection

Having defined the time series we are interested in, w
now need to identify all time periods during which 2 or more

attacks events show up. To assess the overlap between attack
events detected from different observation viewpoints se u
the common source ratio, namely ¢gneasure as follows:

D vercar. , lene]
csr(e, AEyy ) = S

le]

in whiche € AE,, and|e| is the amount of sources in attack
evente, AE,, iS AEcountry aNd AEq, iS AEpiatforms (OF

Jice versa).

Figure 2 represents the two cumulative distribution func-

of these observed cluster time series are correlated tegeth ions corresponding to this measure. The pcinty) on

1We use Maxmind to get the geographical location of IPs

the curve means that there agex 100% of attack events
obtained thanks t@ouniry (r€SPTpiatrorms) that have less
thanz = 100% of sources in common with all attack events
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against our platforms. This will lead to the identificatioh o
one or several attack events.

Split by platform: Similarly, suppose we have a botnet
B’ made of machines located all over the world. Suppose
that, from time to time, these machines attack a specific
set of platforms{ X, Y, Z} leaving traces that are assigned
to a clusterC. Suppose also that this clustér is a very

popular one, that is, many other machines from all over
the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activ-
ities specifically linked to the botneB’ are lost in the

noise of all other machines leaving traces belonging to
C. This is certainly true for the cluster time series (as
defined earlier) related t@” and this can also be true

for the time series obtained by splitting it by countries,

. L . L . (I)[0—800),C,countryivcountryi € bigcountm’es- However, by
curve represents the cumulative distribution obtained iNsplitting the time series corresponding to cluse@r by

this first case and thé i jorms ONe represents the CDF piaiorms attacked, then it is quite likely that the time
obtained when starting from the attacks events Obta'negeriesq>[0 800),C platf Vplatform; € {X,Y, Z} will be
- ,Ly,ptat formg ) s Ly

with the intial Tpiarforms SEL OF time series. As we can pighyy correlated during the periods in which the botnet
notice, around 23% (resp. 25%) of attack events obtaineg,ences the traces left on the sole platforms concerned

by starting from thel ountry (€SP Tyiatform ) SELOfiMe  py jts attack. This will lead to the identification of one or
series do not share any source in common with any attacka,eral attack events.

events obtained when starting the attack even identificatio ]
process from thelpiat form (F€SP. Toountry ) SEL OF time The top plot of Figure 3 represents the attack event 79.

series. This corresponds to 136 (16,919 sources) and 179 this_ case, we see that the traces due to the cluster 175309
(75,920 sources) attack events not being detected. In, totaf'® Nighly correlated when we group them by platform
there are 288,825 (resp. 293,132) sources present in AE-sttacked. In ff_;lct, there are 9 platforms involved in this
| (resp. AE-Set-Il), but not in AE-Set-Il (resp. AE-Set-I). case, accounting for a total of 870 sources. If we group
As a final note, there are in total 867,248 sources involved® Same set of traces by country of origin of the sources,
in all the attack events detected from both datasets whicl/® €nd up with the bottom curves of Figure 3 where the

correspond to 25% the attacks observed in the period undaspecific attack event identified previously can barely besee
study. This highlights the existence of a botnet made of machines

. located all over the world that target a specific subset of the
3) Explanation: The reasons why we can not rely on a |nternet.

single viewpoint to detect all attacks events are described
below.
Split by country: Suppose we have one botnBt made
of machines that are located within the set of countries
{X,Y, Z}. Suppose that, from time to time, these machines
attack our platforms leaving traces that are also assigmad t
clusterC. Suppose also that this clustéris a verypopular
one, that is, many other machines from all over the world
continuously leave traces on our platforms that are asdigne 150
to this cluster. As a result, the activities specificallykial
to the botnetB are lost in the noise of all other machines
leaving traces belonging t6'. This is certainly true for the
cluster time series (as defined earlier) related’t@nd this
can also be true for the time series obtained by splitting
it by platform, ®(5_go0),c piat form, Vplat form; € 1..40.
However, by splitting the time series corresponding totelus Figure 3. top plot represents the attack event 79 relateduier 17309
. L. oo .._on 9 platforms. The bottom plot represents the evolutiorhaf tluster by
¢ by countries of orngins of the sources, then it is quite country. Noise of the attacks to other platforms decreageifgantly the
likely that the time seriesbiy_goo),c,country; Yeountry; € correlation of observed cluster time series when split byntxy
{X,Y, Z} will be highly correlated during the periods in
which the botnet present in these countries will be active

