
Document-based Dynamic Workflows: Towards Flexible and Stateful Services

Mohammad Ashiqur Rahaman∗, Yves Roudier∗ and Andreas Schaad‡
∗ EURECOM, 2229 route des Crêtes, 06904 Sophia Antipolis, France, {mohammad.rahaman,yves.roudier}@eurecom.fr

‡SAP Research, Vincenz-Priessnitz-Str. 1, 76131, Karlsruhe, Germany, andreas.schaad@sap.com

Abstract—Task-based workflows describe a set of prede-
fined tasks executed in a predefined sequence flow in which
documents representing business objects are sent to activate
tasks according to some business goal. The increasingly agile
nature of business processes implies that neither the potential
tasks nor their sequence flow can be defined a priori. In this
context, documents may constitute the central abstraction in a
business process execution while services are stateless entities.
While business goals and associated business rules drive models
and their executions, document content and its structure may
additionally be used to determine how the document can be
processed and how multiple processing tasks may be composed
dynamically.

This paper introduces a document-based workflow model
that implements such agile business processes. The described
approach relies on the use of a rule-based system as a
means to capture diverse concerns such as business goals and
associated rules within a uniform framework. To this end, we
illustrate this approach with an electronic health record (EHR)
application.

Keywords-Workflows, Business goal; Document; Constraint

I. INTRODUCTION

Despite being derived from long term strategic business
goals, business processes are increasingly executed in dy-
namic, uncertain, and data centric distributed environments.
This involves diverse aspects of workflows and their appli-
cation domains including changes in tactical business goals
and rules, confronting exceptional or new scenarios etc.

A task-based workflow, being an imperative approach,
models a series of all possible sequences of tasks (if known)
that are executed at runtime by business actors. Constraint-
based declarative workflows [1], [2] argue that such ex-
haustive task specification makes a model over specified
with limited flexibility. Similarly, business rules that capture
domain expertise and organizational knowledge may also
be over specified. However, in agile business scenarios like
treating critical patients, managing disasters, all business
tasks and rules may not be known a priori due to their
individual peculiarities.

Many flexible workflows are proposed to tackle those
scenarios and communities [3], [4], [5] develop techniques
for flexible workflow management. Some advocate to avoid
changes by providing alternative paths [6], [7] or to control
execution paths by declarative constraints expressed in LTL
formulas [1], [2]. Others allow changes in one execution
and/or changing the process model while migrating all
current executions [8], [9], [10].

In business processes actors of different business bound-
aries primarily deal with business documents or portions
thereof from their creation to destruction to achieve goals, all
such processing being collectively termed as document han-
dling. A document-based workflow (DocWF) actor models
such processes over tactical goals and functional business
rules (FBR) independently of any underlying tasks. FBRs
capture domain expertise such as goal precedence. Organiza-
tional business rules (OBR) over document content and pro-
cess models further support in finding suitable tasks/services
and as well as their dynamic enactment. In nature these
rules are declarative that can be expressed using LTL as in
[1] and set boundary constraints over goals and document
content. When an actor receives a handled document from
another actor, the recipient’s OBRs that set constraints on
document content are enabled. The role of a DocWF system
is to assist an actor in her pro-active task enactment to reach
goals rather than to instruct her. As such it focuses on what
can be the tasks (i.e. potential task) to achieve a goal rather
than what should be the tasks and their precise succession.
A comparison of document-based workflows with traditional
workflows (e.g. task-based, declarative and case handling
[6]) is reported in the Table I.

Recent industry adoption of SOA-based business process
tools and frameworks [11], [12] emphasize the reuse of
existing capabilities for which we introduce the notion of
organizational knowledge-base (KB) that contains existing
business process models, their execution history among
others. This knowledge is used to determine whether existing
tasks/services solve a current business problem. For this, a
KB must be searchable using for instance semantic tagging
of BPMN with goals and documents with concepts as in
[13] and [14] respectively.

We believe that a DocWF system must support (1)
dynamic definition of tasks and their sequence flow and
(2) shared understanding of document content amongst
distributed actors. Document content and KB are utilized
in business rule specification for (1) as to either select
or define a task for enactment. Also, we model the states
(e.g. potentially (not) executable) of these tasks/services at
runtime to tackle various runtime exceptions such as service
unavailability. A BPEL analogy would be: unlike invoking
services in a pre-defined sequence of <invoke> elements a
DocWF system finds suitable services or may define services
before invoking. For (2) as we showed in [14], a shared

g1

g2

g3

g4

design time

FBR1 OBR1

FBR2

FBR3

FBR LTL

FBR4

OBR2

OBR3

OBR4

KB (BPMN, BPEL, Document, Domain ontology, Rules)

OBR LTL

Dynamic
task

enactment

DocWF
status

update

Discovery

run time

document
receipt

.

