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ABSTRACT

A multiple fundamental frequency estimator is a key building block
in music transcription and indexing operations. However, sys-
tems trying to perform this task tend to be very complex [1]. In-
deed, music transcription requires an analysis accountingfor both
physical and psycho-acoustical matters. In this work, we pro-
pose a physically-motivated audio signal analysis followed by an
auditory-based selection. The audio signal model allows for a bet-
ter time/frequency resolution tradeoff, while the auditory distance
discards the redundant/non-relevant information. No prior infor-
mation on the musical instrument, musical genre, and/or maximum
polyphony are needed. Simulations show that the proposed tech-
nique achieves good transcription results for a variety of string and
wind instruments. The proposed scheme is also shown to be ro-
bust in the presence of noise, percussive sounds and in unbalanced
Signal-to-Interference Ratio (SIR) situations.

Index Terms— music transcription, pitch recognition, frequency-
selective, amplitude modulation, perceptual model

1. INTRODUCTION

Transcription of music refers to the process of converting audio
signals (of performed music) into symbolic representationof mu-
sic scores. Conventionally, music transcriptions are written by well
trained experts (most probably experienced musicians), which is an
expensive and time-consuming procedure. In addition to thestraight
application itself, automatic transcription has a wide range of poten-
tial applications including automatic music analysis, music manip-
ulation (e.g. changing the timbre) and music information retrieval
(both in building music databases and in transcribing the query in-
put).

The automatic transcription of real-world music is an extremely
challenging task. Indeed, the transcription operation requires an
analysis accounting for both physical and psycho-acoustical issues:
the process has to consider the relationship between the sound as
physical phenomena and the sound perception of the human ear.
On one hand, the hearing system performs very well in complex
sound mixtures. Humans are able to hear the pitches of several
co-occurring sounds and human musicians are the best music tran-
scribers for the time being. This fact inspires auditory motivated
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pitch perception [2, 3]. The majority of these approaches consist of a
model of the peripheral auditory system followed by ‘some’ pitch re-
trival scheme. Typically, the auditory block (front-end) is composed
of a cascade of an auditory filterbank (modeling the movementof
the basilar membrane of the internal human ear) and a memory-less
transform (that models the hair cell transduction).
On the other hand, from a signal-processing point of view, accessing
the high-level information contained in audio signals is complex and
requires sophisticated tools. Many previous studies have pointed to
three major features that summarize the spectral information con-
tained in an audio signal at a given time: the pitch, the dynamics
and the timbre. Thepitch is related to the perception of the fun-
damental frequency of the sound and indicates how ‘high’ or ‘low’
a note sounds. Thedynamics refers to the amplitude (and the en-
ergy) of the wave and indicates how ‘loud’ or ‘soft’ a note is.The
timbre corresponds to the harmonic series in the frequency domain
and characterizes the resonance in the body of the instrument. Each
of these features is important for the note detection and recognition
task. Moreover, as music transcription aims both todetect the ‘po-
sition’ and torecognize the ‘content’ of the musical event (musi-
cal notes and effects such as vibrato, glissando, etc.), theprocessing
needs both good temporal and frequency resolutions.

Typically, a pitch (F0) retrieval system contains two building
blocks: salience evaluation and pitch selection. These blocks could
be organized in a successive, joint, or cyclic manner [1].
The first stage of pitch retrieval is the evaluation of the salience, or
strength, function at the different candidate periods. Classically, the
salience is inferred as a weighted sum of the harmonic partials of a
given pitch candidate, i.e.,Sl (�) = PXp=1 g(�; p)Y (f�;p) (1)

wheref�;p = pfs=� is the frequency of thepth harmonic of the
pitch candidate� (fs is the sampling frequency).Y (f) may repre-
sent the power [4], amplitude [1] or wavelet [5] spectrum of the input
audio signaly(n). P denotes the number of considered harmonics.
The functiong (�; p) defines the weight of thepth partial of the pe-
riod � in the sum. Several approaches are proposed to set these key
parameters using prior informatioon about musical instrument [1, 6],
spectral smoothing considerations [7], or based on psychoacoustic
theory [3]. In the present paper, we propose the Quasi-Periodic Sig-
nal Extraction (QPSE) technique [9] to evaluate the salience func-
tion. The QPSE can be interpreted as a sum of scaled, translated and
modulated harmonic atoms. However, contrary to the classicatomic
decomposition approaches (STFT, WT), the dictionary is notfixed:
the atoms are adapted taking into consideration the structure of the