0.1

o 0.2 0.4 0.6 0.8 1
common source ratio

Figure 2. CDF common source ratio

obtained thanks t@y4t forms (r€SPTcountry)- The Teountry




IV. ON THE ARMIES OFZOMBIES obtained with a value ob = 10%. Other values could,
So far. we have identified what we have called at,[‘,jlckpossibly, have delivered more armies but the point we want

events which highlight the existence of coordinated attack {0 Make is that these armies exist, not that we have found a

launched by a group of compromised machines, i.e. a zombi@€thod to find all of them.
army. It would be interesting to see if the very same army,_ -0 Such value ob we have identified 40 (resp. 33) zom-

manifests itself in more than one attack event. To do this,bie armies from AE-set- (resp. AE-set-Il) which have issue

we propose to compute what we call thetion sets An ahtotjl_l ofb19_3 (re?p. 247k) attack events. F;)g_ure 4 represents
action setis a set of attack events that are likely due to!N€ distribution of attack events per zombie army. Its top

the same army. In this Section, we show how to build theséreSp' bottom) plot represents the distribution obtairednf

action sets and what information we can derive from thenf°E-Set-1(resp. AE-set-1l). We can see that the largest arou
regarding the size and the lifetime of the zombie armies. of attack even_ts for an army is 53 (resp. 47) w_hereas 28
resp. 20) armies have been observed only two times.

A. Identification of the armies

[
o

1) Similarity Measures:In its simplest form, a zombie
army is a classical botnet. It can also be made of several
botnets, that is several groups of machines listening to
distinct C&C. This is invisible to us and irrelevant. What
matters is that all the machines do act in a coordinated way.
As time passes, it is reasonable to expect members of an
army to be cured while others join. So, if the same army
attacks our honeypots twice over distinct periods of time,
one simple way to link the two attack events together is by
noticing that they have a large amount of IP addresses in
common. More formally, we measure the likelihood of two
attacks eventgs; andes to be linked to the same army by
means of their similarity defined as follows: B. Main Characteristics of the Zombie armies

jeaneal Jesnealy i In this s_,ection_, we will analyze the main characteristic of
sim(er, e) :{ maz (=7 Ser) i e ﬂ_€2| <200 the zombie armies. _
otherwise Lifetime of Zombie Army Figure 5 represents the cumula-

#of zombie armies

o 10 20 30 40 50 60 70
amount of attack events

# of zombie armies
B
o

n
o 10 20 30 40 50 60 70
amount of attack events

Figure 4. Zombie Army Size

We will say thate; ande, are caused by the same army
if and only if sim(ey,e2) > 6. This only makes sense for
reasonablevalues ofd. We address this issue in the next
subsections.

2) Action Sets:We now use thaim() function to group
together attack events into action sets. To do so, we build a
simple graph where the nodes are the attack events. There

. . . 02 = = = countn i
is an arc between two nodes and e, if and only if

Sim(el,eg) > 6 A” I’lOdeS that are COI’]I’leCted by at |eaSt 00 100 200 300 400 500 600 700 800
. . duration (day)
one path end up in the same action set. In other words, we
have as many action sets as we have disconnected graphs Figure 5. CDF duration
made of at least two nodes; singleton sets are not counted
as action sets. tive distribution of minimum lifetime of zombie armies ob-