.

.

.

Ti

Tj

Tk

Symptom d3()

Diagnosis d5()
…..

d5()d4

...

V
E
R
I
F
I

document
sent

g3 > g2

g3 > g1

g4 > g3

g4 > g1

g2 > g1

Business
boundaryBusiness

boundary

Figure 1. Overview of role played by a DocWF system in implementing agile business processes.

ontology of concepts describing the business documents
serves as a stable interface among interacting peers and
allows their document schemas to evolve. In the rest of
the paper, we show how a business user can model such
a DocWF at design time using goals and FBRs and how
the model can be executed by business actors operating in
distinct business boundaries.

Section II gives an overview of DocWF and followed by a
meta-model showing the relationships of different design and
run time entities. Section III describes a DocWF execution
with an illustrative EHR document generation example. This
also includes design and run time error detection techniques.
Section IV positions our work with related literature and
finally Section V concludes the paper.

II. A DOCUMENT-BASED WORKFLOW (DocWF) MODEL

A. Functional Overview

Fig 1 shows an overview of the envisioned DocWF
system. A business expert at design time after possibly
browsing its KB, models tactical goals, their precedence
and associated FBR as opposed to modeling tasks and their
precise succession. At runtime, upon receipt of a document
an actor can define OBR associated to its goals. FBR
and OBR being merely constraints make it possible not
to specify precise tasks and their sequence flow at design
time yet enable task enactment at runtime. These constraints
specify restrictions on goals, documents and application
specific requirements, for instance, credentials associated to
a business process. This model may possibly be shared with
all the involved actors.

As Fig 1 shows, it is possible to transform the rules
into corresponding LTL formulas which are then represented
using automata. Based on the automaton of the rules a
DocWF model and its execution can be verified by detecting
errors such as deadlock and conflicts (cf Section III). The
dynamic task enactment component can first find possible
tasks/services with the help of a discovery component which

performs semantic search in the KB as mentioned previously.
In case no such tasks/services are found the actor may
define/implement the required services. Then the states of
these tasks/services are modeled in the DocWF status com-
ponent (cf Section III). Based on the states of executed and
potential tasks dynamic task enactment is performed which
in turn handles associated documents/document portions
before sending those to another actor. Note that, the KB
can be browsed and/or updated (i.e. consultation) at design
or runtime.

B. DocWF Meta Model

An object oriented approach in Fig 2 shows the design
and runtime entity relationships of a DocWF meta-model.

Knowledge-base (KB): A KB of an organization is a
collection of document semantics (e.g. shared ontology),
existing business process models (e.g. BPMN), process
execution history (e.g. executed BPEL processes). To enable
an actor to consult its KB whenever needed, KB is not
associated to any design or run time entities.

Goal and documents: A DocWF system has to achieve
a business goal G from which a set of tactical goals can be
derived (i.e. G = {g1, g2, ...gm}, for m ≥ 1). Such goals are
abstract definitions of potential tasks that will be executed
by actors.

Such goals may have causal relationships, meaning one
goal may not be achieved before another goal. For two goals
gi and gj of G if gj can not be achieved unless gi is achieved
then gj succeeds gi, denoted by gj > gi.

Let D be a set of documents/document portions di de-
noted by D = {d1, d2,, dn}, for n ≥ 1, that need to
be handled. If dj can not be handled before di then di

precedes dj , denoted by dj > di. A simple task/service or
a composition of tasks/services can be invoked to achieve a
goal that implicitly handles documents/document portions.

DocWF

Goal Potential Task Sequence Flow
1..*0..1 1..*1..*

0..*

1

Free Task Recipe Task

Recipe Flow Free Flow

Policy0..*

Document
1..*1..*

Design time entities Runtime entities

Document semantics, policy
Business process models, execution history

Knowledge base (KB)

0..*

Functional
Business Rule (FBR)

Organizational
Business Rule (OBR)

1..*

1

Figure 2. Design and run time entities (separated by a vertical dotted line) of a Document-based Workflow (DocWF) meta-model.