received signal [8]. The proposed technique is shown to be suitable
for the analysis of several string and wind instruments and leads to
good monophonic transcription accuracy [10].
The second stage in a pitch retrieval system is note selection. This
can be performed by peak-picking in the salience domain [1].More
sophisticated engine such as genetic search [11] and token-passing
[12] algorithms were proposed to look for the most probable note
combination. In this paper, we propose using a psychoacoustic dis-
tance (introduced by S. Van de Par et al. in [13]) to rank and select
the musical notes present in the mixture. Information on themax-
imal note number and/or allowed octaves could help increasethe
transcription accuracy, but are not necessary.

Figure 1 shows the block diagram of the proposed scheme. The
two building block are presented respectively in Sections 2and 3.
Simulation results are shown in Section 4. Finally, a discussion and
concluding remarks are provided in Section 5.

Fig. 1. The block diagram of the transcription scheme

2. QUASI-PERIODIC SIGNAL EXTRACTION

Due to space limitation, this section provides only a brief overview
of the quasi-periodic signal model and the related extraction algo-
rithm. The interested reader is referred to [9, Ch.2] and [10] for an
exhaustive description and better coverage.
To understand the proposed model, let us first consider the sinusoidal
model. This model represents the signal as a sum of discrete time-
varying sinusoids or partials:s(n) = PXp=0 ap(n) os (2�pnf0 + 2�'p(n)) ; (2)

where'p(n) characterizes the evolution of the instantaneous phases
around thepth harmonic, and can be assumed to be slowly time vary-
ing. We assume that all harmonic amplitudes evolve proportionately
in time, and that the instantaneous frequency of each harmonic is
proportional to the harmonic index, i.e.,� ap(n) = ap a(n)2�'p(n) = 2�p '(n) + �p: : (3)

Under these assumptions, one can show that the audio signal is mod-
eled as the superposition of harmonic components with a global am-
plitude modulation and global time-warping:s(n) = a(n)Xp ap os�2�pf0 �n+ '(n)f0 �+�p�= a(n) ��n+ '(n)f0 � (4)

wherea(n), and'(n) represents respectively the amplitude and fre-
quency modulating signals.�(n) =Pp ap os (2�pf0n+�p) is a
periodic signal with a periodT = 1f0 .
A major limitation of the proposed model is that it allows forno
spectral variation throughout the note duration, but only amplitude
and (synchronized) frequency modulation. Such a model assumes
that at any time instant the instantaneous amplitudes and frequen-
cies of the various harmonics of the periodic waveform are propor-
tional. The problem with such a model though is that, in reality,
periodic signals produced by musical instruments (e.g. string instru-
ments) have harmonic components that decay at different speeds.
Typically, higher harmonics decay faster than lower harmonics. In
[10], we have introduced a frequency-selective attenuation to allevi-
ate this side-effect, and this in a time-varying fashion to reflect the
time-varying amplitude, i.e.,s(n) = an(q) ��n+ '(n)f0 � (5)

wherean(q) = an;LqL + � � � + an;0 + � � � + an;Lq�L is a sym-
metric zero-phase FIR filter,2L + 1 is the amplitude modulating
filter length, andq�1 is the time delay operator. The two extreme
filter lengths correspond to the flat modulation model as in (4) (forL = 0), and the bayesian harmonic model in [15](forL = 1).

The assumptions of global amplitude and frequency modulation
were introduced to have a parsimonious signal representation. In-
deed, the higher the number of parameters per second describing the
signal, the noisier the parameter estimates, and consequently the re-
constructed signal. Introducing an amplitude modulating signal per
harmonic (as in [15]) would allow significant degrees of freedom in
describing the signal, but would lead to a high parameter rate (the
average number of parameters that appear in the descriptionof one
second of the signal). An intermediate parameter rate can beob-
tained by filtering the periodic signal with the short FIR filteran(q)
that can introduce frequency-selective attenuation, and this in a time-
varying fashion to reflect the time-varying amplitude.