We note that our approach is such that we can haveained fromZ'Spqs form @aNdT Scountry (S€€ Section 1V-A3).
an action set made of three attack eveais e; and e; According to the plot, around 20% of zombie armies have
where sim(e1,e2) > 6 and sim(ez,e3) > § but where existed for more than 200 days. In the extreme case, two
sim(e1,e3) < d. This is consistent with our intuition that armies seems to have survived for 700 days! Such result
armies can evolve over time in such a way that the machineseems to indicate that either i) it takes a long time to cure
present in the army can, eventually, be very different fromcompromised machines or that ii) armies are able to stay
the ones found the first time we have seen the same armactive for long periods of time, despite the fact that some
in action. of their members disappear, by continuously compromising
3) Results: We skip, for the sake of conciseness, thenew ones.
discussion on how to define the optimal value for theLifetime of Infected Host in Zombie Armies In fact,
thresholddelta. In this paper, results presented have beerwe can classify the armies into two classes as mentioned



in the previous Section. For instance, Figure 6a representS. lllustrated Examples

the similarity matrix of zombie army 33, ZA33. To build  after having offered a high level overview of the method
this matrix, we first order its 42 attack events according t0anqg main characteristics of the results obtained, we fésl it
their time of occurrence. Then we represent their simyarit important to give a couple of concrete, simple, examples of
relation under an2 x 42 similarity matrix.. The cell (i)  armies we have discovered. This should help the reader in
rehpresent}? the value ofim() of the ordered attack event petier understanding the reality of two armies as well astwha
i and j*". Since,.# is a symmetric matrix, only half of 6y |50k like. This is what we do in the next two subsections
it is shown. As we can see, we have a very high similarity,yhere we briefly present two representative armies.
measure between almost all the attacks events, around 60%.1) Example 1:Zombie army 29, ZA-29, is an interesting
This is also true be_tween the very first and the very |asbxample which has only been observed attacking a single
attack events. In this case, the time elapsed between thgaitorm. However, 16 distinct attack events are linked
first and the last event is 753 days! to that army! Figure 7a presents its two first activities
corresponding to the two attack events 56 and 57. Figure 7b
represents other four attack events. In each attack event,
the army tries a number of distinct clusters such as 13882,
14635, 14647, 56608, 144028, 144044, 149357, 164877,
166477. These clusters try many combinations of Windows
ports (135 TCP, 139 TCP, 445 TCP) and Web server (80
TCP). The time interval between the first and the last
activities is 616 days !

attack event identifier 50

Number of sources
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Figure 7. attack events of ZA29

attack event identifier 50 attack event identifier

(b)

Figure 6. Renewal rate of zombie armies

2) Example 2:The zombie army 33, ZA-33, consisting
of 42 attack events (already mentioned in Section IV-B)
Figure 6b represents an opposite case, the zombie arnig an example of a multi-botnets zombies army. In fact, it
31, ZA31, consisting of 46 attack events. We proceed aseems that several botnets do different jobs and from time to
above to build its similarity matrix. The important values time, they do some tasks together. In fact, in some cases, an
are now located around the main diagonal#f. It means important fraction of the machines in the attack events come
that the attack event’” has the same subset of infected from Italy and attack a single platform located in China. The
machines with only few attack events happening just beforéwo top plots in Figure 8 represent such cases. The attack
and after it. In this case, this army changed its attack vectoevent 291 consists of several clusters attacking port 68.783
over time, launching first attacks against 4662 TCP, therThe attack event 195 also is mostly made of Italian sources
1025 TCP, then 5900 TCP, 1443 TCP, 2967 TCP, 44%nd also uniquely target a platform in China but it is made
TCP,etc. Its lifetime is 563 days! of several clusters targeting port 9661 TCP. Interestingly
enough, in some other cases, other attack events of the same



army ZA-33 consistently sends ICMP packets only, are made ACKNOWLEDGMENT
of Greek sources, targeting a single platform also located i This work has been partially supported by the European

Greece (see the two plots in the middle of Figure 8). Ascommissions through project FP7-ICT-216026-WOMBAT
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the two plots in the bottom of Figure 8 represent two attaCkpressed in this paper are those of the authors and do not
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and attacking these two platforms. As a reminder, by design,
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