The derivation of tactical goals and data instantiation upon
a goal achievement are represented by a recursive association
of goals that form a goal precedence and another association
between goal and document respectively. One goal achieve-
ment implicitly enables subsequent goals and documents to
be handled until the business goal is achieved. No such
precedence between two goals and two documents/document
portions are denoted by: gj ≯ gi and dj ≯ di respectively.

Example 1: In Fig 3 (a), the business goal G of the
EHR workflow is to generate a complete EHR document
D containing patient <Contact> d1, <HealthInsurance>
d2, <Symptoms> d3, possible <DiagnosisTests> d4 and
<Treatment> d5 data maintained by departments (e.g.
administration, pathology, diagnosis, operation theater etc).
The derived set of goals is, G = {g1, g2, g3, g4}; with goal
precedence g4 > g3 > g2 but g[2−4] ≯ g1 (see Fig 1).
A diagnosis result can not be recorded without knowing
a symptom. Similarly for a successful treatment record a
diagnosis result is required. However, patient’s contact and
insurance data can be recorded at any time.

Document semantics: An actor can define its individ-
ual document data model (e.g. schema) and still maintain
interoperability by associating its document instances to
shared ontology concepts using OWL [15]. Consider for the
EHR document, individual departments can share a patient
ontology concepts describing relationships of concepts and
yet can map those to department’s documents/document
portions. For instance, a business concept ’treatment’ can
be mapped to <Medicine>, <Therapy> and <Surgery>

related XML fragments of operation theater department (Fig
3 (a)). Such agreed document semantics are a pre-requisite
for a DocWF system.

Potential Task: As mentioned before, an actor can define
potential tasks at runtime. An execution of a potential task

handles documents which is reflected either by creating new
documents or updating existing documents.

Previously defined business tasks in a BPMN model
or invoked services in a BPEL model can be reused as
returned by the discovery component of Fig 1. The discovery
component can for instance match current goals with the
semantically annotated BPMN tasks [13] in the KB. Such
tasks/services and their sequence flows are termed as recipe
tasks and recipe flow respectively.

However, in exceptional situations where no suitable
process models or execution history exist in the KB, new
tasks (i.e. free tasks) need to defined and implemented.
Their sequence flow (i.e. free flow) can be defined utilizing
rules (OBR) over the current goals and document content.
Consider a doctor orders diagnostic tests for a surgery patient
according to a FBR, but cannot wait for the results as patient
condition is critical. She may start treatment by providing
medicine or therapy following some OBR. As soon as the
test results arrive, she might need to achieve a new goal
requiring a completely different treatment (i.e. free tasks)
depending on the result (applying another OBR).

The recipe and free tasks (and recipe/free) are important
entities for agile business processes. By finding recipe tasks
and/or their recipe flow of existing business processes of
KB allows an actor to reuse existing services. If no such
tasks/services are found the free tasks and free flow elements
allow her to define tasks and determine their flow at run time
by applying business rules.

Policy: A policy base of an organization is formed by
functional business rules (FBR) and organizational business
rules (OBR). At design time by the usage of domain knowl-
edge, FBR describes functional boundaries and relationships
of goals. On the other hand, OBRs may be defined at runtime
describing organizational concerns such as expected data in
documents, their further processing and desired credentials

<ElectronicHealthRecord id=1>
<Contact id = 1>
<Name> Alec Stwert <\Name>
<Address> ... <\Address>

…..
<\Contact>
<HealthInsurance id= 1>
<Company> A <\Company>
<Claim> .. <\Claim>

…...
<\HealthInsurance>
<Symptoms>
<Symptom> .. <\>
…...

<\Symptoms>
<DiagnosisTests>
<Test> .. <\>
…...

<\DiagnosisTests>
<Treatment>
<Medicine> … <\>
<Therapy> … <\>
<Surgery> … <\>
…..

<\Treatment>
<ElectronicHealthRecord>

g1
(Up-to-date

Patient
particulars)

g2
(Symptoms

identification)

g3
(Diagnosis

tests
results)

g4
(Successful
Treatment)

(a) Different portions of the EHR (d1 , d2 , d3 , d4 , d5) need to be handled
during a DocWF execution

Functional
business rule

Tactical goal

Organizational
business rule

Symptoms
identification

Symptoms must be
identified if exists

Symptoms can be
identified at any time

Symptom d3= ()

Symptom=

Successful
treatment

Treatment needs to be
performed for each

diagnosis result Diagnosis d5= ()

(b) UI template in a
DocWF system

(c) Instantiated DocWF model of the pathology dept

(d) Instantiated template of the Operation Theater dept

A
D
M
I
N
I
S
T
R
A
T
I
O
N

P
A
T
H
O
L
O
G
Y

D
I
A
G
N
O
S
I
S

O
T

Figure 3. (a) A fictitious electronic health record (EHR) of a patient. (c-d) Instantiated DocWF models of (b).

of an actor etc. Note that the goal precedence mentioned
before can also be a rule.