Audio signal extraction is performed by adjusting the degrees of
freedom (inan(q), '(n), and�(n)) such that the assumed model
best matches the received signal (in the least-squares sense). The
degrees of freedom are estimated in a cyclic fashion [9]. Applying
the proposed technique to music signal analysis seems natural. In-
deed, the proposed model is related to the physics of how sounds
are produced in stringed and wind instruments [9]. And the model
parameters are tightly related to the three basic features in music
sounds: pitch ('(n)), dynamics (an(q)), and timbre (�(n)). Simu-
lations show that the proposed scheme is suitable for the analysis of
several string and wind instruments, and performs good monophonic
transcription accuracy [10].

Music transcription needs both good temporal and frequency
resolutions (to bothdetect the ‘position’ andrecognize the ‘content’
of a musical event). Compared to the classic frame-by-framebased
approaches, the quasi-periodic signal modeling performs better res-
olution tradeoff (by exploiting the temporal structure of the musical
signal). Indeed, the global amplitude modulation model enables the
joint extraction of the different partials, while allowingfor slow L
decay modes. This fact enhances both note detection and recognition
accuracy (intuitively, the QPSE tries to estimate simultaneously the
spectral structure in both time and frequency directions).In addition,
valuable information could be carried out by analyzing individually
the different parameters:� an(q): high temporal resolution transcription.



� '(n): detection of several musical effect, e.g., vibrato, glis-
sando, etc...� �(n) : accurate musical note selection (as detailed in the next
section).

3. MUSICAL NOTE SELECTION

The first building (front-end) block in music transcriptionand in-
dexing operations is the decomposition of music signals into har-
monically related components. The QPSE tries to simultaneously
estimate the spectral structure in both time and frequency directions.
This fact leads to a better time/frequency resolution tradeoff, and
partially alleviates common partials extraction. Contrary to the fre-
quency domain approaches, no explicit constraint on the number of
harmonics is done (implicitly, it is constrained by the ratio between
the fundamental and sampling frequencies).
Based on the previous decomposition, the salience functioncan be
evaluated at the different period candidates asSl(�) = Xn ŝ2�(n)Xn y2(n) (6)

whereŝ� (n) = ân(q) �̂(n+ '̂(n)f0 ) is the extracted quasi-periodic

signal assuming a basic period� ; andy(n) denotes the input audio
signal. Note that the proposed function satisfies0 � Sl(�) � 1, and
it do not contain a myriad of parameters that should be learned [1]
or set [6] (as in (1)). Moreover, the QPSE enables joint extraction of
the different partials while imposing a kind of spectral smoothness
(over time axis) that has been shown to be valuable to increase tran-
scription accuracy [1, 7].

For monophonic music transcription, the note selection canbe
performed simply by picking the lowest maximum of the salience
function [10] (the choice of the lowest period solves the octave in-
determinacy). In a polyphonic context, the QPSE (although it helps)
is not able to solve alone the common partials and octave indetermi-
nacy problems. In this paper, we propose first to select the periods
corresponding to the salience function local maxima (as potential
candidates), then to use the distortion detectability distance (intro-
duced in [13]) to discard the ‘ghost notes’ and perform accurate note
selection. The distortion detectability defines a perceptually relevant
norm on the harmonic signal subspace spanned by:�s�(n) = kŝ�k � (n % �) ; (7)

where (: % :) denotes the modulo operator, and�s� (n) is the � -
periodic signal sharing the same energy (salience) and basic-
waveform with ŝ� (n), but compensated for global amplitude and
phase modulations.
The auditory model was designed to predict the masked thresholds
for sinusoidal distortions. The model accounts for the spectral and
temporal integration in auditory masking. As showed in [13], the
distortion detectability distance can be expressed asD(y; �s�) =Xf jS� (f)j2�2y(f) (8)

where jS� (f)j2 denotes the power spectrum of the signal�s�(n),
and�2y(f) represents the frequency dependent masking curve which

is computed using the input audio signaly(n). The distance is cal-
ibrated such thatD = 1 represents the threshold of detectability,
i.e.,� D(y; �s�) > 1 the� th candidate is detectableD(y; �s�) < 1 the� th candidate is a ghost note

(9)

This calibration leads to a simple decision scheme, with no need to a
priori adjusted thresholds (that may depend on unknown parameter
such as SNR, instrument class, number of notes, etc). Remarkalso
that according to (8), even if the individual tonal components of a
given signal are masked, their combination may still be detectable,
which matches the auditory spectral integration results. In addition
to its auditory relevance, the computational load of the proposed dis-
tance remains reasonable since the masking threshold only needs to
be computed once (per frame). Moreover, as the auditory bands are
narrow at low frequencies and wide at high frequencies, the mask-
ing model discards further high-order harmonics (simply because
many components will fall in one auditory filter band). This leads to
improvements in performance of the algorithm, since higher-order
harmonics are generally less reliable due to their low energy con-
tent (low SNR) and the effect of nonharmonicity (in stringedinstru-
ments). To enhance this fact, it was found that adding artificial white
noise (SNR=10 dB) to the input signal while computing the mask-
ing curve, or simply raising the masking curve by a given factor was
benifical.