As mentioned rules are internally represented as LTL
constraints. In terms of later deployment of a DocWF system
UI templates may be used to abstract such LTL formulas
from business actors where each formula is transformed
into finite automaton as in [1] (Fig 3 (b)). Transitions to
an accepting state of such an automaton satisfies a rule (i.e.
true) or false otherwise. This value may change during the
execution meaning a rule that is false for the time being
may be true eventually. Consider Fig 3 (d), for the FBR =
’Treatment needs to be performed for each diagnosis result’
the LTL formula �(Diagnosis→♦d5) where ’Diagnosis’ and
d5 refer to the associated goal g3 ’Diagnosis test results’
and document portion containing treatment data respectively,
i.e. each <Test> record is eventually has a corresponding
<Treatment> record. Intuitively, for some diagnosis results
corresponding treatment data may not be instantiated at
some time but will be filled in d5 after corresponding
successful treatment. In Fig 3 (c), an OBR of the pathology
department is ’Symptoms can be identified at any time’,
i.e. �♦Symptom which can be true after a patient’s arrival.
Equivalent automata of a FBR and an OBR for the goals g3

and g4 are illustrated in Fig 4 (c) and (d) respectively.

III. DocWF PROCESS EXECUTION

At runtime, an actor can verify the current model and
execution so far before proceeding through suitable task
enactment.

A. DocWF Verification

For correct execution of a DocWF model, it is important
that the model does not contain errors and its current
execution is correct. One or more rules are enabled at
runtime when a corresponding goal is enabled. Errors are
detected using automaton of these rules. The execution of a
DocWF is correct at some point of time if all the constraints
representing the rules evaluate to true. Similarly, at the
end of an execution if all the constraints evaluate to true,
the execution has completed successfully. Moreover, for no
transition in the automaton of the rules for some goals is
considered as a deadlock. Also if the automaton has no
states and transitions then there is a conflict. A deadlock or
a conflict may occur at both modeling and execution time
and can be reported to the actors accordingly.

These are illustrated in Fig 4 (a) and (b) respectively.
(a) Consider the FBRs ’Symptom identification must be
followed by a diagnosis’ and ’Symptom identification must
not be preceded by a diagnosis record’ of the goals g2

and g3 respectively. If g2 is achieved then g3 can never
be achieved as the enabled FBR of g3 states completely
opposite of the corresponding FBR of g2 and the system
would be in deadlock for a design time error. Similarly, a
runtime deadlock may occur when the actor specifies an
OBR ’All identified symptoms do not need to be diagnosed’
that contradicts with the corresponding FBR of g2. (b) A
design time conflict occurs for the OBRs ’At least one
diagnosis result must be recorded before proceeding further’
and ’Treatment may start at anytime without a diagnosis’ of
the goals g3 and g4 respectively as both rules in combination
constitute no states and transitions in the automaton. A

Successful
treatment (g4)

Treatment may
start at any time

without a diagnosis
Treatment=

Diagnosis test
results (g3)

At least one diagnosis
result must be recorded

before proceeding further
Treatment= ! Treatment Diagnosis

Design time “Conflict”

A treatment record must
have a corresponding

diagnosis record
d4())d5=

Run time “Conflict”

Diagnosis test
results (g3)

Symptom identification
must not be preceded
by a diagnosis record

Symptom
identification (g2)

Symptom identification
must be followed

by a diagnosis
Symptom d4= ())(!Symptom Diagnosis())(

All identified
symptoms do not need

to be diagnosed
Symptom Diagnosis())!(=

=

Run time “Deadlock”

Design time “Deadlock”

Symptom Diagnosis())((c) Automaton for

s0 s1

Symptom

Diagnosis

! S
ym

ptom

! D
iag

nosi
s

(d) Automaton for

s0 s1

d4! T
rea

tm
en

t

rec
or

d (d
5)

Diagnosis (d5)

d4())d5

(a) Deadlock

(b) Conflict

Figure 4. (a) Deadlock between two goals ‘Symptom identification’ and ‘Diagnosis test results’; and functional and organizational business
rules. (b) Conflict between two goals ‘Successful treatment’ and ‘Diagnosis test results’; and functional and organizational business rules.

similar situation arises for the FBR and OBR of the goal
g4 at runtime.

B. Task Enactment

A DocWF system can find the possible tasks/services
by performing a semantic matching of current goals with
the corresponding tagging in BPMN models of a KB. Such
services may not be reachable or unavailable for various
reasons for instance communication or system failure. We
model the possible states of a task using simple integer
values that capture a task’s re-usability.

Let Ti be an executed task for a goal gi for which the
associated rule is ri and rj be an enabled rule after Ti’s
execution. A task Tj is a potential task after Ti, denoted
by Tj > Ti if either (1) both tasks are chosen from the KB
having same precedence, i.e. Tj > Ti or (2) both ri and
rj evaluate to true (if not true yet possibly be true later).
Similarly, two potential tasks Tl and Tm can be executed in
parallel if they satisfy (1) and/or (2), denoted by rlm = 0
otherwise rlm = 1.

A directed graph G = (T,>) represents these precedence
relationships, where each potential task is a node in the
graph and a directed edge from a node Ti to node Tj

represents a sequence flow, denoted as fij = 1.

Task state: The state of a task (i.e. executed or potential)
Ti, denoted as S(Ti), in a DocWF execution is an integer
value in {0, 1, 2, 3} such that:

• S(Ti) = 0, i.e. Ti is not executed before and not a
potential task.

• S(Ti) = 1, i.e. Ti is not executed before and is a
potential task.

• S(Ti) = 2, i.e. Ti was successfully executed before and
not a potential task.

• S(Ti) = 3, i.e. Ti was successfully executed before and
is a potential task.

Not
executed and
potential task

= 1

Executed
and

potential
task=3

Not
executed and
not potential

task = 0

Executed
and

not potential
task = 2

execute

execute

execute
execute

execute

executable executable

Figure 5. Task state model of the KB for enactment.

By the above definition, only those potential tasks having
a value either 1 or 3 can be executed (see Fig 5). Based on
the task state value we define a DocWF status that represents
current execution status of a DocWF system.

DocWF status: A DocWF status of a DocWF execution is
described as an array of the state values of executed tasks.
Let S be a DocWF status of p executed tasks then S =
{S(T1), S(T2), ..., S(Tp)}.

Now, we formally define an execution of a DocWF
process. An execution of a document-based workflow is a
tuple DocWFexec = (G, D, T, F, R, SI , SF), where

1) G = {g1, g2, ...gm}, m ≥ 1, is a set of goals derived
from a business goal G.

2) D = {d1, d2, ..., dr}, r ≥ 1, is a set of docu-
ments/document portions that need to be handled.

3) T = {T1, T2, ...Tn}, n ≥ 1, is an incremental set of
executed tasks where a task is defined as either a free
or a recipe task.

4) F = [fij]|T |×|T | is a sequence flow matrix of the tasks
of T . i.e. fij = 1 if Tj > Ti otherwise fij = 0 for
i = 1, 2, ...|T | and j = 1, 2, ...|T |.

Potential task

Executed Task

Legend

(a) (b)

T0

(c)

p0 T0

T1

(d)

p0

T0

Ti

T3 T0

Ti

T2

(f)

T3 T4

T5

T6

T7

(g)

Contact
update
service

Health
insurance
service

Contact
update
service

Health
insurance
service

Pathology
service

Task /
service

Task /
service

Patient
arrival
service

Patient
arrival
service

T0
T0

Health
insurance
service

T1

T2

T1

T2 T2

Pathology
service

Diagnosis
service

T3

Health
insurance
service

Diagnosis
service

T4

T2

Medication
service

T5

Pathology
service

T6

T6

Therapy
service

Surgery
service

T7

T8

T8

(e)

3

3

1

1

2

1

1

1 3

3

3

3

2

2

1

1

state

state

T3
T4

Figure 6. A dynamic task/service enactment of Electronic Health Record (EHR) generation workflow.

5) R = [rij]|T |×|T | is a rule violation matrix of the tasks
of T , i.e. rij ∈ {0, 1} for i, j = 1, 2, ...|T |.

6) SI ∈ {0, 1, 2, 3}|T | is the initial status of the DocWF.
7) SF ∈ {2, 3}|T | is the final status of the DocWF.