4. EXPERIMENTAL RESULTS

Using the previously described building blocks, a simple transcrip-
tion scheme was built. First, the QPSE was performed for the dif-
ferent possible notes periods at the1st, 2nd and3rd octaves; and
the local maxima of the salience function (as defined in (6)) were
selected. Then, the note selection was performed based on the de-
tectability distance. A simplified auditory masking model (cf. [14])
was used. This model is shown to be effective for musical key extrac-
tion [14]. The implementation of the masking model was graciously
provided by Steven van de Par from Philips Research Laboratories.
Specifically, this measure is used to:� solve the octave indeterminacy.� discard ghost notes.� recover the notes that do not belong the search set.

The system does not make any assumption on the number of sounds
in the mixture, and no-estimation of the number of concurrent
sounds is required. No information about the instrument class or
timber was assumed.

The scheme has been tested using the piano recordings of the
RWC (Real World Computing) musical instrument sound database
[16]. For each recording, the database includes a referenceMIDI file
which contains a manual annotation of the note events in the acoustic
recordings. The test data consists of random mixture of individual
note recordings. The recordings (initially recorded at44:100 kHz)
are downsampled to22:050 kHz. The maximum number of itera-
tions (in the QPSE cyclic parameters estimation) was fixed to3. The
order of the amplitude modulating filter was set toL = 4. No global
phase modulation was considered.

A standard error metric was used for evaluation [11]: a recall
measure (percentage of original notes that were transcribed), and a
precision measure (percentage of transcribed notes that were present



on the original stream). The rates are defined as:

recall = #correct notes#reference notes

precision = #correct notes#transcribed notes

where# denotes the cardinality operator.
We have compared the proposed selection scheme to a decision
scheme based on the sum of either the harmonic power or ampli-
tudes. In each case, the detectability thresholds were manually tuned
in a way to achieve good recall vs. precision tradeoff. But noauto-
matic learning was performed. Figure 2 illustates the transcription
results function of the number of concurrent sounds (#polyphony).
The polyphony number is assumed to be unknown.

Fig. 2. The recall and precision measures as a function of the number
of concurrent sounds (#polyphony) using (respectively from right
to left) the psycho-acoustic (psy), the power spectrum (pwr) and the
amplitude spectrum (amp) based measures.

The graph shows that the three schemes achieve good transcription
accuracy. We remark also that the psycho-acoustic distanceoutper-
forms the two other selection schemes; which is quite nice since it
is considerably simpler to set and to control.
We have also tested the scheme with various musical instruments
(guitar, sitar and flute). The data was graciously provided by Antony
Schutz from Eurecom. Although the database was not large enough
to have consistent statistical results, the proposed scheme leads to
comparable performance (or even better). The result was expected
since these instruments produce less nonharmonicity effect (com-
pared to the piano). We have also experienced the robustnessof the
proposed scheme in the presence of noise, percussive soundsand in
unbalanced Signal-to-Interference Ratio (SIR) situations.

5. CONCLUDING REMARKS

This paper describes a method for transcribing realistic poly-
phonic audio. The analysis accounts for both physical and psycho-
acoustical issues. Indeed based on a physically-motivatedaudio
model, the QPSE algorithm estimates the spectral structureof the
musical note in both the time and frequency directions; leading to
a better time/frequency resolution tradeoff. Based on the extraction
SNR, an initial set of note candidates is selected. A perceptually
motivated distance is then used to discard the ghost candidates. No
prior information on the musical instrument, musical genre, or/and
maximum polyphony are needed. Simulations show that the pro-
posed scheme achieves good transcription results for a variety of
string and wind instruments. The proposed technique is alsoshown
to be robust in the presence of noise, percussive sounds and in
unbalanced Signal-to-Interference Ratio (SIR) situations.
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