In order to provide a comprehensive picture of an ex-
ecution to an actor, the DocWF status component can
compute the DocWFexec tuple. As an execution goes on T
is increased and so are the matrices F and R and all together
show the states of executed tasks, their sequence flow and
rules applied. Given initial status SI , for a task Tj ∈ T , if
there is no Ti such that Tj > Ti, i.e. fij=0 then SI(Tj) = 1;
otherwise SI(Tj) = 0. Note that, initial status may consist of
state values of executed tasks (i.e. {2, 3}). As such a DocWF
execution may start from an unfinished workflow execution
as opposed to a task-based workflow which is typically in
a blocking situation in case of an exception. On the other
hand, in the final status SF , all the documents/document
potions are handled and all the goals and thus the business
goal is achieved (implies a potential task is executed at least
once as denoted by {2, 3}).

DocWF Status Transition Rules: The dynamic execution
of the tasks is governed by a set of transition rules based
on which the incremental set of executed tasks T is built.
We define general transition rules that take uncertainty and
re-usability into account during a DocWF execution. For
example, in the EHR generation workflow (Fig 6 (f)) it
is possible to perform additional symptoms tests, i.e. T6

while doctors are doing medication treatment, i.e. T5 and
can decide dynamically depending on the diagnosis record
whether they proceed with therapy or surgery (explained in
the latter section). Details of these transition rules can be
found in [16].

Knowledge-base (KB) update: A successful execution
trace (i.e. sequence flow, executed BPEL), handled docu-
ment’s semantics and associated rules can be added to the
KB by the actors and thus the KB gets continuously enriched
for further consultation.

C. A DocWF Task Enactment Example

Assuming no occurrence of modeling and execution er-
ror, we now illustrate a dynamic task enactment of the
fictitious EHR generation workflow by applying dynamic
task enactment approach of Section III B (see Fig 6). The
actors are hospital administrative employees, pathologists,
diagnosis technicians and doctors. Some tasks require human
interaction and other can be invoked as automated services.
For each transition the DocWFexec elements (i.e. executed
tasks, handled documents D, sequence flow F and rule
violation matrices R are instantiated. Fig 6 illustrates an
execution and the complete instantiation can be found in
[16].

Assuming a patient arrival service, i.e. task T0, triggers
the business goal ’Generating a complete EHR’ (Fig 6(a)).
The initial goal g1, i.e. ’up-to-date patient particulars’ with
its FBR is ’Separate patient’s contact and health insurance
data’. For this an OBR refers to the document portion d1

and d2 of the administration department and allows parallel
updates on d1 and d2. Also, a human oriented task i.e.
’Contact update service’ (T1) and an automated service, i.e.
’Health insurance service’ (T2) are found in the KB (i.e.
recipe tasks) for the goal g1. As the administration employee
is available the task T1 is immediately executable (state
1). However, the ’Health insurance service’ is currently
unavailable (indicated by state 2) but can be executable as
soon as it is available (Fig 6 (b)). The tasks T1 and T2

might not need to be performed if the patient was previously
admitted in the hospital and as such patient’s particulars
would have had up-to-date already. This can be determined
for instance from a BPEL execution history of the generating
EHR process in the KB.

As the goal g2 ’Symptoms identification’ can be achieved
independently of the goal g1, a human oriented ’Pathology
service’, i.e. pathologists can already record the problem
symptoms of the patient, (i.e. task T3) into d3 (Fig 6 (c)) as
suggested from the KB. Note that the state of the executed
task T1 is 3 meaning patient’s contact can be updated
whenever required.

Now, for the goal g3 ’Diagnosis tests results’ an associated

Task-based Workflow Declarative Workflow Case handling [6] Document-based Workflow (DocWF)
Focus Task Task Whole case Document data, goal
Modeling artifact Task Task, constraints Task Goal, business rule
Task and Sequence flow definition A priori Only task definition A priori Dynamic
Primary perspective Control flow Constraints over tasks Case data Constraints over goals, document data

Table I
DIFFERENCES OF DOCUMENT-BASED WORKFLOWS WITH TASK-BASED, DECLARATIVE AND CASE HANDLING WORKFLOWS.

symptom must be identified in d3 according to its FBR (of
Fig 3 (c)). So, after d3 is filled in with a symptom data by
the task T3, a diagnosis technician can record the test result
by another human oriented service ’Diagnosis service’, i.e.
T4 (Fig 6 (d)). Note that the states of task T3 and T2 are
now 3 meaning symptom identification can occur again and
’Health insurance service’ is executable now respectively.

As soon as the diagnosis test results are recorded in d4,
the task T4’s state is changed to 3 that allows more diagnosis
records whenever required (Fig 6 (e)). Note that the state of
the task T2 is changed to 2 indicating that service is again
unavailable. Now for the goal g4 ’Successful treatment’,
operation theater has OBRs enabling suitable treatment (e.g.
medication, therapy, surgery etc.). The doctor may start
treatment, i.e. T5, by suitable ’Medication’. As the rules
of the pathology, diagnosis and the operation theater allow
further tests and ongoing according treatment, at a later time
the doctor may need some other pathology diagnosis test
records before advancing further in the treatment (i.e. T6). It
indicates that the d4 may need to be handled again while the
doctor is performing the treatment i.e. T5. Now depending on
the current test results the doctor may need provide ’Surgery’
and/or ’Therapy’ services for a successful treatment (Fig 6
(f) (g)).

Now, when the treatment is successfully completed, the
DoCWF execution will reach a final status by generating a
complete EHR and thus the business goal is achieved (Fig
6 (g)).

IV. RELATED WORK

Although we are not aware of other proposals which are
directly comparable with our approach, many researchers
have addressed dynamic and flexible workflow aspects in
the last decades that vary diversely. Document oriented
workflows proposed in [17], [18], [19], [20], [21] largely
follow the task-based approach where [17] focuses on a
manufacturing process and [18] demonstrates the usage of
XML technology to realize a document and workflow based
collaborative system. In line with [18], we developed a
secure XML document-based collaboration technique [22],
that allows exchanges of fine grained documents among
anonymous actors. Upon receipt of such documents, our
approach of a DocWF can be applied to reach a business
goal. X-folders described in [20], trigger a task from a
predefined orchestrated tasks depending on a given state of
the documents inside a folder.

The authors in [6] proposed a case handling approach

to support business processes where each case is handled
in isolation (i.e. for each instance). In [1], [2], constraint-
based declarative workflows are introduced. Apparently the
problem area of case handling and declarative workflows
are close to DocWF approach for agile business processes.
However, case handling still considers the tasks and their
sequence flow of a case are specified a priori and declar-
ative approach applies constraints on a set of pre-defined
tasks for flexible execution. Our approach is fundamentally
different from these as we allow dynamic task definition,
its enactment and our rules set constraints on goals and
document content. Moreover, they do not consider any se-
mantic approach to enable re-usability of tasks/services. We
may also allow constraints on tasks as organizational rules,
for instance for a ’successful treatment’ a doctor advices
a specific medication service due to its previous successful
service delivery. Table I points out the main differences of
a DocWF system with other workflow approaches.

The author in [23] describes a goal oriented work-
flow modeling technique to generate alternative workflows
whenever necessary. Our proposed DocWF system differs
from that approach in two aspects: (1) unlike the goal
of [23] which depends on stakeholders goal, our model
supports derivation of subgoals including security goals from
a business goal independently of actors involved; (2) a
goal achievement is recorded by data instantiation in the
documents making a document a stateful representation of
a workflow which is not considered at all in [23].

V. CONCLUSION

We proposed a document-based dynamic workflow system
that is particularly suitable for agile business processes
where required tasks and their sequence flow may need to be
decided dynamically. A business actor can model a DocWF
process utilizing her domain expertise without thinking
about precise tasks/services which will be enacted by an
actor pro actively at runtime possibly by defining new tasks.
The employed business rules set constraints over goals and
documents and are expressed as LTL formulas. Such rules
treat a DocWF execution as goal achievements while a goal
can be grounded to one or more task enactments. Utilizing
the automaton of these formulas, actors may report modeling
and execution errors at design and run time. A problem
with such a rule-based system is possible contradiction,
in particular when rules are introduced by different actors.
However, associating priorities with rules may resolve such
contradiction.

REFERENCES

[1] N. S. M. Pesic, M. H. Schonenberg and W. M. P. van der
Aalst, “Constraint-based workflow models: Change made
easy,” Lecture Notes in Computer Science : On the Move
to Meaningful Internet Systems 2007, pp. 77–94, 2007.

[2] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards
a truly declarative service flow language,” Lecture Notes
in Computer Science : Web Services and Formal Methods,
Volume 4184, 2006, pp. 1–23, 2006.

[3] “Adaptive workflow systems,” 2000.

[4] “Business process management, models, techniques, and em-
pirical studies,” London, UK, 2000.

[5] “Document-oriented and process-oriented views in
lightweight workflow, http://www.cis.unisa.edu.au/ cis-
rmt/unpublished/taggdocprocwf01.doc,” School of Computer
and Information Science University of South Australia
Mawson Lakes, SA 5095, 2001.

[6] W. M. P. van der Aalst and M. Weske, “Case handling: a new
paradigm for business process support,” Data Knowl. Eng.,
vol. 53, no. 2, pp. 129–162, 2005.

[7] W. M. P. van der Aalst and S. Jablonski, “Dealing with
workflow change: identification of issues and solutions,”
International Journal of Computer Systems Science and En-
gineering, vol. 15, no. 5, pp. 267–276, September 2000.

[8] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow
evolution,” in ER ’96: Proceedings of the 15th International
Conference on Conceptual Modeling. London, UK: Springer-
Verlag, 1996, pp. 438–455.

[9] C. A. Ellis and K. Keddara, “A workflow change is a work-
flow,” in Business Process Management, Models, Techniques,
and Empirical Studies. London, UK: Springer-Verlag, 2000,
pp. 201–217.

[10] M. Weske, “Formal foundation and conceptual design of
dynamic adaptations in a workflow management system,” in
HICSS ’01: Proceedings of the 34th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS-34)-Volume
7. Washington, DC, USA: IEEE Computer Society, 2001,
p. 7051.

[11] “IBM BPM suite, http://www-
01.ibm.com/software/info/bpm/offerings.html.”

[12] “SAP NETWEAVER BPM White Paper,
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/lib-
rary/uuid/d014cef6-37cf-2b10-e8ae-871324d54d8d.”

[13] F. D. Matthias Born and I. Weber, “User-friendly semantic
annotation in business process modeling,” Lecture Notes in
Computer Science : Web Information Systems Engineering
WISE 2007 Workshops, pp. 260–271, 2007.

[14] M. A. Rahaman, Y. Roudier, P. Miseldine, and A. Schaad,
“Ontology-based Secure XML Content Distribution,” in IFIP
SEC 2009, 24th International Information Security Confer-
ence, May 18-20, 2009, Pafos, Cyprus, May 2009.

[15] “Owl Web Ontology Language Overview,
http://www.w3.org/tr/owl-features/.” [Online]. Available:
http://www.w3.org/TR/owl-features/

[16] M. A. Rahaman, Y. Roudier, and A. Schaad, “A Document-
based Dynamic Workflow System,” Eurécom, Tech. Rep. RR-
09-231, 04 2009.

[17] S. Morschheuser, H. Raufer, and C. Wargitsch, “Challenges
and solutions of document and workflow management in
a manufacturing enterprise: A case study,” in HICSS ’96:
Proceedings of the 29th Hawaii International Conference on
System Sciences Volume 5: Digital Documents. Washington,
DC, USA: IEEE Computer Society, 1996, p. 4.

[18] M. I. PODEAN, “Document and workflow management
in collaborative systems, babes-bolyai university of cluj-
napoca,” in Economy Informatics, 1-4/2008, Working paper,
2008.

[19] T. Wewers and C. Wargitsch, “Four dimensions of interorga-
nizational, document-oriented workflow: A case study of the
approval of hazardous-waste disposal,” vol. 4, Jan 1998, pp.
332–341 vol.4.

[20] D. Rossi, “Orchestrating document-based workflows with x-
folders,” in SAC ’04: Proceedings of the 2004 ACM sympo-
sium on Applied computing. New York, NY, USA: ACM,
2004, pp. 503–507.

[21] K.-J. Stol, “A framework for document-oriented, workflow-
enabled applications, computing science. university of gronin-
gen,www.cs.rug.nl/ aiellom/tesi/stol.pdf,” Tech. Rep.

[22] M. A. Rahaman, Y. Roudier, and A. Schaad,
“Distributed Access Control For XML Document
Centric Collaborations,” in The 12th IEEE Enterprise
Computing Conference (EDOC 2008), IEEE, Ed.,
September 2008. [Online]. Available: http://www.lrz-
muenchen.de/ edoc2008/researchPaperProgram.html

[23] W. N. Robinson, “Goal-oriented workflow analysis and infras-
tructure,” in Georgia State University, Working paper, 1996,
pp. 96–07.

